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A B S T R A C T   

Present work describes the peristaltic flow of Sisko nanomaterial with bioconvection and gyro
tactic microorganisms. Slip conditions are incorporated through elastic channel walls. Addi
tionally, we considered the aspects of thermal radiation and viscous dissipation. Further ohmic 
heating features are also present in the thermal field. Buongiorno’s nanofluid model comprising 
thermophoresis and Brownian movement is taken. The lubrication approach is utilized for the 
simplification of the problem. Being highly coupled and nonlinear, the resulting system of 
equations must be solved numerically using the NDSolve technique and bvp4c via Matlab. Ve
locity, concentration, thermal field and motile microorganisms. are addressed graphically.   

1. Introduction 

Nanofluids are a suspension of nanometer-sized metallic particles (<100 nm) in a base fluid, such as water. Poor thermal con
ductivity is the main problem that occurs in the process of heat transfer in many advanced industries and technologies. Therefore the 
researchers use the composition of nanoparticles with base fluid to enhance the thermophysical characteristics of the base liquid to 
overcome the heat transfer issues. Nanoliquids’ excellent thermophysical properties, such as thermal conductivity and diffusivity, are 
essential to a wide screen of commercial processes, permitting transportation, thermosyphons, reactors of nuclear, biotechnology and 
heat pulsing pipes. Additionally, it is used in chemotherapy to eradicate viral censorial cells. Some environmentally friendly tech
nologies, such as the small quantity of oil and leaser quantity of cooling grease make use of nanofluids to lessen the demand for drilling 
fluids while enhancing common cooling and lubricating properties. Initially, the term “nanofluid” was created by Choi and Eastman 
[1] to refer to the usage of nano-sized diameter less than 100 nm part diameters conventional fluids. In Buongiorno’s [2] compre
hensive investigation of nanofluids, he examines the mechanisms behind the enhancement of thermal conductivity resulting from the 
Brownian motion and thermophoretic scattering of nanoparticles. Ijam and Saidur [3] explored how nanoparticles are used as a 
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coolant in electronic devices. Mustafa et al. [4] examined the peristaltic flow of nanoliquid with the features of induced magnetic 
effects. Hayat et al. [5] discussed the peristaltic motion of nanoliquid with convective and wall properties. Ohmic heating and flexible 
wall characteristics in MHD peristaltic flow were scrutinized by Sucharitha et al. [6]. Abbasi et al. [7] discovered how effective thermal 
properties are pertinent to nanoparticles (Au, Ag, Fe3O4) in peristalsis. Akram et al. [8] studied the MHD peristaltic activity of Prandtl 
nanofluids considering the aspects of mass and thermal convection. Hayat et al. [9] described the aspects of mixed convection for 
peristaltic motion of Sutterby nanoliquid. Khazayinejad et al. [10] looked at graphene-blood nanoliquid in peristaltic activity by taking 
thermal radiation through porous space. Kotnurkar and Talawar [11] reported the MHD peristaltic activity of Jeffrey nanoliquid in a 
eccentric annulus. Further, a few updated and relevant studies in this direction can be cited through [12–17]. 

Peristalsis is an instantaneous muscle contraction and relaxation process that occurs in waves, for instance, in the esophagus where 
food boluses are swallowed and moved through various digestive tract processing units. In peristaltic pumps, where various kinds of 
fluids are displaced, peristalsis also takes place. The subject of peristalsis has captured the attention of latest research due to its well- 
known implementation in the sectors of burning, industrial equipment, engineering of chemical, biomaterials, and physiology. The 
liquid is pumped through a process termed peristalsis, which is built on sine wave transmission. Peristaltic transport of nano fluid is 
essential in biological and technical processes. The peristaltic movement is used in many physiological processes, including embryo 
transport, bile ducts motion, blood stream through capillaries, and many more. Theoretical and experimental research methods were 
employed by Latham [18] in his initial survey of peristaltic motion, keeping the resulting implications in focus. Following this, a 
multitude of researchers have explored a range of peristalsis-related subjects in different flow scenarios. Shapiro et al. [19] broadened 
the investigation of peristaltic pumping by utilizing the “small Reynolds numberand large wavelength assumption”. Srinivas and 
Kothandapani [20] discussed the transfer of heat analysis of peristalsis activity in a canal. Ali et al. [21] scrutinized the numerical 
investigation of peristaltic motion of curved channel. Peristaltic motion of mass and heat transfer with considering the features of 
induced magnetic aspects followed by Hayat et al. [22]. Abbasi et al. [23] investigated the numerical inquiry for MHD peristaltic 
movement Carreau-Yasuda material in a curvical tube with aspects of Hall current. Sinnott et al. [24] analyzed the peristaltic activity 
of a particulate interruption in the trifling intestine. Rashid et al. [25] examined the MHD peristaltic flow of Williamson material 
cindering curved channel. Akbar and Abbasi [26] explored the aspects of entropy generation in peristaltic transport. Slip and Hall 
investigated the peristaltic movement of Jeffrey liquid through porous space were analyzed by Gangavathi et al. [27]. Nisar et al. [28] 
studied the chemically reactive peristaltic transportation of couple stress nanomaterial. In the study of the peristaltic process, the 
effects of wall features such as surface stiffness, viscous damping force, wall stiffness have become increasingly important. Some 
relevant investigation regarding this study is listed through [29–31]. 

Scientists and engineers have started to pay more attention to the study of non-Newtonian liquid models in past years because it 
addresses many fundamental issues from the biomedical sciences, geoscience, petrochemical, and petroleum industries, among other 
fields. In contrast to the Navier-Stokes equations, in non-Newtonian materials, the intrinsic interactions amongst stress and rate of 
stress are more intricate. Due to the complexity of non-Newtonian liquids, it is impossible to anticipate all of their diverse properties. It 
is possible to utilize non-Newtonian liquid models to illustrate the typical flow behavior of liquids found in both industry and society. 
As an outcome, various engineers and academics described various fluid systems. Out of these options, the Sisko fluid model [32] can 
elucidate the characteristics of shear thinning and thickening. Akbar [33] investigated how Sisko fluid moved peristaltically inside an 
asymmetric tube. Bhatti et al. [34] scrutinized the endoscopic features of peristaltic Sisko blood flow of titanium 
magneto-nanoparticles. Mathematical modeling of peristaltic transport of Sisko material considering porous space was studied by 
Asghar e al [35]. The mixed convection flows peristaltic flow of Sisko nano liquid with heat flow was studied by Ahmed et al. [36]. 
Sisko fluid’s peristaltic movement with double-diffusive convection was covered by Akram et al. in their study [37]. Numerical 
examine of Sisko mterial for hybrid nanomaterials is analyzed by Almaneea [38]. Tanveer and Ashraf [39] reported the entropy 
generation of Sisko fluid with Joule heating. 

The formation of suspensions generation of microorganisms, such as bacteria and algae, is what is meant by the term “bio
convection.” The movement of microorganisms results in bioconvection. Microorganisms that are typically 5–10 % denser than water 
move upward in a process known as bioconvection. The primary fluid density is raised by the presence of these self-moving motile 
bacteria. Bioconvection is employed in a broad range of applications, including organic implementations and microsystems, the 
pharmaceutical industry, biopolymer manufacturing, applications that are safe for the environment. Also advances in the use of 
economical energy sources, oil recovery of oil in progressed microbial, biotechnology, biosensors and continuous numeral presenting. 
Few pertinent studies is cited in Refs. [40–45]. 

We investigate the magnetohydrodynamics (MHD) [46–50] bioconvection peristaltic activity of Sisko nanofluid by considering 
gyrotactic microorganisms. Partial slip characteristics are imposed on elastic channel. Aspects of Joule heating and thermal radiation 
are also present in thermal field equation. Numerical solutions are accomplished by using NDSolve from Mathematica and bvp4c by 
using MATLAB. The effects of distinct involved variables are scrutinized by plotting the graphs of temperature, velocity, concentration 
and gyrotactic microorganisms profile. Finally, a comparison of heat transfer rate is evaluated via numerical investigation. 

2. Formulation 

We examine the peristaltic activity of Sisko nanoliquid having channel width 2d1. We pick out Cartesian coordinates in this a 
manner that sinusoidal waves travel in x− direction which is parallel to the walls of the channel and y− axis is taken vertical to it. By 
introducing a magnetic field (of constant strength and constant B0) in the y-direction, fluid becomes electrically conductive. As a result 
of the low magnetic Reynolds amount, electric field impacts are supposed to be zero. Sinusoidal waves that are moving along the elastic 
walls of the channel at a constant rate c serve as the source of the flow inside it. The wall shapes are [5] 
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y= ± η(x, t)= ±

[

d1 + a sin
2π
λ
(x − ct)

]

, (1)  

where a and λ represents amplitude and length of wave respectively. (See Fig. 1). 
The pertained formulations for Sisko liquid S outlined by [36] 

S=
[
α+ ς

̅̅̅
γ̇

√ n− 1]
A1, (2)  

γ̇ =
1
2

trA2
1, (3)  

A1 =(gradV) + (gradV)
t
, (4)  

where α and ς denote material constants and A1 the first Rivlin Ericksen tensor. In addition, the channel boundaries are being taken 
into account with elastic properties. The continuity, momentum, energy, concentration and microorganism eqautions are listed below 
[5,17,26,36] 

∂u
∂x

+
∂v
∂y

= 0, (5)  

ρf

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)

= −
∂p
∂x

+
∂Sxx

∂x
+

∂Sxy

∂y
− σB2

0u

+g(1 − F0)ρf βT(T − T0) −
(
ρp − ρf

)
gβc(C − C0) −

(
ρm − ρf

)
γg(F − F0),

(6)  

Fig. 1. Geometry of the problem.  
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ρf

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)

= −
∂p
∂y

+
∂Syx

∂x
+

∂Syy

∂y
− σB2

0v, (7)  

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)

=α
(

∂2T
∂x2 +

∂2T
∂y2

)

+
1

ρf cf

{
∂u
∂x

Sxx +

(
∂u
∂y

+
∂v
∂x

)

Sxy +
∂v
∂y

Syy

}

+τ
[

DB

(
∂C
∂y

∂T
∂y

+
∂C
∂x

∂T
∂x

)

+
DT

Tm

{(
∂T
∂y

)2

+

(
∂T
∂x

)2
}]

−
∂qr

∂y
+

1
ρf cf

σB2
ou2,

(8)  

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=DB

(
∂2C
∂x2 +

∂2C
∂y2

)

+
DT

Tm

(
∂2T
∂x2 +

∂2T
∂y2

)

. (9)  

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y

= DN

(
∂2F
∂x2 +

∂2F
∂y2

)

−

(
∂
∂x

(

F
∂C
∂x

)
bWc

(C1 − C0)
+

∂
∂y

(

F
∂C
∂y

))

. (10) 

The subjected boundary conditions are 

u ± β1Sxy = 0 at ​ y = ±η, (11)  

(

− τ1
∂3

∂x3 + m1
∂3

∂x∂t2 + d
∂2

∂t∂x

)

η =
∂Sxx

∂x
+

∂Sxy

∂y
− ρf

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)

−

σB2
0u + g(1 − F0)ρf βT(T − T0) −

(
ρp − ρf

)
gβC(C − C0) −

(
ρm − ρf

)
gγ(F − F0) at ​ y = ±η,

(12)  

T ± β2
∂T
∂y

=

{
T1
T0

}

,C± β3
∂C
∂y

=

{
C1
C0

}

,F =

{
F1
F0

}

aty= ±η. (13)  

Here (v, u) are velocity components in (y, x) plane, (ρp) the nanoparticles density, (DN) the microorganisms diffusion coefficient, (ρf )

the density of nanofluid, (ρm) the motile microorganisms density, (g) the gravity, (ν) for kinematic viscosity, (σ) for electric con
ductions, (α) the thermal diffusivity, (p) for pressure. Further (DB) Brownian motion coefficient and (DT) describes for thermophoretic 
diffusion, (Wc) the maximum cell swimming speed, (τ1) for tension of ealstic, (b) the chemotaxis constant, (m1) for area per unit mass, 
(Tm) for mean temperature, (γ) the average volume of microorganisms, (d) for viscous damping coefficient, (T1,T0) and (C1,C0) are 
temperature concentration at the upper and lower walls respectively. Moreover, (F1, F0) the volume fraction at upper and lower walls. 
The qr is defined by [28] 

qr= −
4σ−

3 k
−

∂T4

∂y
, (14)  

where σ− and k
−

are the coefficients of Stefan-Boltzman and absorption of mean. Expand form of T4 can be defined as 

T4= 4T3
0 T− 3T4

0 , (15)  

thus we have 

qr= −
16σ− T3

0

3 k
−

∂T
∂y

. (16)  

Considering stream function u = ψy, v= − δ(ψx) and using the non-dimensional variables [45] 

u∗ =
u
c
, v∗ =

v
c
, x∗ =

x
λ
, y∗ =

y
d1
, t∗ =

ct
λ
, η∗ =

η
d1

,

p∗ =
d2

1p
cλμ, θ =

T − T0

T1 − T0
,ϕ =

C − C0

C1 − C0
, β∗

1 =
β1α
d1

,

S∗
ij =

d1Sij

cα , β∗
i =

βi(i = 2, 3)
d1

, χ =
F − F0

F1 − F0
, ξ =

F0

F1 − F0
.

(17)  

in equations (5)–(13). We can write after omitting asterisk 

∂2

∂y2

⎡

⎣∂2ψ
∂y2

⎧
⎨

⎩

(

Ω
(

∂2ψ
∂y2

)2

+ 1

)n− 1
2
⎫
⎬

⎭

⎤

⎦ − M2∂2ψ
∂y2 + Gr

∂θ
∂y

+ Gc
∂ϕ
∂y

+ Gf
∂χ
∂y

= 0, (18)  

Z. Nisar et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e22505

5

(1+ Pr Rn)
∂2θ
∂y2 +NbPr

∂φ
∂y

∂θ
∂y

+NtPr
(

∂θ
∂y

)2

+BrM2
(

∂ψ
∂y

)2

+ BrSxy
∂2ψ
∂y2 = 0, (19)  

Nt
∂2θ
∂y2 + Nb

∂2ϕ
∂y2 = 0, (20)  

∂2χ
∂y2 − Pe

(
∂χ
∂y

∂ϕ
∂y

+ ξ
∂2ϕ
∂y2 + χ ∂2ϕ

∂y2

)

= 0 (21) 

The boundary conditions becomes 

∂ψ
∂y

± β1

⎧
⎨

⎩

(

1 + Ω
(

∂2ψ
∂y2

)2)n− 1
2
⎫
⎬

⎭

∂2ψ
∂y2 = 0 at ​ y = ±η, (22)  

[

E1
∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

]

η =
∂3ψ
∂y3 +

∂
∂y

⎧
⎨

⎩

(

1 + Ω
(

∂2ψ
∂y2

)2)n− 1
2
⎫
⎬

⎭
− M2∂ψ

∂y
+

Grθ + Gcϕ + Gf χaty = ±η,

(23)  

θ ± β2
∂θ
∂y

=

{
1
0

}

,ϕ ± β3
∂ϕ
∂y

=

{
1
0

}

, χ =

{
1
0

}

at ​ y = ±η. (24) 

Continuity equation (5) is automatically satisfied. In above expression we witnessed that the small Reynolds number and long 
wavelength assumptions [19] are invoked. Here δ, ε, Pr, Ec, Re , Sc, M, Nt, Br, Nb, Rn, Ω, Pe, Gr, (E1,E2,E3), Gf , Gc , are wave 
number, ratio of amplitude, Prandtl variable, Eckert variable, Reynolds number, Schmidt number, Hartman variable, thermophoresis 
parameter, Brinkman number, Brownian motion variable, Radiation parameter, Sisko fluid parameter, Bioconvection Peclet number, 
thermal Grashof number, wall parameteres, Bioconvection Rayleigh number, concentration Grashof variable. These are identified as 
[36,45] 

δ =
d1

λ
, ε =

a
d1
, Pr =

ν
α,Ec =

c2

cf (T1 − T0)
,Re =

ρcd1

μ , Sc =
ν

DB
,M =

̅̅̅σ
μ

√

B0d1,

Nt =
DT τ(T1 − T0)

Tmν ,Br = Pr Ec,Nb =
DBτ(C1 − C0)

ν ,Rn =
16σ− T3

0

3k
−

k
− ,Ω =

ς
α

(
c
d1

)n− 1

,

Pe =
bWc

Dm
,Gr =

gβT(1 − F0)ρf (T1 − T0)d2
1

μc
,E1 = −

d3
1τ

λμc
,E2 =

cm1d3
1

λ3μ
,E3 =

d3
1d

λ2μ
,

Gf =

(
ρm − ρf

)
gγ(F1 − F0)d2

1

μc
,Gc =

gβC
(
ρp − ρf

)
(C1 − C0)d2

1

μc
.

(25)  

Table 1 
Rate of heat transfer against different parameters.  

Parameters − θ′(η)

Rn β2 Gf Gr Pe Nb Ω M ND solve bvp4c 
0.1 0.1 0.5 0.5 2 1 0.1 0.5 0.180764 0.180678 
1        0.022788 0.022667 
1.5 0.2       0.192694 0.192599  

0.3       0.243157 0.243101  
0.1 0.7      0.115863 0.115698   

1      0.079072 0.078893   
0.5 0.7     0.256174 0.078893    

0.9     0.410292 0.410153    
0.5 2.5    0.157517 0.157449     

3    0.171638 0.171521     
2 1.5   0.177495 0.177347      

2   0.206790 0.206673      
1 0.2  0.107321 0.107201       

0.3  0.083210 0.083101       
0.1 0.8 0.110246 0.110119        

2 0.064198 0.064078  
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3. Numerical method 

System of Eqs. (18)–(24) are solved numerically [5,9] by the command NDSolve by using the software Mathematica. In the 
meantime, many researchers used the bvp4c [51–53] solver available in the Matlab software to solve nonlinear ODEs. If the boundary 
error terms are below the tolerance error, 10− 6, the calculation simulation will converge. Table 1 for heat transfer rate is prepared to 
check the comparative analysis between the two utilized techniques, and the results show that both methods match in good agreement. 

Fig. 2. u via Ω.  

Fig. 3. u via β1.  

Fig. 4. u via Gr.  
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4. Results and discussion 

This segment looked at the velocity profile, temperature, nanoparticle concentration, motile microorganisms density and rate of 
heat transfer. 

4.1. Velocity 

Figs. 2–8 are designed to see the features of pertinent variables like Sisko fluid variable Ω, velocity slip parameter β1, Grashof 
parameter Gr, buoyancy ratio parameter Gc, Hartman number M, bioconvection Rayleigh variable Gf , wall parameters (E1,E2,E3).

Fig. 5. u via Gf .  

Fig. 6. u via Gc.  

Fig. 7. u via M.  
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Fig. 2 is sketched for sisko fluid variable. As you see in this Fig. velocity of the fluid enhances via sisko fluid variable Ω. Impact of 
velocity slip variable β1 is exhibited by Fig. 3. It is detected that velocity enhances against β1. This is due to the deference between the 
fluid velocity and surface velocity. Fig. 4 is aimed to see the consequence of Grashof number Gr on velocity. The outcomes of this graph 
revealed that as Gr rise, velocity of the liquid heightens. Fig. 5 demonstrates the consequence of bioconvection Rayleigh variable Gf on 
velocity profile by taking other constraints constant. The velocity profile reduces by enhancing Gf . Fig. 6 arranged to see the aspects of 
buoyancy ratio variable Gc on velocity profile. The graph demonstrates that the Gc increases the liquid’s velocity. This is due to the 
buoyancy forces. Aspects of Hartman number M are portrayed via Fig. 7. From here we noticed that fluid velocity declensions. The 
Lorentz force was activated by the magnetic force, which causes reluctance and causes velocity decline. Effects of wall parameters E1 , 
E2 and E3 are exhibited in Fig. 8. It is pointed out that velocity is an enhancing function of E1 and E2, and it drops for E3.. 

4.2. Temperature 

Consequences of different embedded variables on thermal field θ are examined through Figs. 9–17. To explore the effects of the 
Sisko fluid variable Ω, Fig. 9 is plotted. This figure demonstrates how the fluid’s temperature increases as greater Ω. The effect of the 
thermal slip parameter β2 is displayed in Fig. 10. It can be seen in this graph that the temperature of the fluid enhances via larger β2.

The impact of the Brinkman variable Br on temperature is depicted in Fig. 11. Temperature increases when the effects of viscous 
dissipation are amplified by a high Brinkman variable Br. Fig. 12 establishes the expressions of Grashof parameter Gr against tem
perature. An enhancement in temperature is observed from these results. A higher Grashof number enhances temperature transfer 
because it signifies that buoyancy-driven natural convection is significant, leading to increased fluid motion and improved heat 
transfer between hot and cold surfaces. The impacts of Hartman number M on the thermal field are revealed in exhibited in Fig. 13. It is 
evident from this figure that the temperature of the liquid declines. Fig. 14 is designed to show how the bioconvection Peclet number Pe 
affects temperature. It is discovered that as Pe raises, the fluid’s temperature enhances. In Fig. 15, the thermal field’s effect on the 
radiation parameter Rn is depicted. When the radiation parameter rises, the fluid’s thermal field lessens. Fig. 16 depicts how the 
temperature is affected by the compliance variables E1,E2, and E3. Results of this experiment reveal that the fluid’s temperature rises 
via E1 and E2, but E3 exhibits the reverse tendency. Fig. 17 depicts the temperature dependence of thermophoresis Nt and Brownian 
movement variables Nb. Both variables have significant increases in temperature. Brownian diffusion describes the impressions of 
random particle motion within a flow field. As Brownian diffusion increases, the fluid’s mean kinetic energy rises, leading to a 

Fig. 8. u via E1,E2 and E3.  

Fig. 9. θ via Ω.  
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corresponding increase in temperature gradients. 

4.3. Concentration 

Figs. 18–24 are designed to see the behavior of concentration field ϕ . Effect of bioconvection Peclet number Pe is demonstrated in 
Fig. 18 against concentration. It is noticed that concentration declines with larger bioconvection Peclet number Pe. It is due to the fact 
that the contribution of bioconvection to the transport of solute is decreasing compared to diffusion. Fig. 19 depicts the consequences 
of ξ on the concentration field. The detected consequences lay out that a boost in ξ diminishes the concentration. Features of buoyancy 
ratio parameter Gc against the concentration field are portrayed in Fig. 20. Results show that concentration of the liquid declines. The 
impacts of bioconvection depict the Rayleigh variable Gf (see Fig. 21). A detailed review of this pattern reveals that the nanoparticles 

Fig. 10. θ via Ω.  

Fig. 11. θ via Br.  

Fig. 12. θ via Gr.  
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concentration increases as Gf grows. Fig. 22 depicts the effect of thermophoresis Nt characteristics on nanoparticle concentration. This 
graph shows a downward trend. Physically, particles tend to migrate from regions of higher temperature to regions of lower tem
perature within a fluid. Impressions of wall parameters (E)123 are presented in Fig. 23. It is found that concentration φ is an enhancing 
mapping of E1 E2, and it diminishes for E3 in light of the dulling effect. The concentration field versus mass slip parameter β3 is shown 
in Fig. 24. The concentration decreases as the mass slip parameter β3 is increased. 

4.4. Motile microorganism 

Figs. 25–28 investigate the outcomes of pertinent parameters on profiles of motile microorganism χ. Aspects of bioconvection 
Peclet number Pe is exhibited in Fig. 25. As we discovered from this figure that motile microorganism profile χ decreases. Fig. 26 

Fig. 13. θ via M.  

Fig. 14. θ via Pe.  

Fig. 15. θ via Rn.  
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represents to see the behavior of the Sisko fluid variable Ω on motile microorganism profile. Results show decaying behavior against 
this relevant parameter Ω. Results for ξ is illustrated in Fig. 27. With the enhancement of ξ profile of motile microorganism increases. 
Influence of bioconvection Rayleigh variable Gf on motile microorganism profiles is sketched through Fig. 28. It can be seen from this 
graph profile of motile microorganisms enhances. 

4.5. Rate of heat transfer 

Aspects of different parameters on heat transfer rate − θ′(η) are portrayed in Table 1. Rate of heat transfer rises by larger values of 
temperature slip variable β2, Brownian movement variable Nb, bioconvection Peclet parameter Pe and Grashof number Gr. On the 
other side decreasing trend is noticed for radiation variable Rn, Hartman number M and Sisko fluid variable Ω.. 

Fig. 16. θ via E1, E2 and E3.  

Fig. 17. θ via NbandNt.  

Fig. 18. ϕ via Pe.  

Z. Nisar et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e22505

12

5. Conclusions 

In the present investigation we analyzed the impacts of bioconvection peristaltic flow of Sisko nanofluid in a symmetric elastic 
channel. Effects of thermal radiation and Joule heating considered. Numerical solutions are found for the governing nonlinear 
problem. It is found that velocity enhances Siko fluid parameter (Ω) and velocity slip parameter (β1), while opposite trend is noticed for 
Hartman number (M). Temperature increases via larger Brinkman number (Br), bioconvection Peclet number (Pe) and Brownian 
motion parameter (Nb). Thermal radiation (Rn) shows similar behavior on heat transfer rate and temperature. Effects of buoyancy 
ratio parameter (Gc) and Rayleigh variable (Gf) on concentration are opposite. Motile microorganisms increase via bioconvection 
Rayleigh variable (Gf). Similar effects of Hartman number (M) and Sisko fluid parameter (Ω) are noted for heat transfer rate. Increase 
in bioconvection Peclet number (Pe) yields reduction in motile microorganisms. Heat transfer rate enhances via thermal slip parameter 

Fig. 19. ϕ via ξ.  

Fig. 20. ϕ via Gc.  

Fig. 21. ϕ via Gf .  
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(β2) and bioconvection Peclet number (Pe).. 
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