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Abstract

Objective

Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosar-

coma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based

SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and

in vitro.

Methods

The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse

model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the pro-

liferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were

examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2,

Bax, p53 and caspase 3 expression in UMR-106 cells were determined.

Results

Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model

and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min

were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of

implanted osteosarcoma in mice (P<0.01) and reduced the viability of UMR-106 cells

(p<0.05). ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells

(p<0.01 for both). Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apo-

ptosis (p<0.01) and morphological changes. Furthermore, ALA-SDT significantly reduced

the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the

Control or the Ultrasound). Moreover, ALA-SDT inhibited the proliferation of osteosarcoma
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cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in

the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound).

Conclusions

The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106

cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochon-

drial pathway.

Introduction
Osteosarcoma is a malignant tumor threatening young adults worldwide and accounts for 20%
of primary bone cancers. Currently, there are several therapeutic strategies available for treat-
ment of osteosarcoma. However, the efficacy of these therapeutic strategies is limited and some
therapeutic procedures can cause severe complications and adverse effects. Given that there is
no effective therapy for treatment of osteosarcoma[1–4] new approaches to discovery of effec-
tive therapies for osteosarcoma are of great significance.

Sonodynamic therapy (SDT) was developed by Umemura et al. in 1989 for cancer treat-
ment, and is a non-thermal method utilizing low-intensity ultrasound and sonosensitizers[5].
Sonosensitizers can selectively accumulate in tumor cells, activated by ultrasound in the tar-
geted area and generate reactive oxygen species (ROS) to kill tumor cells [6–9]. 5-aminolevuli-
nic acid (5-ALA) can metabolize into the biological precursor of protoporphyrin IX (PpIX) in
the haeme biosynthesis pathway and 5-ALA has low toxicity and a short dark period in the
cells, as compared with other sonosensitizers[10,11]. The PpIX derived from 5-ALA mainly
accumulates in the mitochondria of cells[12], where the generated ROS following ultrasound
can through the mitochondrial apoptotic pathway trigger vertebrate cell apoptosis[13,14].

The effects of 5-ALA-mediated sonodynamic therapy (ALA-SDT) for tumor cells have been
extensively investigated[15,16]. Some studies have elucidated that ALA-SDT can induce the
mitochondrial apoptotic pathway of tumor cells[15,17]. However, the molecular mechanisms
underlying the action of ALA-SDT have not been clarified. In this study, we employed a mouse
model of osteosarcoma and in vitro tumor cells to examine the effect of ALA-SDT on osteosar-
coma cell survival and apoptosis, and to investigate the potential mechanisms by which
ALA-SDT treatment induced rat osteosarcoma UMR-106 cell apoptosis.

Materials and Methods

Cell culture
Rat osteosarcoma UMR-106 cells were obtained from Chinese Academy of Sciences, Shanghai
Institute Cell Resource Center, China. UMR-106 cells (1×105~1.5×105 cells/ml) were cultured
in DMEM (HyClone, Logan, UT, USA) medium containing 10% fetal bovine serum (FBS),
100 units/mL penicillin, and 100 μg/mL streptomycin at 37°C in a humidified atmosphere of
5% CO2.

Sonication device
The ultrasonic generator and power amplifier used in this study were designed and assembled
by Harbin Institute of Technology (Harbin, China, Fig 1). The home-made ultrasonic
transducer (diameter: 3.5 cm: resonance frequency: 1.0 MHz; duty factor: 10%; repetition
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frequency: 100 Hz) was placed in a water bath 30 cm below the cells cultured to guarantee field
uniformity. The ultrasound intensity used was 2.0 W/cm2 in vivo and 3.0 W/cm2 in vitro, mea-
sured by a hydrophone (Onda Corp, Sunnyvale, CA, USA).

Animal tumor model and treatments
Male BALB/c nude mice at 4 weeks of age were from Shanghai Laboratory Animal Center
(SLAC, Shanghai, China) and housed in a specific pathogen-free facility. Individual mice were
inoculated subcutaneously with 2x104 UMR-106 cells in 100 μl serum-free medium near the
right hip to induce solid tumors. When the tumor reached a diameter of 0.5 to 0.7 cm (about
7 days later), the tumor-bearing mice were randomly treated intravenously with 250 mg/kg
5-ALA (Sigma, St. Louis, Mo, USA) and protected from light exposure. The intracellular con-
tents of 5-ALA-PpIX in the tumor or surrounding tissues of mice were examined longitudi-
nally using the Leica LT-9MACIMSYSPULS (Media Cybernetics, Inc, Bethesda, MD, USA)
under the activation of a 405-nm blue light source because the contents of intracellular
5-ALA-PpIX are correlated positively with the intensity of red fluorescence.

The tumor-bearing mice at seven days post inoculation were randomized into four groups
(n = 10 per group): the control (Control), 5-ALA (ALA), ultrasound (Ultrasound) and SDT
(SDT). The Control mice received intravenously vehicle alone and the ALA mice received
250 mg/kg 5-ALA daily. The Ultrasound group of mice were treated with ultrasound of 2.5
W/cm2 for eight minutes while the SDT group of mice were treated with the same dose of
5-ALA, followed by ultrasound treatment eight hours later. All mice were treated with daily for
consecutive 10 days and protected from light exposure until the end of experiment. The tumor
volumes in individual mice were measured using a caliper and calculated using the formula of
[(π/6)a×b2], where a was the long diameter while b for the short diameter. All mice were sacri-
ficed at 10 days post 5-ALA administration. The experimental protocols were approved by the
Animal Care and Research Committee of Harbin Institute of Technology.

The 5-ALA cytotoxicity and intracellular ALA-PpIX accumulation
UMR-106 cells (3×104~5×104 cells/ml) were cultured in 96-well plates for 6 hours and treated
in sextuplicate with different doses (0.5–10 mM) of 5-ALA for varying periods (2–12 hours).
During the last two-hour culture, the cells were exposed to 20 μl MTT and the absorbance of
individual wells was measured at 450 nm. In addition, UMR-106 cells (3×104~5×104 cells/ml)
were treated in sextuplicate with 2 mM 5-ALA for 2–12 hours and the contents of intracellular
5-ALA-PpIX were measured longitudinally using a fluorescence spectrophotometer (USB2000;
Ocean Optics Inc, Dunedin, FL, USA) and fluorescence microscope (Olympus, Tokyo, Japan).

Fig 1. Schematic diagram of the sonication device.

doi:10.1371/journal.pone.0132074.g001
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Ultrasound treatment in vitro
UMR-106 cells (3×104~5×104 cells/ml) were cultured in 35 mm dishes overnight and ran-
domly treated in sextuplicate with vehicle alone as the Control (C), with 5-ALA as the A group,
with ultrasound as the Us group or with SDT as the SDT group. The control cells were treated
in sextuplicate with vehicle, the A group with 2 mM 5-ALA, the Us group with ultrasound of
2.0 W/cm2 for 7 min at 30 cm from the transducer and the SDT group with both the same dose
of 5-ALA and ultrasound for 6 hours. The viability of individual groups of cells was determined
by MTT.

Transmission electron microscopy (TEM) analysis
Individual group of cells were harvested and centrifuged, after being washed with PBS (0.01M
pH7.2~7.4), the cells were embedded with 2% agar in 1% glucose medium, fixed with 2.5% glu-
taraldehyde for 2 hours and then further fixed with osmium tetroxide. Subsequently, the blocks
were dehydrated in gradient alcohol, and embedded in Epon812. The cells were then cut into
ultra-thin sections (8 nm), and stained with uranium acetate. The sections were observed and
photoimaged under a TEM (Hitachi, Tokyo, Japan).

TUNEL assay of apoptotic cells in vivo
The cell apoptosis in the tumors was assessed by the terminal deoxyribonucleotide transferase
mediated nick-end labelling (TUNEL) assay using an in situ apoptotic detection kit (Roche,
Switzerland), according to the manufacturer’s instructions. Briefly, the tumor sections (5 μm)
from individual mice were subjected to TUNEL assay and stained with diaminobenzene (DAB)
for 10 min. The sections were examined under a light microscope (Nikon, Tokyo, Japan) and
the cells with positively tan or brown stained particles in their nuclei were apoptotic cells. The
apoptotic index was calculated as the numbers of TUNEL-positive cells divided by the total
number of cells in 10 randomly selected high-power fields (HPF, magnification × 400), and at
least 1000 tumor cells were counted for individual mice.

Immunohistochemistry
Tumor tissues were fixed in 4% PFA, dehydrated with graded ethanol and paraffin-embedded.
The tumor tissue sections (4 μm) were deparaffined, rehydrated and subjected to antigen-
retrieval by heating the sections in citrate buffer (0.01 M, pH 6.0) for 20 minutes, followed by
treating them with 3% H2O2 to block endogenous peroxidase at room temperature. After being
blocked with 10% goat serum, the sections were stained with rabbit polyclonal anti-Bcl-2
(1:200), anti-Bax (1:200), anti-P53, and mouse monoclonal anti-caspase-3 (1:200) (1:200; Santa
Cruz Biotechnology, Santa Cruz, CA, USA) at 4°C overnight. The sections were washed with
PBS for 3 times, and the bound antibodies were detected with goat anti-rabbit or goat anti-
mouse secondary antibodies and visualized with DAB, followed by counterstaining with hema-
toxylin. Finally, the sections were examined under a light microscope and immunopositively
stained cells was quantified with integrated optical density (IOD) values using Image Pro Plus
(IPP) software 6.0 (Media Cybernetics, Bethesda, MD, USA).

Additional immunohistochemistry was performed to detect proliferative cells in tumor sec-
tions using mouse monoclonal anti-proliferating cell nuclear antigen (PCNA) antibody (sc-
25280; 1:200; Santa Cruz Biotechnology). A total of 10 HPF (magnification × 400) were
selected randomly to evaluate the numbers of positive anti-PCNA stained cells and the prolifer-
ation index was calculated as the numbers of PCNA positive cells divided by the total number
of cells in HPF selected.
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Flow cytometry
UMR-106 cells (5×104 cells /well) were cultured in 35 mm dishes overnight and treated in octu-
plicate with vehicle alone, with 2 mM 5-ALA, ultrasound at 2.0 W/cm2 (1.0 MHz) for seven
minutes, or with both the same doses of 5-ALA and ultrasound. The cells were cultured for six
hours and stained with 5 μL Annexin-V-FITC for 15 minutes and 10 μL propidium iodide (PI,
Key Gen Biotech, Beijing, China) for 5 minutes. After being washed, the cells of each sample
were analyzed by flow cytometry. The percentages of apoptotic and necrotic cells were analyzed
using CELL Quest software (BD Biosciences, San Jose, USA).

Fluorescent staining and fluorospectrophotometer assays
The impact of treatment with 5-ALA and/or ultrasound on the mitochondrial membrane
potential (ΔψM) was assessed by fluorescent staining and fluorospectrophotometer assays
using fluorescent probe jc-1 (Invitrogen). UMR-106 cells (5×104 cells/well) were cultured in
35 mm dishes overnight and treated in octuplicate with vehicle alone, with 2 mM 5-ALA, ultra-
sound at 2.0 W/cm2 (1.0 MHz) for 7 minutes, or with both the same doses of 5-ALA and ultra-
sound. The cells were cultured for six hours and stained with 10 mg/ml jc-1 for 20 minutes at
37°C in the dark. After being washed, the cells were examined under a fluorescent microscope.
The red–orange fluorescence reflected a potential-dependent aggregation in the mitochondria
and the green fluorescence, the monomeric form of jc-1, in the cytosol indicated the mitochon-
drial membrane depolarization. The fluorescence intensity was measured using a fluorospec-
trophotometer (Olympus Corporation, Tokyo, Japan) at 488 nm excitation and 530 nm
(green) and 590 nm (red) emission wavelengths.

In addition, the impact of treatment with 5-ALA and/or ultrasound on the production of
ROS in individual groups of cells was determined by fluorescent staining and fluorospectro-
photometer assays using 20-70-dichlorofluorescin diacetate (DCFH-DA). Briefly, the different
groups of cells were treated as described above for 7 minutes and stained with 10 μM
DCFH-DA at 37°C for 30 min. After being washed, the intensity of fluorescent signals was
detected using a fluorescence spectrophotometer at emission from 488 to 515 nm. Further-
more, the cells were examined under a fluorescent microscope.

Statistical analysis
Statistical analysis was performed using SPSS 13.0 software. All data were expressed as the
means ± standard deviation (SD). The difference among the groups were analyzed with one
way ANOVA and post hoc with Fisher's least significant difference (LSD). A p value of<0.05
was considered statistically significant.

Results

Pre-treatment with 5-ALA enhances the effect of SDT on inhibiting the
growth of implanted osteosarcoma in mice
To determine the effect of ALA-SDT, we first determined the metabolic dynamics of 5-ALA in
vivo. BALB/c nude mice were inoculated with UMR-106 cells to induce solid tumors. The
tumor-bearing mice were treated with 5-ALA and the contents of generated PpIX in the
tumors and surrounding regions of individual mice were measured using the Leica LT-
9MACIMSYSPULS. As shown in Fig 2A, the red fluorescence in the skin of surrounding
regions of individual mice peaked at 6 hours post injection and declined. In contrast, the red
fluorescent signals in the xenograft tumors gradually increased and peaked at 8 hours post
injection and declined. As a result, the ratios of signals in the tumor to that in the surrounding
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regions that reflected the special signals were the greatest at 8 hours post injection, suggesting
the best time for SDT.

Next, we tested the effect of ALA-SDT on the growth of implanted tumors in vivo. The
tumor-bearing mice were randomly treated with vehicle as the Control, with ALA, ultrasound
alone or both 5-ALA and ultrasound as the SDT group and the growth of implanted tumors
were monitored in Fig 2B. The tumor volumes in the ALA-treated mice were similar to that of
the Controls and the tumor volumes in the Ultrasound group were significantly smaller than
that of the Controls, indicating that treatment with ultrasound alone, but not ALA, inhibited
the growth of implanted osteosarcoma in vivo. More importantly, the tumor volumes in the
mice received ALA and ultrasound were significantly smaller than that of the Controls
(p<0.01). Hence, pre-treatment with 5-ALA enhanced the antitumor effect of ultrasound.

Optimization of experimental conditions for ALA-SDT mediated
cytotoxicity against UMR-106 cells
To test the effect of ALA-SDT, we began to optimize the concentrations of 5-ALA and found
that treatment with 1–4 mM 5-ALA did not modulate the cell viability in vitro and treatment
with increased concentrations of 5-ALA slightly reduced the cell viability (Fig 3A). Further-
more, we tested the effect of 0–4 mM 5-ALA and ultrasound on the viability of UMR-106
cells and we found that treatment with 2–4 mM 5-ALA and ultrasound dramatically reduced
the viability of UMR-106 cells (Fig 3B). Hence, we selected 2 mM 5-ALA for further experi-
ments. In addition, we determined the dynamic metabolism of 5-ALA in UMR-106 cells and
found that the contents of generated PpIX peaked at 6 hours post treatment in UMR-106
cells (Fig 3C and 3D). Moreover, we optimized the ultrasound time period and we found that
treatment with 2 mM 5-ALA and ultrasound for 7 minutes reached a great reduction in the
viability of UMR-106 cells (Fig 3E). Collectively, our data indicated that treatment with 2

Fig 2. The dynamics of 5-ALAmetabolism in tumors and ALA-SDTmediated inhibition on the growth implanted osteosarcoma in mice. BALB/c
nude mice were inoculated with UMR-106 cells to induce solid tumor and the tumor-bearing mice were treated with 250 mg/kg 5-ALA. The contents of
generated PpIX in the tumors or surrounding tissues of individual mice were evaluated longitudinally at the indicated time points. In addition, the tumor-
bearing mice were treated with vehicle alone as the Control, with 5-ALA (ALA), ultrasound or both as the ALA-SDT daily for 10 consecutive days. The
volumes of tumor were monitored daily. Data are expressed as the mean ± SD of individual groups (n = 3 per group for the measurement of PpIX, n = 10 per
group for measurement of in vivo tumor growth). A. The dynamics of PpIX generation in the tumor. B. The growth of implanted tumors in mice. *P<0.05,
**p<0.01 vs. the Control.

doi:10.1371/journal.pone.0132074.g002
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Fig 3. Optimization of ALA-SDT for UMR-106 cells in vitro. UMR-106 cells were treated with 0–10 mM 5-ALA for 2–12 house and during the last 2-h
culture, the cells were exposed to MTT for determine the optimal concentration of 5-ALA by the survival of cells. Furthermore, the cells were treated with 0–4
mM and exposed to ultrasound at 2.0 W/cm2 for 5 minutes, followed by determining the survival of cells. In addition, the cells were treated with 2 mM 5-ALA
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mM 5-ALA for 6 hours and ultrasound for 7 minutes were optimal for testing the effect of
ALA-SDT on the survival of UMR-106 cells in vitro. Actually, we detected that the survival
rates of cells that had been treated with 2 mM 5-ALA were similar to that of the Controls and
the survival rates of cells treated with ultrasound alone were significantly lower than that of
the Controls beginning (p<0.05, Fig 3F). Interestingly, the survival rates of cells in the SDT
group were further reduced to 64.4%±3.1%, as compared with that of the Controls (p<0.01).
Together, our data indicated that treatment with 5-ALA enhanced the cytotoxicity of ultra-
sound against UMR-106 cells in vitro.

Treatment with 5-ALA enhances ultrasound-mediated UMR-106 cell
apoptosis in vitro
To understand the therapeutic mechanisms underlying the action of ALA-SDT, we determined
the effect of treatment with ALA and/or ultrasound on the frequency of apoptotic UMR-106
cells in vitro. We found that treatment with 5-ALA alone did not significant increase the fre-
quency of apoptotic UMR-106 cells and treatment with ultrasound alone did increase the fre-
quency of apoptotic UMR-106 cells (11.56% vs. 1.59%, p<0.05, Fig 4A). Treatment with both
5-ALA and ultrasound further significantly increased the frequency of apoptotic UMR-106
cells (31.37%, p<0.01 vs. the Ultrasound or Controls). Hence, the ALA-SDT triggered the apo-
ptosis of UMR-106 cells, contributing to their inhibition of tumor growth in vivo and cytotox-
icity in vitro.

TEM analysis revealed that there was no obvious cell damage and apoptotic body in the
Control and ALA groups of cells (Fig 4B). In contrast, the cells in the ultrasound group dis-
played varying sizes and irregular shapes, accompanied by decreased superficial microvillus
and swollen mitochondria and endoplasmic reticulum, indicating cell damages. Furthermore,
the SDT group of cells exhibited more severe damages with many apoptotic bodies and differ-
ent sizes of vacuoles and organelles in the cytoplasm as well as disrupted cell membranes and
nuclei. These data provided a separate line of evidence to demonstrate that the ALA-SDT
enhanced UMR-106 cell apoptosis in vitro.

Treatment with 5-ALA enhances ultrasound-modulated ΔψM and ROS
production in UMR-106 cells
Treatment with ultrasound can reduce the ΔψM and induce ROS production[15,18]. To fur-
ther understand the therapeutic mechanisms of ALA-SDT, UMR-106 cells were treated with
vehicle, 5-ALA, ultrasound alone or both 5-ALA and ultrasound, and labeled with jc-1 dye.
The intensity of green and red-orange fluorescence of jc-1 were examined under a fluorescent
microscope (Fig 5A) and measured by a fluorospectrophotometer (Fig 5B). The levels of ΔψM
in the ultrasound group were significantly lower than that of the Control or ALA group
(p<0.05) and the levels of ΔψM in the cells treated with both 5-ALA and ultrasound were fur-
ther reduced to 40.2 ± 2.6%, which were significantly lower than that of the Control (p<0.01)

for 2–12 hours and the intracellular contents of PpIX in individual groups of cells were determined longitudinally using a fluorescent microscope and
spectrophotometer. Moreover, the cells were treated with 2 mM 5-ALA and then with ultrasound for 1–15 minutes, followed by determining the survival rates
of cells. Finally, the cells were treated with vehicle as the Control, 2 mM 5-ALA or/and ultrasound for 7 minutes and the viability of individual groups of cells
was determined by MTT. Data are representative fluorescent images or expressed as the mean ± SD of individual groups of cells from three separate
experiments. A. The dose effects of 5-ALA on the survival of cells. B. The dose effect of ALA_SDT on the survival of cells. C. The fluorescent images
(magnification x 400) of intracellular PpIX. D. The quantitative analysis of intracellular PpIX. E. The time effect of ALA-SDT on the survival of cells. F. The
effect of ALA-SDT on the viability of cells. *P<0.05, **p<0.01 vs. the Control.

doi:10.1371/journal.pone.0132074.g003
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and ultrasound (p<0.05). Hence, the ALA-SDT significantly reduced the ΔψM in UMR-106
cells.

Analysis of ROS production showed significantly increased numbers of cells with strong
intensity of DCFH-DA staining in the ALA-SDT group and relative less numbers of
DCFH-DA positive cells with relative low intensity of fluorescent signals in the ultrasound
group (Fig 5C). However, there were a few positive DCFH-DA staining cells in the Control or

Fig 4. ALA-SDT induces osteosarcoma cell apotosis in vitro.UMR-106 cells were treated with vehicle (Control), 2 mM 5-ALA or/and ultrasound for 7
minutes, cultured for 6 hours and the percentages of apoptotic cells were determined by flow cytometry. In addition, the cells damages of individual groups of
cells were characterized by TEM. Data are representative images of individual groups of cells from three separate experiments. A. Flow cytometry analysis of
apoptotic cells. B. TEM analysis of cell damages (Magnification×20000). The white arrows indicate apoptotic bodies.

doi:10.1371/journal.pone.0132074.g004
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ALA group. Quantitative analysis revealed similar levels of ROS production in both the Control
and ALA groups (100 and 112.8 ± 9.6%, Fig 5D). The levels of ROS in the ultrasound group
(168.3 ± 14.5%) were significantly higher than that of the Control (p<0.05), but lower than
that in the ALA-SDT group (312.4± 20.4%, p<0.05). Therefore, these data indicated that treat-
ment with ALA enhanced ultrasound-reduced ΔψM, and ultrasound-induced ROS production
in UMR-106 cells in vitro.

The ALA-SDT inhibits UMR-106 cell proliferation and induces UMR-106
cell apoptosis in vivo
To understand the therapeutic mechanisms of ALA-SDT in vivo, we analyzed the proliferative
osteosarcoma cells in the implanted tumors by anti-PCNA staining. As shown in Fig 6A, in
comparison with that in the Control group of tumors, ultrasound, but not 5-ALA, treatment
significantly reduced the frequency of anti-PCNA positively stained proliferative osteosarcoma
cells (p<0.05) and ALA-SDT further reduced the percentages of proliferative osteosarcoma
cells (p<0.01). More importantly, the percentages of anti-PCNA positively stained proliferative
osteosarcoma cells in the ALA-SDT group of tumors were significantly lower than that of the
ultrasound-treated tumors (p<0.05). Hence, treatment with 5-ALA enhanced the inhibition of
ultrasound on the proliferation of osteosarcoma cells in vivo.

Further analysis revealed that treatment ultrasound, but not 5-ALA alone, induced 20.4% of
osteosarcoma cell apoptosis and ALA-SDT increased the percentages of apoptotic osteosar-
coma cells to 45.6%, which was significantly higher than that in the Control (p<0.01) and the
ultrasound alone (p<0.05). Together, our data indicated that the ALA-SDT inhibited the pro-
liferation of implanted osteosarcoma cells and induced their apoptosis in vivo.

The ALA-SDT modulates the expression of apoptosis-related regulators
in the implanted osteosarcoma in vivo
The levels of p53, BcL family members and caspase expression are associated with the prolifer-
ation and apoptosis of tumor cells[15]. We further examined the expression levels of BcL-2,
Bax, p53 and caspase 3 in the implanted tumors from the different groups of mice by immuno-
histochemistry (Fig 7A). Quantitative analysis of the intensity of anti-BcL-2 staining indicated
that there was no significant difference in the intensity of BcL-2 expression between the Con-
trol and ALA groups of tumors (Fig 7B). The levels of BcL-2 expression in the tumors form the
ultrasound groups were significantly lower than that in the Control (p<0.05), but significantly
higher than that in the tumors from the ALA-SDT group of mice (p<0.05). In contrast, the lev-
els of Bax, p53 and caspase 3 expression in the tumors from the ultrasound group were signifi-
cantly higher than that in the Control (p<0.01), but significantly lower than that in the
ALA-SDT group of mice (p<0.05). Collectively, these data indicated that treatment with
5-ALA enhanced ultrasound-mediated inhibition of BcL-2 expression, but increased ultra-
sound-up-regulated Bax, p53 and caspase 3 expression in the implanted osteosarcoma in mice.

Discussion
In this study, we investigated the effects of ALA-SDT on the survival and apoptosis of rat osteo-
sarcoma UMR-106 cells in vivo and in vitro. Firstly, we found that treatment with 5-ALA
caused the maximum metabolic PpIX signals at 8 hours post treatment in the implanted osteo-
sarcoma in mice, consistent with a previous report, suggesting the slow transition process from
PpIX to heme[19]. Treatment with 5-ALA at<4 mM did not affect the survival of rat osteosar-
coma UMR-106 cells and peaked the PpIX signals at 6 hours post treatment. Furthermore,
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Fig 5. ALA-SDT significantly reduces the mitochondrial membrane potential (ΔψM) and promotes high levels of ROS production in UMR-106 cells.
UMR-106 cells were treated, as described above, and stained with JC-1 or DCFH-DA. Subsequently, the changes in the ΔψM and ROS production in
individual groups of cells were determined by fluorescent imaging and spectrophotometer. Data are representative images (magnification x400) or expressed
as the means ± SD of individual groups of cells from three separate experiments. A. Fluorescent images of JC-1 staining. B. Quantitative analysis of ΔψM. C.
Fluorescent images of ROS production. D. Quantitative analysis of ROS production. *P<0.05, **p<0.01 vs. the Control. #p<0.05 vs. the ultrasound alone.

doi:10.1371/journal.pone.0132074.g005
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Fig 6. ALA-SDT inhibits the proliferation and promotes the apoptosis of implanted osteosarcoma cells in vivo. The PCNA expression and the
frequency of apoptotic cells in tumor sections from the different groups of mice were characterized by immunohistochemistry and TUNEL assays,
respectively. Data are representative images (magnification x 400) or expressed as the mean% ± SD of in individual groups of tumors (n = 10 per group). A.
Immunohisochemsitry for PCNA expression. B. Quantitative analysis of the frequency of PCNA+ tumor cells. C> The TUNEL analysis of apoptotic cells in the
tumors. D. The Quantitative analysis of apoptotic tumor cells. *P<0.05, **p<0.01 vs. the Control. #p<0.05 vs. the ultrasound alone.

doi:10.1371/journal.pone.0132074.g006
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treatment with 2 mM 5-ALA and low-intensity ultrasound for 7 minutes resulted in the maxi-
mum reduction in the viability of UMR-106 cells in vitro. The low-intensity ultrasound in our
study was less than theoretical 3.0 W/cm2 standard and it should cause little thermal effect,
rather result in the cavitation effect[20–24]. These conditions were used for subsequent
experiments.

Previous studies have shown that different types of SDT can effectively inhibit the growth
of tumors in humans and in animals[25,26]. In this study, we employed the optimized experi-
mental conditions and we found that ALA-SDT significantly inhibited the growth of rat osteo-
sarcoma in mice and reduced the survival rates of UMR-106 cells, as compared with that of
controls and even with that of ultrasound alone. In addition, the ALA-SDT significantly
reduced the percentages of PCNA+ rat osteosarcoma cells in the tumors. These data indicated
that treatment with 5-ALA enhanced ultrasound-mediated inhibition of rat osteosarcoma
cell proliferation in vivo and in vivo. More importantly, 5-ALA can be metabolized into a sono-
sensitizer. In comparison with other sonosensitizers, such as hematoporphyrin monomethyl
ether (HMME) and thiocyanate B, 5-ALA has the advantages of fast metabolism, low toxicity
and relatively high safety and 5-ALA has been used in the clinical practice. To the best of our
knowledge, this was the first report that ALA-SDT inhibited the growth of implanted rat osteo-
sarcoma in mice. Our data may provide an experimental basis for the design of new therapies
for patients with osteosarcoma in the clinic.

SDT can induce ROS production and mitochondrial damages, and promote tumor cell apo-
ptosis. Although ultrasound alone induced moderate frequency of tumor cell apoptosis, the
ALA-SDT significantly enhanced the effect of ultrasound-triggered rat osteosarcoma cell apo-
ptosis in vivo and in vitro, which were associated with the inhibition of osteosarcoma growth
in vivo. Evidentially, we found that in comparison with that of ultrasound alone, ALA-SDT
increased the percentages of UMR-106 cells and the severity of apoptosis-related cell structural
damages and the numbers of apoptotic bodies in UMR-106 cells. Second, the ALA-SDT signifi-
cantly reduced the ΔψM and increased the levels of ROS production in UMR-106 cells. Fur-
thermore, the ALA-SDT significantly reduced the levels of BcL-2 expression, but elevated the
levels of Bax, p53 and caspase 3 in the tumors. These support the notion that the ALA-SDT
damages the mitochondria and through the mitochondrial pathway induces UMR-106 cell
apoptosis[17,27]. It is well known that activation of sonosensitizers can induce ROS production
in cells[8,27] and the high levels of ROS can damage the mitochondrial membranes and oxidize
mitochondrial proteins, leading to depletion of antioxidants and formation of mitochondrial
permeability transition pore as well as apoptosis [18,28]. In addition, high levels of ROS can
convert into H2O2 and other toxic metabolites that release cytochrome C to activate caspase
cascade, and finally lead to apoptosis[29,30]. Given that ultrasound alone moderately inhibited
osteosarcoma cell proliferation and induced tumor cell apoptosis the mechanical effect of ultra-
sound may directly damage cell membranes and enhance cell membrane permeability[31,32].
This, together with the potential activation of endogenous PpIX to produce ROS by ultrasound,
may trigger some tumor cell apoptosis[30]. In the presence of 5-ALA, the same intensity of
ultrasound increased the levels of ROS production and the mechanical and cavitation effects,
and enhanced antitumor activity of ultrasound by inducing tumor cell apoptosis through the
mitochondrial pathway[4,16].

Fig 7. Immunohistochemsitry analysis of the levels of apoptosis-related regulators in the tumors. The levels of BcL-2, Bax, p53 and caspase 3
expression in the tumor sections from the different groups of mice were characterized by immunohistochemistry. Data are representative images
(magnification x 200) or expressed as the mean ± SD of the IOD from the different groups of mice (n = 10 per group). A. Immunohisochemsitry analysis. B.
Quantitative analysis of the IOD values. *P<0.05, **p<0.01 vs. the Control. #p<0.05 vs. the ultrasound alone.

doi:10.1371/journal.pone.0132074.g007
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In summary, our data indicated that low intensity ultrasound alone significantly inhibited
osteosarcoma cell proliferation and osteosarcoma growth in mice, associated with inducing
osteosarcoma cell apoptosis. Treatment with 5-ALA enhanced ultrasound-mediated inhibition
of osteosarcoma cell proliferation and ultrasound-induced osteosarcoma cell apoptosis in vivo
and in vitro, associated with reducing the ΔψM and BcL-2 expression and increasing the levels
of ROS production, Bax, p53 and caspase 3 expression. Our data suggest that the ALA-SDT
through the mitochondrial pathway induces osteosarcoma cell apoptosis, leading to inhibition
of implanted rat osteosarcoma growth in vivo. Our novel findings may provide experimental
basis for the design of new therapies for intervention of osteosarcoma.
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