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To sustain their high proliferation rates, most cancer cells rely on glycolytic metabolism,

with production of lactic acid. For many years, lactate was seen as a metabolic

waste of glycolytic metabolism; however, recent evidence has revealed new roles

of lactate in the tumor microenvironment, either as metabolic fuel or as a signaling

molecule. Lactate plays a key role in the different models of metabolic crosstalk

proposed in malignant tumors: among cancer cells displaying complementary metabolic

phenotypes and between cancer cells and other tumor microenvironment associated

cells, including endothelial cells, fibroblasts, and diverse immune cells. This cell metabolic

symbiosis/slavery supports several cancer aggressiveness features, including increased

angiogenesis, immunological escape, invasion, metastasis, and resistance to therapy.

Lactate transport is mediated by the monocarboxylate transporter (MCT) family, while

another large family of G protein-coupled receptors (GPCRs), not yet fully characterized

in the cancer context, is involved in lactate/acidosis signaling. In this mini-review, we

will focus on the role of lactate in the tumor microenvironment, from metabolic affairs

to signaling, including the function of lactate in the cancer–cancer and cancer–stromal

shuttles, as well as a signaling oncometabolite. We will also review the prognostic value

of lactate metabolism and therapeutic approaches designed to target lactate production

and transport.

Keywords: lactate, warburg effect, monocarboxylate transporters, GPR81, metabolic fuel, lactate shuttles,

signaling molecule

INTRODUCTION

The first discoveries involving lactate were reported in 1808, when it was described in the muscle of
animals; only many years later was lactate associated with energy metabolism inmuscle contraction
(1, 2). The glycolysis pathway, transformation of glucose into pyruvate and ATP, was described in
the 1940s by the joined efforts of numerous scientists, in a cascade-like chronology. It started with
the discovery of fermentation in microorganisms by Louis Pasteur; then, Meyerhof et al. described
the lactate cycle, providing essential knowledge on the transformation of energy in cells (3–5).

Lactate formation and functions were incorrectly described for a long time, since lactate was
considered as a waste product of cellular metabolism (6). Although history did not give lactate
its due importance, it is believed at presentthat lactate has a crucial role, especially as a shuttle
molecule. The concept was introduced by Brooks more than 30 years ago (7–9), and despite
some initial disbelief (10, 11), several reports have finally acknowledged the role of lactate in
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shuttles between glycolytic and oxidative cells, being the
product of one and used by another (12). It is well-established
that lactate is formed from the reduction of pyruvate via
lactate dehydrogenase (LDHA), under aerobic or anaerobic
conditions, produced, and transformed continuously by
resting/exercising muscle, brain, heart, and gut tissues (13).
Lactate is a major source of energy, the major gluconeogenic
precursor and, as a signaling molecule, is capable of
inducing autocrine, paracrine, and endocrine-like effects.
This molecule is responsible for several homeostatic functions:
For instance, in hepatocytes, it feeds gluconeogenesis; in
the brain, it is used by astrocytes and neurons for oxidative
metabolism (12, 14).

Lactate homeostasis in a healthy environment requires
adequate transporters. The lactate transporters, monocarboxylate
transporters (MCTs), are members of the SLC16 gene family
and several have been identified by gene homology, as it will
be further explained (15). Physiological levels of lactate are
considered to be in the range of 1.5–3mM in blood and
tissue from healthy individuals (14, 16); higher values are
usually an indication of a health problem. Lactate shuttles
are key players in many conditions involving pregnancy and
reproduction (17, 18), the human heart (19), brain (12),
and cancer (13). The use of lactate levels as a marker
of clinical outcome was first suggested in 1964 by Broder
and Weil, when studying patients with undifferentiated shock
(20). Since then, high lactate levels have been associated
with several diseases such as shock, cardiac arrest, trauma,
ischemia, diabetic ketoacidosis, liver dysfunction, and sepsis
(21). Lactate also modulates the immune system and promotes
immune-inflammatory responses (22). The levels of lactate are
increased in several inflammatory and autoimmune disorders,
and lactate transporters were overexpressed at the surface of
immune cells (14, 23). Lactate accumulation and transport
has become particularly relevant in rheumatoid arthritis,
where MCT4 inhibition was pointed as a possible therapeutic
strategy (24). In the cancer setting, Otto Warburg was
the first to observe that tumor cells share a common
metabolic feature: high glucose consumption and increased
glycolysis leading to lactate production, regardless of oxygen
availability (25, 26).

ROLE OF LACTATE IN CANCER
METABOLIC REWIRING

Cancer metabolism emerged as an area of research that has
increasingly gained attention in the last decades. In order to
sustain the proliferative phenotype, cancer cells enroll metabolic
changes, such as the “Warburg effect” disclosed by OttoWarburg
in 1926 (27). These changes consist on upregulation of glucose
metabolism (glycolysis) even in the presence of oxygen, thereby
producing high levels of lactate and reducing the use of
the tricarboxylic acid (TCA) cycle. This addictive glycolytic
phenotype arises as a distinctive metabolic characteristic of many
types of cancer, being introduced as a new hallmark of cancer in
2011 (28).

Oncogenic Triggers of Glycolytic
Metabolism
Tumorigenesis is characterized by genetic alterations, and
several findings demonstrate that high expression of specific
transcription factors or oncogenic tumor pathways, principally
MYC, hypoxia-inducible factor-1 alpha (HIF-1α), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), and
phosphatidylinositol-3-OH kinase (PI3K), can sustain the
Warburg effect. As the tumor starts to grow, oxygen diffusion
becomes limited and cancer cells respond to these environmental
changes by upregulating HIF-1α (29). HIF-1α, in turn, induces
the overexpression of key players in the conversion of glucose
into lactate, such as glucose transporters (GLUTs) and hexokinase
(HK) 1 and 2, which are responsible for the initial steps of
glycolysis; lactate dehydrogenase A (LDHA), which transforms
pyruvate into lactate (30, 31); and the lactate-extruding
monocarboxylate transporter 4 (MCT4) (32). Conversely, HIF-
1α blocks the entry of pyruvate into the TCA cycle by
upregulating pyruvate dehydrogenase kinase 1 (PDK1), driving
tumor cell energy to glycolysis (33). The major oncogene Ras,
when mutated, can also induce glycolysis through the activation
of the mammalian target of rapamycin complex I (mTORC1).
Akt kinase activation by PI3K results in increased glucose uptake,
HK2 targeting to themitochondria, and increase in glycolytic flux
(34), while the transcription factor MYC increases glutaminolysis
and upregulates MCT1 expression (35). Cancer cell metabolism
is also influenced by the activity of tumor suppressor genes.
Loss of the p53 protein prevents expression of the synthesis of
cytochrome c oxidase (SCO2) gene, decreasing mitochondrial
respiration (36). Lactate can also function as a paracrine tumor
molecule (37). Acidosis often precedes angiogenesis and lactate
can stimulate HIF expression independently of hypoxia (38).
Thus, instead of one event promoting the Warburg effect,
numerous factors play a role in determining the fate of
glucose in cancer cells. Also true is that somatic mutations
in genes involved in metabolism either cause/predispose cells
to become malignant. For instance, mutations in succinate
dehydrogenase are related to paraganglioma, and mutations in
fumarase can induce leiomyoma and leiomyosarcoma formation
(39); isocitrate dehydrogenase mutations are related to glioma
development (39).

Lactate Transport in Cancer
The major oncometabolite resulting from tumor metabolic
rewiring is lactate, which is abundant in the tumor
microenvironment (TME). Because lactic acid is hydrophilic
and a weak acid, its transport across membranes requires
transporters that belong to the monocarboxylate transporter
family. MCTs 1–4 facilitate the transmembrane H+-linked
transport of monocarboxylates, including lactate, pyruvate,
acetoacetate, and β-hydroxybutyrate (15), having the cell surface
glycoprotein CD147 as an obligatory chaperone (40). MCT1 and
MCT4 isoforms are strongly associated with the hyperglycolytic
phenotype of cancer cells. These transporters display distinct
affinities for monocarboxylic acids that are associated with
their expression patterns within tissues (41). MCT1 expression
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was identified in most tissues, being associated with the
uptake/extrusion of lactate, while MCT4 has an important role
in the export of lactate in highly glycolytic tissues. MCTs have
been widely studied by our group and others, and found to be
robustly expressed in a variety of solid human tumors such as
colon, glioblastoma, breast, prostate, stomach and others, as
depicted in Table 1 [for a comprehensive review see (41, 72)].
MCT expression/cell localization can differ from cancer to
cancer. Importantly, the prognostic potential of MCTs was
found in various tumor types (Table 1). Given the key role of
MCTs in cancer, these transporters are promising therapeutic
targets in cancer. A less studied family of lactate transporters,
also known to facilitate the transport of monocarboxylates, are
the sodium-coupled monocarboxylate transporters (SMCTs),
containing two members, SLC5A8 and SLC5A12 (73).

LACTATE ROLES IN THE TUMOR
MICROENVIRONMENT: FROM METABOLIC
AFFAIRS TO SIGNALING

Tumor growth occurs under a nutrient/oxygen-restrictive
microenvironment where cancer cells are enrolled in a
reprogrammed metabolism that allows them to surpass those
limitations while facilitating malignant dissemination. Not only
cancer cells, but also cancer-associated stromal cells, take part in
such scavenging program, being cytosolic lactate the main driver
of those metabolic alterations. Lactate is formed exclusively
from pyruvate regardless of oxygen availability, and robustly
exported to the TME, reaching concentrations that can be 20-fold
higher (about 40mM) (74) than in non-tumoral tissues (about
1.5–3mM) (13, 15). Lactate is a major fuel source, providing
energetic and anabolic support to cancer cells, and an important
oncometabolite with both extracellular and intracellular
signaling functions that equally contribute to cancer progression
(Figure 1) (75, 76).

Lactate as a Metabolic Substrate
Lactate acts as a powerful regulator of multiple hallmarks of
cancer, supporting cell proliferation and promoting immune
suppression, angiogenesis, migration, metastasis, and resistance
to therapy (20), namely chemotherapy (77), radiotherapy (78),
and targeted therapy (79, 80). Cancer cells exploiting aerobic
glycolysis upregulate GLUTs and MCTs, secreting large amounts
of lactate (Figure 1), while deviating glycolytic intermediates
to fuel alternative anabolic pathways (e.g., pentose phosphate
pathway), thus sustaining rapid cell proliferation (81). Due to the
metabolic heterogeneity of the TME, cancer cells are also able
to engage into context-dependent metabolic affairs, similarly to
what occurs in muscle (82) and brain (83). One such example
is the symbiosis between well and poorly-oxygenated cancer cell
populations (Figure 1): at the hypoxic, nutrient-poor/normoxic,
nutrient-rich interface, lactate is released by glycolytic cancer
cells through MCT4, and taken up by oxidative cancer cells
through MCT1, where it fuels oxidative phosphorylation, thus
sparing glucose for glycolytic cancer cells (84). Occurrence of this
“two compartment model” was additionally described between

TABLE 1 | Expression pattern and prognostic value of MCT1 and MCT4 in human

cancer.

Tumor type Expression Prognostic value

Brain ↑ MCT1 (42)

↑ MCT4 (42)

Head and

Neck

↑ MCT1 (43)

↑ MCT4 (43)

MCT4 expression associated with

advanced TNM stage (43)

Breast ↑ MCT1 (44)

↑ MCT4 (44)

MCT1/CD147 expression associated

with basal-like subtype advanced

TNM stage (44)

MCT4 expression identified as an

independent prognostic factor for

MFS and OS (45)

Lung ↑ MCT1 (46)

↑ MCT4 (46)

MCT1 low expression associated with

shorter DFS (47)

MCT4 expression associated with

shorter OS (48) and DFS (47)

Liver ↓ MCT1 (49)

↑ MCT4 (49)

MCT4 expression identified as an

independent prognostic factor for

DFS and OS (50)

Pancreas ↑ MCT1 (51)

↑ MCT4 (51)

MCT1 expression associated with

extended OS and PFS and

decreased nodal metastasis (52)

MCT4 expression in CAFs associated

with shorter OS (52)

Stomach ↓ MCT1 (53)

↑ MCT4 (53)

Colorectal ↑ MCT1 (54)

↑ MCT4 (54)

MCT4 expression associated with

metastasis and shorter OS and DFS

(55, 56)

MCT1 expression associated with

shorter DFS (56)

Bladder ↑ MCT1 (57)

↑ MCT4 (57)

MCT1 expression associated with

advanced TNM stage and poor OS

MCT4 expression associated with

poor RFS (58)

Prostate ↓ MCT1 (59)

↑ MCT4 (59)

MCT1 and MCT4 expression

associated with advanced TNM stage

(59)

Kidney ↑ MCT1 (60)

↑ MCT4 (60)

MCT1 expression associated with

larger tumor size and advanced TNM

stage, shorter PFS (60) and OS (61),

and high Fuhrman grade (62, 63)

MCT4 expression correlated with

reduced OS and

PFS (61)

Ovarian ↑ MCT1 (64)

↑ MCT4 (64)

MCT1/CD147 and MCT4 expression

associated with TMN stage (64)

Cervix ↑ MCT1 (65)

↑ MCT4 (65)

MCT1/CD147 expression associated

with lymph-node and/or distant

metastases (66)

Skin ↑ MCT1 (67)

↑ MCT4 (67)

MCT1 and MCT4 expression

associated with shorter OS (68)

Adrenal + MCT1 (69)

↑ MCT4 (69)

MCT1 expression associated with

advanced TMN stage, presence of

metastasis, shorter OS and DFS (69)

Hematological ↑ MCT1 (70) MCT1 and MCT4 expression

associated with high grade (71)

↑, increased; ↓, decreased; +, positive expression; CAFs, cancer-associated fibroblasts;

DFS, disease-free survival; MFS, metastasis-free survival; OS, overall survival; PFS,

progression-free survival; RFS, recurrence-free survival; TNM, tumor, node, metastasis.
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FIGURE 1 | Summary of lactate roles in the tumor microenvironment. Lactate acts as a metabolic fuel, driving metabolic crosstalks involving MCT-mediated lactate

shuttles among cancer cells, or between cancer cells and cancer-associated stromal cells. In addition, lactate acts as a signaling oncometabolite, intracellularly

activating signaling pathways or acting as an extracellular ligand of the lactate receptor GPR81. Ultimately, cancer aggressiveness features are promoted, such as

proliferation, migration, and invasion of cancer cells, extracellular matrix (ECM) degradation, angiogenesis, immunological escape, and resistance to therapy.

lactate-avid breast cancer cells and “corruptible” glycolytic
cancer-associated fibroblasts (CAF) by Lisantis’s group (85),
and further amplified to a “three compartment model” in
the study by Curry et al. (86); in head and neck cancer
samples, the authors showed that catabolic compartments
composed of Warburg-adapted MCT4-expressing cancer cells
and CAFs provided anabolic MCT1-expressing cancer cells
with glycolysis-originating lactate (86). Since those original
observations, numerous studies reported similar associations
in several cancer models, such as non-Hodgkin lymphoma
(87), pancreas (88), lung (89), prostate (90), and bladder (91);
clinically, this metabolic phenotype has been associated with
cancer aggressiveness, resistance to therapy and poor survival
(89–91). Several mechanisms have been pointed out as mediators
of those metabolic affairs, such as secretion of growth factors
[e.g., cancer cell-secreted basic fibroblast growth factor (bFGF)
in response to CAF-secreted hepatocyte growth factor (HGF)
(92)], interleukins [e.g., IL-1β secretion by cancer cells (93)], and
exosomal microRNAs (94). Interestingly, microRNA-containing
exosomes secreted by CAFs were able to inhibit oxidative
metabolism in cancer cells, while providing them with intact
metabolites, namely glucose, to sustain their growth (95). In such
an inverted scenario, CAFs oxidize cancer cell-derived lactate to
support tumor proliferation (96); this has been correlated with
resistance to targeted therapy (80).

In addition to CAFs, the metabolic promiscuity described
above involves other cells of the TME, namely immune and
endothelial cells (Figure 1). Cytotoxic T cells’ transition from an

anergic to a fully activated state relies on an accelerated glucose
metabolism (97) and, in a glucose-restricted TME, cancer cells
easily succeed in such metabolic competition (98). Dampening of
lymphocyte proliferation and motility, cytokine production and
cytotoxic activity ultimately leads to immunosuppression, as a
result of the excess cancer cell-derived lactate that blocks lactate
export by immune cells (99) and might be inclusively taken up by
those cells, thus impairing their glycolysis-dependent activation
(100). Lactate also mediates polarization of macrophages from an
M1- (anti-tumoral type) to an M2-like phenotype (pro-tumoral
type) (101, 102); induction of VEGF (vascular endothelial growth
factor) expression has been linked to this pro-tumoral state
(103). Moreover, it was proposed that endothelial cells rely on
extracellular lactate uptake, via MCT1, as a fuel source for their
oxidative metabolism, promoting VEGF/VEGFR-2 production
through HIF-1α stabilization, endothelial cell migration and tube
formation (104–106).

Lactate stimulates motility, migration and invasion of cancer
cells (38, 107), as a probable result of CD44 expression
and hyaluronan production (108), as well as activation of
matrix metalloproteinases (MMPs) (109), both promoted by
extracellular acidosis.

Lactate as a Signaling Metabolite
As stated above, lactate can serve additional purposes
beyond acting as a metabolic substrate, functioning as an
intracellular signaling mediator and as an extracellular ligand.
At the intracellular level (Figure 1), hypoxia adaptation
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is assured by lactate in HIF-1α-dependent [direct HIF-1α
stabilization by prolyl hydroxylase (PHD) 2 inhibition (110)]
and independent [binding to N-Myc downstream-regulated
(NDRG3) protein, preventing association with PHD2 (111)]
fashions. HIF-2α stabilization is also induced by lactate,
which ultimately potentiates glutaminolysis in cancer cells
(112). Lactate promotes HIF-1α-mediated VEGF expression
in the cancer cell, and expression of bFGF and VEGFR-2
by neighboring endothelial cells (105). Apart from this HIF-
1α-dependent angiogenic signals, endothelial cells are also
activated by NF-κB stabilization (104) in a lactate-dependent
manner. NF-κB activation in cancer cells’ instructed CAFs
additionally drives resistance to targeted therapies, being lactate
secreted by cancer cells the instructor in such phenotype
(80). Pyruvate kinase M2/HIF-1α-driven gene expression in
prostate cancer cells promoted epithelial-to-mesenchymal in
response to CAF-secreted lactate (113). Immune suppression
is also mediated by lactate signaling, as different studies
reported that this oncometabolite interferes with key tumor
pathways that lead to IFN-γ production by cytotoxic T cells
(114), activates the IL-23/IL-17 proinflammatory pathway
(115) and promotes polarization of macrophages toward an
M2-like phenotype (103). Recently, functions in histone post-
translational modification, termed histone lysine lactylation,
were attributed to lactate and shown to regulate gene expression
in macrophages; increased lactate production led to this
epigenetic modification, inducing an M2-like phenotype during
wound healing (116).

The signaling functions of lactate at the extracellular space
(Figure 1) are mediated by the lactate-activated G-protein-
coupled receptor GPR81 (5, 117). Its expression is not limited to
the plasma membrane but also to other intracellular organelles
(118). GPR81 activation occurs at a lactate concentration of
0.2–1.0mM (119), followed by cyclic AMP downregulation
and inhibition of protein kinase A (PKA)-mediated signaling
(120). In the physiological context, lactate binds to GPR81,
which inhibits lipolysis in fat cells (121). In the cancer
context, modulation of lactate-sensing proteins, such as MCTs,
ultimately leads to tumor proliferation and dissemination (122),
escape from the immune system (123) and therapy resistance
(124). GPR81 expression is upregulated in cervical (125),
breast (126) and liver cancer (122), and associated with the
progression of cervical squamous carcinoma (125). GPR81
is highly expressed in different cancer cell lines including
colon, breast, lung, hepatocellular, cervical, and pancreatic (122,
126). In vitro, GPR81 expression associated with cancer cell
survival, proliferation, migration, invasion and resistance to
chemotherapy, and is involved in the suppression of antitumor
immunity by promoting the overexpression of PD-L1 in lung
cancer cells lines (123, 124, 126). Knockdown of GPR81 in a
xenograft cancer model resulted in reduction of tumor growth
and metastasis (122, 126).

The putative lactate sensors GPR4, GPR65, GPR68,
and GPR132 have been described as proton-sensitive,
and are activated at the acidic TME due to the low pH
levels obtained from lactic and carbonic acids (5). GPR132
and GPR65 were additionally described in macrophages

and linked to their polarization toward a pro-tumoral
phenotype (127, 128). It remains to be clarified whether
the modulation of lactate-sensing signaling pathways occurs
through a direct GPR-lactate interaction ou through a
conformational modification in the receptor induced by
lactic acidosis.

LACTATE METABOLISM AS
A PROGNOSTIC AND THERAPEUTIC TOOL

As mentioned above, lactate levels in tissues can mirror their
metabolic status. Lactate concentrations vary either within
healthy or diseased tissues, reflecting the distribution of
the metabolic activity in the tissue, phenomenon known as
“metabolic zonation” (129). This term was first described in
the liver, in which there is hepatocyte metabolic heterogeneity
along the porto-central axis, resulting from the physiological
occurring oxygen gradient (130). In solid malignant tumors,
which are characterized by high heterogeneity, “metabolic
zonation” results from different intrinsic properties of cancer
cells, co-existence of different cell populations within the tumor
and different distribution of the vascular supply (129). The
clinical significance of the variable levels of lactate in human
solid tumors was first described in 2000 by the group of
Walenta et al. (131), where significantly higher lactate levels
in cervical metastatic tumors were found, compared with non-
metastatic malignancies, suggesting that tumor lactate content
could be used as a prognostic biomarker. Interestingly, the
levels of lactate were inversely correlated with the levels
of glucose, and directly correlated with the expression of
MCT4. Later studies have also linked intratumoral lactate levels
with higher incidence of distant metastasis and poor patient
survival (76).

Prognostic value has also been attributed to important players
in lactate metabolism, namely involved in lactate production
(LDHA) and lactate transport (MCTs). There are several
studies on the prognostic value of LDH levels, supported by
systematic reviews/meta-analyses (132). As examples, higher
pretreatment LDH concentration is associated with increased
risk of overall mortality in lung cancer patients (133), high
LDH serum levels are associated with lower event-free survival
(EFS) in osteosarcoma patients (134) and with overall survival
(OS)/progression-free survival (PFS) in urinary system cancer
patients (135). Besides serum LDH, LDHA levels in cancer tissues
have been reported as a biomarker of malignancy and prognosis
(136). As examples, upregulation of LDHA levels in pancreatic
and esophageal cancer have been associated with metastasis,
tumor stage, tumor recurrence, and patient survival (137).
However, LDHA expression in malignant tumor tissues does
not correlate consistently with serum LDH levels, which may
indicate that these are independent prognostic factors in cancer
(138, 139). Studies on lactate transporters (MCTs/CD147) are not
as solid as for LDH, but also reveal prognostic value (Table 1)
(41). In a recent meta-analysis Bovenzi et al. (140) identified
association between increased MCT4/CD147 expression with
decreased OS and disease-free survival (DFS) across many cancer
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types, while there was no clear association for MCT1 expression
with these parameters.

Besides prognostic biomarkers, both LDHA and MCTs
have been recognized as attractive targets for cancer therapy.
LDHA overexpression has been associated with increased cancer
aggressiveness and targeting has been tackled both genetically
and pharmacologically. There are different types of LDHA
inhibitors, including the pyruvate-competitive (e.g., oxamate),
the NADH-competitive (e.g., gossypol), the pyruvate and
NADH-competitive (N-hydroxyindoles), and the free enzyme-
binding inhibitors (galloflavin) (138). LDH pharmacological
inhibition reduces lactate production, impairs cell proliferation
in vitro, and reduces tumor size in vivo, either with LDH
inhibitors alone or in combination with other agents (138,
141). Additionally, gossypol has also demonstrated promising
results in different clinical trials, being relatively safe and
effective in reducing tumor markers (138, 142). These results are
supported by LDHA silencing studies in tumor models, where
cell proliferation, migration and tumor growth were prevented
(143, 144). However, genetic studies deleting LDHA/LDHB
or glucose phospho-isomerase (GPI) have demonstrated that
Warburg effect is dispensable as agressive tumors, relying on
OXPHOS, are able to survive and to develop tumors in nude
mice (145).

As stated above, upregulation of MCT1 and MCT4 has
been described in a variety of human cancers, and inhibition
of MCT activity has been showing promising results in pre-
clinical models (41). In vitro, MCT inhibition impairs lactate
transport, cell proliferation, invasion and migration, and
induces cell death, while it delays tumor growth, induces
necrosis and decreases invasion in vivo. MCT activity has
been inhibited either genetically (gene downregulation or
knockout) or using pharmacological inhibitors. MCT classical
inhibitors include the α-cyano-4-hydroxycinnamate CHC,
4,4′-di-isothiocyanostilbene-2,2′-disulfonates (e.g., DIDS) and
flavonoids (e.g., quercetin) (15). However, these inhibitors
are not MCT/MCT isoform specific, which prompted the
search for new inhibitors. AstraZeneca developed MCT1
specific inhibitors, and one of them (AZD3965) already reached
clinical trials in the cancer setting. After a first evaluation of
compound tolerability, the trial is now set to evaluate the effect
of AZD3965 in MCT1 positive tumors with pre-clinical positive
results (146).

Information on the use of lactate by tumors could also be of
value in cancer therapy. Van Hée et al. developed a PET tracer

of lactate [(±)- [18F]-3-fluoro-2-hydroxypropionate, [18F]-FLac]
to monitor MCT1-dependent lactate uptake in tumors (147). The
authors propose that this tracer can be used to predict response
to treatments that disrupt lactate consumption, with potential to
allow personalized patient treatment.

DISCUSSION

Along the previous decades, the role of lactate has been
overlooked, as it was seen as a mere metabolic waste of
cell glycolytic metabolism. However, recent evidence has been
revealing new and important oncogenic roles of lactate in
malignant tumors. Lactate can function either as metabolic fuel
for oxidative cells or as signaling molecule in the TME, being
responsible for several aggressiveness cancer cell features, namely
proliferation, migration and invasion, angiogenesis, escape to the
immune system and resistance to therapy (Figure 1). Besides,
upregulation of key proteins involved in lactate metabolism,
namely LDHA and MCTs, have demonstrated clinical prognostic
value and are seen as rational targets for cancer therapy.
Thus, given the important role of lactate metabolism in cancer
aggressiveness and response to therapy, lactate metabolism
inhibitors should to be further explored in the clinical setting,
especially in combination with classical therapy, molecular
targeted drugs and immunotherapy.
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