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Abstract: The aim of the present study was to investigate the diagnostic performance of a trained
convolutional neural network (CNN) for detecting and categorizing fissure sealants from intraoral
photographs using the expert standard as reference. An image set consisting of 2352 digital pho-
tographs from permanent posterior teeth (461 unsealed tooth surfaces/1891 sealed surfaces) was
divided into a training set (n = 1881/364/1517) and a test set (n = 471/97/374). All the images
were scored according to the following categories: unsealed molar, intact, sufficient and insufficient
sealant. Expert diagnoses served as the reference standard for cyclic training and repeated evaluation
of the CNN (ResNeXt-101-32x8d), which was trained by using image augmentation and transfer
learning. A statistical analysis was performed, including the calculation of contingency tables and
areas under the receiver operating characteristic curve (AUC). The results showed that the CNN
accurately detected sealants in 98.7% of all the test images, corresponding to an AUC of 0.996. The
diagnostic accuracy and AUC were 89.6% and 0.951, respectively, for intact sealant; 83.2% and 0.888,
respectively, for sufficient sealant; 92.4 and 0.942, respectively, for insufficient sealant. On the basis of
the documented results, it was concluded that good agreement with the reference standard could be
achieved for automatized sealant detection by using artificial intelligence methods. Nevertheless,
further research is necessary to improve the model performance.

Keywords: pit and fissure sealants; caries assessment; visual examination; clinical evaluation;
artificial intelligence; convolutional neural networks; deep learning; transfer learning

1. Introduction

The availability of artificial intelligence (AI) methods has aroused increasing inter-
est in developing convolutional neural networks (CNNs) for automatized detection and
categorization of diagnostic images in medicine and dentistry to objectify the classifi-
cation of pathological findings [1]. In dentistry, radiographs are mostly used as image
sources for CNNs to identify pathologies. Specifically, caries detection has been trained
on bitewings [2–7], apical radiographs [8] or panoramic X-rays [9]. By contrast, there have
been few attempts to apply AI technology to assess clinical images, which can be inter-
preted as a machine-readable equivalent for visual inspection. This study is the first report
of automatic detection and categorization of dental caries [10–13] or dental plaque [14]
from clinical photographs. When considering the broad spectrum of pathological findings
on dental hard tissue, e.g., caries, erosion or developmental disorders, as well as dental
interventions, e.g., sealants, dental restorations or prosthodontic measures, it is evident that
CNNs need to be trained separately for each of the aforementioned categories. The aim of
this pioneering project on the automatized detection of dental materials was to identify and
categorize opaque sealants, which is primarily justified by the frequent use of these sealants
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in dental health services of industrialized nations [15]. Second, sealant materials constitute
a uniform group of materials that are typically white and easily visually detectable on
posterior teeth compared to other dental restorations. Consequently, it can be hypothesized
that the learning of a CNN for detecting sealants from dental photographs represents a
first step before considering other types of dental restorations. Therefore, in this diagnostic
study, the ability of a CNN to detect and categorize fissure sealants was investigated (as a
test method) using digital photographs of posterior teeth, and the diagnostic outcome was
compared with expert evaluation (the reference standard).

2. Materials and Methods
2.1. Study Design

The reporting of this study followed the recommendations of the Standard for Re-
porting of Diagnostic Accuracy Studies (STARD) steering committee [16] and topic-related
recommendations [17].

2.2. Photographic Images

All the images were taken for use in previous studies, as well as for clinical or teaching
purposes, by an experienced dentist (J.K.). All the images were photographed using a
professional single reflex lens camera (Nikon D300, D7100 or D7200 with a Nikon Micro
105-mm lens; Nikon, Tokyo, Japan) and Macro Flash EM-140 DG (Sigma, Rödermark,
Germany) after tooth cleaning and drying. Molar teeth were photographed indirectly using
intraoral mirrors (Reflect-Rhod, Hager and Werken, Duisburg, Germany) that were heated
before being positioned in the oral cavity to prevent condensation on the mirror surface.

To ensure the best possible image quality, deficient photographs, e.g., out-of-focus
images or images with saliva contamination, were excluded. Furthermore, duplicate
photos from identical teeth or surfaces were removed from the dataset. This selection step
ensured there were no repetitions in the included clinical photographs. All jpeg images
(RGB format, resolution 1200 × 1200 pixel, no compression) were cropped to an aspect
ratio of 1:1 and/or rotated in a standard manner using professional image editing software
(Affinity Photo, Serif, Nottingham, UK) until, finally, the tooth surface filled most of the
frame. Considering the study aim, images from healthy teeth or sealed surfaces were
also included. Photographs with (additional) cavitated caries lesions or other hard tissue
defects, e.g., enamel hypomineralization, hypoplasia, extensive tooth wear, and direct
and indirect restorations, were excluded. Finally, 2352 anonymized, high-quality clinical
photographs from permanent posterior teeth and the corresponding occlusal surfaces
were included.

2.3. Categorization of Sealants (Reference Standard)

Each image was examined on a computer to detect and categorize fissure sealants
using well-accepted international classification systems [18,19]. The following categories
were used: 0—occlusal surfaces with no sealant; 1—occlusal surfaces with a clinically intact
fissure sealant (up to one third loss of material in the periphery of the fissure pattern);
2—occlusal surface with a sufficient fissure sealant (retention of the material in the main
fissure or loss of material exceeding one third of the fissure pattern); 3—insufficient (nearly
complete loss of material and re-exposure of the main fissures) (Figure 1). Each of the
given diagnostic categories is typically linked with different treatment modalities in daily
dental practice and, in consequence, the quality staging appears of clinical relevance and
justifies its scientific consideration in the present study. All the images were prelabeled by
a group of three graduated dentists and subsequently independently counterchecked by an
experienced examiner (J.K., >20 years of clinical practice and scientific experience). In the
case of divergent opinions, each image was discussed until a consensus was reached. Each
diagnostic decision—one per image—served as a reference standard for cyclic training and
repeated evaluation of the deep-learning-based CNN.
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Figure 1. Example clinical images for each category: unsealed molar (A) and intact (B), sufficient
(C) and insufficient fissure sealant (D).

All the annotators (A.S., J.S., P.E.) were trained during a 2-day workshop by the
principal investigator (J.K.) and calibrated before beginning the study. The intra- and inter-
examiner reproducibility was determined using 60 photographs, and the corresponding
Kappa values showed at least a substantial capability for detecting and categorizing fissure
sealants. The intra-/inter-examiner reproducibilities were 0.784/0.753 (A.S.), 0.779/0.752
(J.S.) and 0.779/0.752 (P.E.).

2.4. Programming and Configuration of the Deep-Learning-Based CNN for Sealant Detection and
Categorization (Test Method)

The CNN was trained stepwise using a pipeline of established procedures, mainly image
augmentation and transfer learning. Before training, the entire image set (2352 images/461 un-
sealed tooth surfaces/1891 sealed surfaces) was divided into a training set (n = 1881/364/1517)
and a test set (n = 471/97/374). The latter was never made available to the CNN as training
material and served as an independent test set.

Image augmentation was used to provide a large number of variable images to the
CNN on a recurring basis. For this purpose, the randomly selected images (batch size = 16)
were multiplied by a factor of ~5, altered by image augmentation (random center and mar-
gin cropping by up to 30% each, random deletion up to 30%, random affine transformation
up to 180 degrees, random perspective transformation up to a distortion of 0.5, and random
changes in brightness, contrast and saturation up to 10%) and resized (to 300 × 300 pixels)
by using torchvision (version 0.9.1, https://pytorch.org) in conjunction with the PyTorch

https://pytorch.org
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library (version 1.8.1, https://pytorch.org). All the images were normalized to compensate
for under- and overexposure.

ResNeXt-101–32x8d [20] was used as the basis for the continuous adaptation of CNN
for sealant detection and categorization. The CNN was trained using backpropagation to
determine the gradient for learning. Backpropagation was repeated iteratively for images
and labels using the abovementioned batch size and parameters. Overfitting was prevented
by first selecting a low learning rate (0.00005) and then performing dropout (at a rate of 0.5)
on the final linear layers as a regularization technique [21]. To train the CNN, this step was
repeated for 10 epochs. The cross entropy loss as an error function and the Adam optimizer
(Betas 0.9 and 0.999, Epsilon 10−8) were applied.

To accelerate the training process of the CNN, an open-source neural network with
pretrained weights was employed (ResNeXt-101-32x8d pretrained on ImageNet., Stanford
Vision and Learning Lab, Stanford University, Palo Alto, CA, USA). This step enabled
the transfer of existing learning results to increase the efficiency of recognition of basic
structures in the existing image set. The training of the CNN was executed on a university-
based server with the following specifications: RTX A6000 48 GB (Nvidia, Santa Clara, CA,
USA), i9 10850K 10x3.60 GHz (Intel Corp., Santa Clara, CA, USA) and 64 GB RAM.

2.5. Statistical Analysis

The data were analyzed using Python (http://www.python.org, version 3.8). The
overall diagnostic accuracy (ACC = (TN + TP)/(TN + TP + FN + FP)) was determined by
calculating the number of true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN) after using 25%, 50%, 75% and 100% of the images of the training data
set. The sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and
NPV, respectively), and the area under the receiver operating characteristic (ROC) curve
(AUC) were computed for the selected types of teeth and surfaces [22]. Saliency maps
were plotted to identify image areas that are important for the CNN to make individual
decisions. We calculated the saliency maps [23] by backpropagating the CNN prediction
and visualized the gradient of the input of the resized images (300 × 300 pixels).

3. Results

The trained deep-learning-based CNN detected sealants correctly in 98.7% of all
the test cases, corresponding to an AUC of 0.996 (Table 1, Figure 2). Additionally, the
SE (96.9), SP (99.2), PPV (96.9) and NPV (99.2) were documented to be close to perfect
(Table 1). By comparison, the model diagnostic performance was lower for the sealant
subcategories (Table 1, Figure 2). Here, the AUC values were highest for the identification
of intact sealants (0.951), followed by insufficient sealants (0.942) and sufficient sealants
(0.888). These numbers, as well as the other performance data (Table 1), indicate that the
automated identification of the subcategories in the present stage was less accurate than
the simple detection of opaque sealant material from clinical photographs. The detailed
case distribution was obtained from the confusion matrix (Figure 3). Here, the majority of
incorrect decisions by the CNN occurred for categories other than the true classification,
which indicates there were no major misclassifications. Most incorrect decisions were made
for sufficient sealants. This observation is in line with the diagnostic parameters shown in
Table 1. In addition to the descriptive and explorative data presentation, saliency maps
(Figure 4) were plotted to illustrate the parts of each image that were used by the CNN for
decision making.

https://pytorch.org
http://www.python.org
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Table 1. Overview of the diagnostic performance of the developed convolutional neural network (CNN), where the
independent test set (n = 471) was compared against independent expert evaluation of the caries detection level. The
calculations were performed for different types of teeth, surfaces and training steps. In this context, the overall diagnostic
accuracy (ACC), sensitivity (SE), specificity (SP), negative predictive value (NPV), positive predictive value (PPV) and area
under the receiver operating characteristic curve (AUC).

Diagnostic
Categories

True Positives
(TP)

True
Negatives

(TN)

False
Positives (FP)

False
Negatives

(FN)
Diagnostic Performance

n % n % n % n % ACC SE SP NPV PPV AUC

Overall sealant
detection 94 20.0 371 78.8 3 0.6 3 0.6 98.7 96.9 99.2 99.2 96.9 0.996

Identification of
intact sealants 141 29.9 281 59.7 33 7.0 16 3.4 89.6 89.8 89.5 94.6 81.0 0.951

Identification of
sufficient
sealants

99 21.0 293 62.2 33 7.0 46 9.8 83.2 68.3 89.9 86.4 75.0 0.888

Identification of
insufficient
sealants

52 11.0 383 81.3 16 3.4 20 4.3 92.4 72.2 96.0 95.0 76.5 0.942
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4. Discussion

The results of the present diagnostic study demonstrated that AI algorithms can
detect and categorize sealants from machine-readable intraoral photographs. A high
diagnostic accuracy of 98.7% and AUC of 0.996 were found (Table 1). Unlike this promising
result, the CNN classified subcategories less accurately. Here, a diagnostic performance
of approximately 90% accuracy was achieved (Table 1). In particular, sufficiently sealed
occlusal surfaces were identified less reliably than the two other categories, which illustrates
that further improvement is needed.

In addition, it can be concluded that the developed CNN can be used in future
software applications and can identify sealants accurately with a high probability from
intraoral photographs. To our knowledge, no comparable studies have been carried out
thus far on the evaluation of fissure sealants using artificial intelligence, which should
be recognized as a unique feature of our study. The current diagnostic performance data
fit into the overall context of existing dental studies. For example, studies with a similar
methodology have documented an accuracy of up to 90% for the detection of caries lesions
from clinical images [10,11] or radiographs [2–9]. Considering earlier published data from
methodologically similar projects, it can be concluded that our most recent results (Table 1,
Figures 2 and 3) are in line with an expected outcome. Our data need to be critically
assessed from different methodological perspectives. First, it should be highlighted that the
pipeline used for image augmentation, transfer learning and the chosen CNN architecture
(ResNeXt-101-32x8d) represents an up-to-date approach that may have enhanced the
documented results. Second, as our study was performed on good quality professional
clinical photographs, the results may have been be positively influenced by this factor.
None of the images used were overexposed or underexposed, and the teeth investigated
were mostly free of plaque, calculus and saliva. All the images were normalized, cropped
and standardized before processing. Third, only unsealed posterior teeth and sealed
teeth of varying quality were included in the study materials. Cases with caries lesions,
developmental defects, and direct or indirect dental restorations were excluded from the
project to enable unbiased learning of the CNN. Another methodological advantage in
this context appears to be the use of single tooth images, because interfering information
from adjacent teeth or margins was mostly excluded. Consequently, it can be expected that
the use of other image formats, e.g., clinical images with multiple teeth or the whole jaw,
will result in a lower model performance. The number of available clinical photographs
is a limitation that must be critically examined. Here, several thousand images at best
should be includable, as the number of images is a crucial consideration for this type of
study. In the present analysis, we were able to include 2352 clinical images, which should
be interpreted as the minimum number. This fact should not be underestimated, because
increasing the number of images will extend the training of the CNN and could improve
the CNN precision. Further improvements in the model performance can be expected by
extending the number of image samples and using the image segmentation technique. The
latter approach results in precise image labeling and could be considered as the method of
choice to reach the long-term goal of almost perfect detection and assessment of fissure
sealants from clinical photographs by AI methods.

5. Conclusions

The clinical application of AI methods in software applications may be feasible but
fundamental dental research needs to be performed first. The results of the present study
show that a trained CNN detected sealant intraoral photographs with an agreement of
98.7% with reference decisions. The categorical classification into intact, sufficient and
insufficient sealants was performed with a diagnostic accuracy of approximately 90%.
Considering the complexity of intraoral findings, it can be concluded that further training
of AI-based detection, as well as categorization of prevalent and less-prevalent dental
diseases and all types of restorations, is required before clinical use can be recommended.
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