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SUMMARY

The bleomycin mouse model is the extensively used model to study pulmonary
fibrosis; however, the inflammatory cell kinetics and their compartmentalization
is still incompletely understood. Here we assembled historical flow cytometry
data, totaling 303 samples and 16 inflammatory-cell populations, and applied
advanced data modeling and machine learning methods to conclusively detail
these kinetics.
Three days post-bleomycin, the inflammatory profile was typified by acute innate
inflammation, pronounced neutrophilia, especially of SiglecF+ neutrophils, and
alveolar macrophage loss. Between 14 and 21 days, rapid responders were
increasingly replaced by T and B cells and monocyte-derived alveolar macro-
phages. Multicolour imaging revealed the spatial-temporal cell distribution and
the close association of T cells with deposited collagen.
Unbiased immunophenotyping and data modeling exposed the dynamic shifts in
immune-cell composition over the course of bleomycin-triggered lung injury.
These results and workflow provide a reference point for future investigations
and can easily be applied in the analysis of other datasets.

INTRODUCTION

Animal models of human disease are an invaluable tool to decipher disease-relevant pathomechanisms,

discover therapeutic targets, and drive translation into clinical practice. To date, the mouse bleomycin-

induced lung injury model is the most frequently used animal model to investigate pulmonary fibrosis

(Moore et al., 2013; Della Latta et al., 2015; Tashiro et al., 2017; Biasin et al., 2020). Similar to the human

situation, in mice bleomycin exposure is characterized by epithelial damage, inflammatory cell infiltration,

and expansion of fibroblasts and myofibroblasts as well as ECM deposition (Biasin et al., 2017, 2020; El

Agha et al., 2017; Tashiro et al., 2017; Xie et al., 2018). Although, the bleomycin model does not completely

recapitulate human idiopathic pulmonary fibrosis (IPF), it still remains the most common and important an-

imal model to study this disease.

IPF is a severe, rapidly progressing interstitial lung disease with high mortality rates and short median sur-

vival of 1.5–4 years (Wuyts et al., 2013; Marshall et al., 2018). IPF is characterized by extensive lung tissue

scarring, limited inflammation, and extracellular matrix remodeling (Meltzer and Noble, 2008). Current

treatment options slow the loss of lung function but are unable to halt or reverse disease progression

(Maher and Strek, 2019). Accordingly, there is an urgent unmet clinical need for novel therapies for IPF pa-

tients. To date, the etiology and pathogenesis of IPF is still insufficiently understood; however, the role of

inflammation remains undeniable yet controversial. The older concept that IPF is an inflammatory-driven

process has been gradually replaced by the theory of recurrent injury and aberrant repair (Selman et al.,

2001; Selman and Pardo, 2002; Wuyts et al., 2013). However, multiple inflammatory cells have been impli-

cated in disease pathogenesis, including macrophages (Misharin et al., 2017; Reyfman et al., 2019) and

T cells (Todd et al., 2013), which are connected with poorer prognosis (Balestro et al., 2016).

In the bleomycin model, the early phase post bleomycin administration is characterized by acute lung

injury and inflammation, which is observed to last between 1 and 7 days (Peng et al., 2013). This
iScience 23, 101819, December 18, 2020 ª 2020 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:leigh.marsh@lvr.lbg.ac.at
https://doi.org/10.1016/j.isci.2020.101819
https://doi.org/10.1016/j.isci.2020.101819
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101819&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS

iScience
Article
inflammatory phase is followed by active fibrosis, between 7 and 14 days, and late fibrosis, between 21

and 28 days (Izbicki et al., 2002; Peng et al., 2013; Della Latta et al., 2015; Tashiro et al., 2017). As most

studies have only analyzed specific cell populations or time points, a comprehensive description of the

inflammatory cell kinetics is still missing. For the detection and quantification of inflammatory cells, flow

cytometry (FCM) is the method of choice. FCM is able to differentiate and quantify immune cell pop-

ulations in unprecedented detail, not only from the circulation but also from disease relevant tissue

(Misharin et al., 2017; Marsh et al., 2018; Tighe et al., 2019). In contrast to traditional immunofluorescent

staining, which generally use 1–3 markers for cell identification, FCM applies multiple markers to simul-

taneously quantify numerous cell populations at a single cell resolution. Thus, FCM generates large

quantities of complex data, where the analysis, visualization, and interpretation of which requires so-

phisticated analysis techniques, such as computational flow cytometry (Saeys et al., 2016; Marsh

et al., 2018).

In order to conclusively detail the inflammatory cell kinetics in the bleomycin model, we here assem-

bled historical FCM data from 15 different experiments and applied advanced data modeling,

including univariate [Box 1], multivariate [Box 1], and machine learning [Box 2] methods. We show

how the combination of advanced data modeling and in-depth immune profiling can detail the dra-

matic changes in the inflammatory landscape in this model and also serves as a reference point for

future studies.

RESULTS

Pre-Processing of Flow Cytometric Data Substantially Improves Statistical Analysis

Performance

Intra-tracheal administration of bleomycin in mice results in a time-dependent development of fibrosis

(Figures 1A and 1B). To comprehensively describe the inflammatory cell kinetics following bleomycin

treatment, we assembled and conjointly analyzed historical FCM data from 15 independent experi-

ments, which resulted in 159 bronchoalveolar lavage fluid (BALF) and 144 lung tissue samples (Table

S1). Using standard gating strategies (Misharin et al., 2013; Biasin et al., 2017; Nagaraj et al., 2017;

Gungl et al., 2018), a total of 16 cell populations covering the main myeloid and lymphoid cell

types (Table 1) were identified (Figure 1C). The aggregation of historical experiments inherently led

to an unbalanced [Box 1] experimental design (Table S1), which was handled by robust statistical

methods [Box 1].

In both tissues the distribution of all 16 analyzed cell populations was significantly non-normal with a pos-

itive skew [Box 1] (Figures 2A and S1 and Supplementary Data 1). To improve distribution, we trialed several

common transformations: square root, reciprocal, Freeman Tukey, logit, LOG, LOGx+1, and 4RT. Only LOG,

LOGx+1 and 4RT improved data distribution (pBH>0.05, Supplementary Data 1). As both LOG and LOGx+1

gave virtually equivalent results, but as LOGx+1 has additionally the advantage of not introducing missing

values for zero value counts, consequent analysis was performed with only LOGx+1 and 4RT (Figures 2A

and 2B).

Bleomycin Drives Strong Changes in the Inflammatory Profile

To identify global changes in the inflammatory cell profile, we first applied unsupervised [Box 2] prin-

cipal component analysis (PCA [Box 2]). This method reduces dimensionality by creating new vari-

ables, which successively maximizes variance and thereby aids data interpretability. Without data

transformation, the scores plot was dominated by single sample differences, which obscured any

experimental effects (Figure 2C, left panel). After transformation, pronounced differences in the in-

flammatory profile were revealed (Figure 2C). Both LOGx+1 and 4RT substantially improved the per-

formance of the hierarchical clustering, yielding clearer clustering and heatmap results (Figure 2D).

The highest influence on the inflammatory landscape came from the tissue compartment (BALF or

lung), causing samples to separate along the first principal component (PC1). The second highest dif-

ference was caused by bleomycin, separating samples in the BALF along the second principal compo-

nent (PC2; Figure 2C, middle and right panels). Similarly, hierarchical clustering was first driven by the

tissue compartment, followed by some weaker subclustering due to bleomycin treatment. The major-

ity of cell populations increased after bleomycin exposure, whereas alveolar macrophages (AM)

decreased (Figure 2D). We next utilized macroPCA, a robust PCA method able to handle and identify

all possible types of data contaminations [Box 1], including strong single value or sample outliers [Box
2 iScience 23, 101819, December 18, 2020
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Box 1. Glossary of Analysis Terms

Robustness A measure for how easily outlier values distort results:

� Average: not robust, a single strong outlier deforms results severely
� Median: very robust, good results even with almost half of all values being

strong outliers

Unbalanced Describes unequal group sizes or missing values, methods assuming balanced

groups will have misleading results

Positive skew Asymmetric distribution of data with more small than large values, common in flow

cytometry and many other biological measures

Data pre-processing Pre-processing aims to normalize data distribution (i.e. make a bell-shape) by

changing all values according to one or several defined mathematical equations

� All types of pre-processing can be combined with each other

Centering and scaling

Cell count differences are not per se reflective of their biological importance; thus

centering and scaling reduces the stark differences of cell numbers between the

cell populations to allow comparisons of different cell populations. Are vital for

multivariate statistical methods, otherwise results will be dominated by cells with

highest counts or highest noise

� Centering: subtraction of a constant from every value, e.g. the mean
� Scaling: normalize the range of measured values by dividing with a constant

e.g. the standard deviation
� Can be combined, e.g. centering by mean, scaling by standard deviation is

z-scaling

Transformation

� Convert each measured value by a specific, often nonlinear, but defined

mathematical function (e.g. log10(x)) to improve distribution
� Normal distribution is often a prerequisite for specific statistical methods or

allows use of more powerful statistical methods (Keene, 1995; van den Berg

et al., 2006)

Data contaminations Denotes all kinds of problematic values in the data, such as sample outliers, single

value outliers, or missing values

Outlier A value so different from the rest that it could be for example an analytical error

Univariate or multivariate Univariate methods investigate each measured data on its own (e.g. analyzing only

CD3+ T cells irrespective of the 15 other cell populations), whereas multivariate

methods analyze multiple/all measured data at once (e.g. all 16 cell populations)

� Univariate methods can dissect in great detail several biological factors

(e.g. treatment, substrain) and their interaction, but cannot directly

compare different measured data with each other (e.g. is inflammation on a

given driven more by T or B cells?)
� Multivariate methods allow a holistic comparison of various biological fac-

tors and their main drivers (e.g. inflammation at day 3 is strongly driven

by PMN and less by CD8+ T cells in BALF Figure 6C) but are limited dis-

secting several biological factors or their interaction
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1] (Hubert et al., 2019). MacroPCA results were in good agreement with PCA (Figure S2A), which

confirmed that this dataset is free of severe outliers, allowing the use of a wide variety of statistical

methods (Rousseeuw and Hubert, 2018).

As the strong compartment effect could mask weaker drivers that alter the inflammatory landscape, we

analyzed BALF and lung samples separately (Figure 3). In the BALF, bleomycin exposure completely
iScience 23, 101819, December 18, 2020 3



Box 2. Glossary of Multivariate Methods

Unsupervised

or

supervised

(multivariate)

Unsupervised methods analyze measured data unbiased without any knowledge of biological factors (e.g. treatment, substrain),

whereas supervised methods specifically use biological knowledge

� Unsupervised methods best detect strongest biological factors, general trends, outliers, and compar impact strength of

various biological factors
� Supervised methods can determine significance of biological factors and unsupervised methods detect general trends;

however, the prior knowledge of biological factors necessitates testing and confirmation strategies to avoid overfitting

or spurious findings

PCA Unsupervisedmethod projecting themeasured data into newprincipal components with decreasing variability per component (PC 1

to PC n)

� PC1 represents as much variability, i.e. information content (given as percentages), as possible, normally shown in the

scores plot on the x axis
� PC2 represents from the remaining variability as much as possible (i.e. PC2 smaller than PC1), normally shown on the y axis

Scores plot

� Each dot represents the whole measured data (i.e. all 16 cell populations) of one sample with closer dots being more

similar samples and distant dots increasingly dissimilar
� Factors separating groups along PC1 (x axis ) are stronger, i.e. data are more dissimilar than separation in PC2 (y axis)

UMAP Unsupervised method projecting the measured data (each marker for each cell) into new UMAP components but optimizing to

represent high-dimensional data structure as similar as possible in the low dimensions

� Interpretation of UMAP plots is similar to PCA plots; closer dots represent samples that are more, t, the more separated

the more dissimilar. UMAP can handle very large data

Machine

learning

Algorithms that automatically learn fromexistingmeasured data (training data) with the aim to predict unknown data without specific

human input

� Instead of defining a predefined diagnostic cut-off (e.g. AM in BALF below 0.5$105 cells are bleomycin treated) a classi-

fication model is trained on measured data (e.g. 16 cell counts from BALF of saline and bleomycin treated mice) to predict

new, unknown samples (e.g. to verify that the bleomycin challenge worked)
� Underlying algorithms can be too complex for human comprehension, even if single elements are simple (e.g. decision

tree) due to sheer number of coupled elements (e.g. here 5,000 trees in one random forest model)

OPLS-DA Supervised machine learning method separating predictive variability into the T score (x axis) from non-predictive into the

orthogonal T score (y axis) yielding a score plot similar to PCA

� i.e. the T score contains all variability attributed to the given biological grouping (e.g. saline or bleomycin after 3, 14,

21 days), whereas the orthogonal T score represents technical or inter-individual variability not connected to the bio-

logical group
� Model stability can be assessed by cross-validation and permutation testing, a predictive ability Q2 >50% is considered

significant, i.e. high probability to correctly predict new samples

Random forest Supervised machine learning method classifying samples into their given biological group based on measured data using an

ensemble of many decision trees

� The build-up frommany trees hinders simple representations of results, so that several plots are used to assess model sta-

bility and main drivers

MDS score plot

� PCA of the proximity matrix (i.e. similarity of samples) of the random forest model visually summarizes random forest found

similarity/dissimilarity of samples

Minimal depth distribution plot

� Counts how often the measured data (e.g. CD3+ T cells) were used in an early node in the trees, sorted according to de-

scending importance
� The smaller the mean minimal depth (or the more the distribution contains small values), the more the samples were clas-

sified based on this measure, the more important this measured data is for a good classification, i.e. drives the difference

between groups

Rank of mean accuracy decrease in group

� Determines importance (e.g. of CD3+ T cells) by randomly permutating the measured data (i.e. scrambling it nonsensical)

and evaluating how themodel accuracy decreases; here themean decrease was ranked between the groups to showwhich

cell type was most important for which group
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Figure 1. Overview of Study Design, Pathological Changes, and Gating Strategy

(A) Historical flow cytometry data from the bleomycin mouse model were pooled and collectively analyzed. Samples were collected 3, 14, or 21 days

afterbleomycin or saline administration from the compartments BALF (159 samples) and lung tissue (144 samples). Five different C57BL/6 substrains were

included.

(B) Representative Masson’s trichrome staining of lung sections, showing pathologic alterations in the bleomycin model. Zoomed images exemplify the

increasing fibrosis accumulation from day 3–21 after bleomycin challenge; scale bar represents 1 mm and 100 mm, respectively. High-resolution versions of

these images for use with the Virtual Microscope are available as eSlides: VM06176, VM06160, VM06162, VM06177.

(C) Representative flow cytometry gating strategy. The 16 cell populations taken for further analysis are highlighted in bold. Alveolar macrophages (AM),

dendritic cells (DC), interstitial macrophages (IM), monocyte-derived AM (MoAM), monocyte-macrophages (MoMp), neutrophils (PMN); forward scatter

(FSC), area (A), height (H), side scatter (SSC), and monolymph gate (ML).

See also Table S1 for overview of group distribution and Table S2 for antibody details.
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altered the inflammatory landscape, separating samples along PC1 (explaining 63.9% of the variation in the

dataset). However, the bleomycin effect only accounted for 12.4% of the variation in the lung, separating on

PC2 (Figure S2A). Again, macroPCA gave similar results in the analysis of the separate compartments (Fig-

ure S2B), reconfirming the absence of critical outliers. Analogous to the PCA findings, hierarchical clus-

tering showed a strong clustering after bleomycin exposure in BALF, which was less clear in lung tissue

samples. The influence of day post-treatment and substrain (individual C57BL/6 lines) on cell population

changes was less distinct, with only some indication toward a possible sub-clustering due to these factors

(Figure 3B).
iScience 23, 101819, December 18, 2020 5



Panel Cell Type Abbreviation Cell Population SSC Panel I Panel II

CD45 SiglecF CD11c Gr-

1

CD64 CD24 MHC-

II

CD11b CD3 CD4 CD8 CD19 gdTCR

Cell count Cell count CD45+ live cell +

Myeloid Macrophagesa AMa Alveolar macrophages hi + + + + +/�

MoAMa Monocyte-derived

macrophages

+ Lo + + – + +/�

IMa Interstitial

macrophages

+ – – + – + +/�

DCs DCb CD11b+ dendritic cells + – – + + +

Monocytesa Gr1+ MoMpa Inflammatory monocyte

macrophages

+ + + – +

Gr1- MoMpa Constitutive monocyte

macrophages

+ – + – +

Granulocytesa EOSa Eosinophils hi + + – +

PMNa Mature neutrophils hi + +/� – + +

SiglecF+ PMNa SiglecF+ neutrophils hi + + – + +

Immature

PMNa

Immature neutrophils hi + – + – +

Lymphoid B cellsb CD19+ B cellsb B cells lo + – +

T cells CD3+ T cellsb T cells lo + + –

CD4+ T cellsb T helper cells lo + + + – –

CD8+ T cellsb Cytotoxic T cells lo + + – + –

gd T cellsb/a gd T cells lo + + + – – +

Table 1. Inflammatory Cell Identification and Corresponding Markers
aInnate immune cells.
bAdaptive immune cells.
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Figure 2. Data Transformation Improves Data distribution and Analytical Power

Analysis of cell count data (untransformed) or following transformation using LOGx+1 or 4RT (fourth root) using 159 BALF and 144 lung samples. Cell counts in

BALF are 105 and in lung 104/mg tissue. Examples of data distribution of neutrophils (PMN) as one representative population in BALF and lung samples by (A)

histograms show the frequency of PMN cell counts. Data were grouped into 30 equal intervals (binned cell counts).

(B) Violin plots, total represents combined saline and bleomycin samples.

(C) PCA scores plots [Box 2] with each point representing the combined inflammatory cell profile (16 populations) in one sample; plots are colored to

highlight different experimental conditions. In B and C, dots represent single sample values.

(D) Heatmaps with hierarchical clustering of all 16 analyzed cell populations.

See also Figure S1 for data distribution and Figure S2 for macroPCA comparison.

ll
OPEN ACCESS

iScience
Article
Modeling of Inflammatory Cell Kinetics with Univariate Statistical Analysis

In order to examine the potential influence of other experimental factors in depth and to simultaneously

control for the unbalanced [Box 1] design arising from the use of historical data, we applied univariate
iScience 23, 101819, December 18, 2020 7
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Figure 3. Bleomycin Induces Stronger Changes in the Inflammatory Profile in the BALF than the Lung

The contribution of different biological factors to the inflammatory cell profile as determined by (A) PCA score plots [Box

2] are colored to highlight different experimental conditions and (B) heatmaps with hierarchical clustering. To aid,

interpretation heatmaps are split into two main clusters based on dendrogram distances. Colors and shapes represent

tissue, treatment (Saline, Bleo), mouse substrain, and day post-treatment. Cell counts from 16 populations in 159 BALF

and 144 lung samples were LOGx+1 transformed prior to clustering.
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[Box 1] linear mixed models with log10-transformation (LOGLME, Figure S3). As the multivariate [Box 1]

analysis showed a strong bleomycin effect, the fixed factor [Box 3] Treatment {Saline, Bleo} was included

in all models [Box 3]. Other fixed factors included Day {3,14,21} and Substrain {A,B,C,D,E}. The addition

of each factor, either alone or together and with or without their interaction [Box 3] with Treatment, notably

improved the fit [Box 3] of all simple models, increasing the goodness of fit and reducing Akaike informa-

tion criterion (AIC; Figure S3). Thus, both theDay post bleomycin exposure and Substrain significantly influ-

enced the cellular landscape.

As each independent experiment could have similarities, the experimental ID was then included as a

random factor (~1|Exp_ID). These mixed models significantly outperformed the aforementioned simple

models. Finally, complex mixed models (combining the mixed models with the interactions of Treat-

ment with Substrain or Day) notably outperformed all simple models (with or without interactions).

The most complex mixed model [Treatment + Day + Substrain + Treatment:Substrain + Treatment:Day,

~1|Exp_ID] outperformed all other models, although more prominently in BALF than in lung

(Figure S3A).

As complex models risk overfitting [Box 3], especially in light of the unbalanced design, we then inves-

tigated model simplification. We first tested whether it was possible to create one control group of all

saline animals. In all mixed and complex models (i.e. with random factor Exp_ID) only 4 of the over

10,000 investigated pairwise comparisons of a saline subgroup with another saline subgroup had a

pBH<0.01 in any of the 16 cell types. This means saline-treated animals were sufficiently similar to be

combined into one control group. Consequently, Treatment and Day can be then merged into one fixed

factor with four groups: saline (all days) and bleomycin after days 3, 14, and 21, which was termed Saline-

Day {Saline,3,14,21}, generating the simplified model [SalineDay + Substrain] and the simplified mixed

model [SalineDay + Substrain ~ 1| Exp_ID]. The performance of the simplified mixed model was slightly

lower than in the most complex mixed model, but well within the range of the other top performing

mixed models (Figure S3B).

To compare the models in more detail we also directly compared the fitted values [Box 3] of the simpli-

fied mixed model with the most complex mixed model. The fitted values from both models strongly

correlated (Pearson correlation R2 > 0.96, Figure S3B). This underlines the validity of model simplifica-

tion and that no unexpected or systematic skew was introduced. As the simplified mixed model

[SalineDay + Substrain ~ 1|Exp_ID] also gives more easily interpretable results and has a lower risk
8 iScience 23, 101819, December 18, 2020



Box 3. Glossary of Univariate Model Terms (LOGLME)

Model A mathematical equation describing the relationship of measured data to biological factor(s)

� You assume that the inflammation, i.e. the CD45+ cell count, increases with day after

bleomycin challenge, then the biological factor is DAY, the measured data are the

cell count
� A linear model would have the equation: cell_count = a∙DAY + b where the fit

parameters are a the inclination (steepness of the line) and b the intercept (weight at

height = 0)

Fitting Finding the parameter values best describing the measured data, often assessed by the

residuals

Residuals Difference between fitted value and measured value (in linear models the distance from the

measured data dot to the line)

Fixed factor Also called between-subject effect, a biological factor that (possibly) affects the outcome, e.g.

treatment or day after treatment

Interaction The impact of one biological factor depends on the occurrence of another biological factor

� e.g. The inflammatory effect of treatment depends on the day after treatment, such as

CD45+ cell count is higher after 14 days than 3 days (in BALF)

Random factor Also called within-subject effect, a factor that (possibly) affects baseline level such as repeated

measures from the same source or working in experimental batches

� e.g. In one experimental run the cell isolation yielded in all populations higher cell

counts than in another experimental run (higher baseline) but does not impact rela-

tive findings

Simple/mixed Simple models contain only fixed factors factor; mixed models include random factors

Fitted value The value suggested by the model from the fitted equation (measured value minus the fitted

values is the residual), if the model is correct that would be the real value without measurement

error

Predicted value Similar to fitted values the predicted value is suggested by the model equation, but for formerly

unknown or not measured points (e.g. CD3+ T cells day 21 in BALF in Figure S4B)

Overfitting The model contains more parameters than the existing data allow to fit well and thus the model

will fail to predict new data correctly

� e.g. by including irrelevant factors such as mouse color, tail length, ear size, etc., one

could build perfect models without any relevant foundation or prediction of new data
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of overfitting [Box 3], it was chosen to examine the inflammatory cell kinetics underlying bleomycin

mouse model.

This model was then applied to explore how individual substrains may influence the kinetics of different

inflammatory cells. All mice included in this study are on the C57BL/6 background; however, they were ob-

tained from different sources, e.g. commercial sources (C57BL/6J, substrain A) or are the wild-type litter-

mates from in-house breedings (substrains B-E). Although some lines were inbred for up to 15 generations,

all lines produced similar inflammatory responses in both lung compartments, which only differed inmagni-

tude (Figure S4). This consistency allows to readout the compartmental kinetics of each cell population af-

ter bleomycin treatment for all substrains combined.
Inflammatory Cell Kinetics after Bleomycin-Induced Lung Injury Are Robust and Reproducible

Analysis of the inflammatory response in the BALF identified a non-resolving inflammatory response, with

the total number of inflammatory cells continuing to increase over the investigated time course of 21 days.

In the lung tissue, inflammation was characterized by an immediate increase at day 3, stagnating at day 14,
iScience 23, 101819, December 18, 2020 9
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Figure 4. Linear Mixed Models with log10-Transformation Reveal Complex Immune Cell Dynamics Occurring in the Lung Following Bleomycin-

Induced Lung Injury

Plot of back transformed, fitted cell counts (line represents mean G 95% confidence intervals) using the simplified mixed model [SalineDay + Substrain ~ 1|

Exp_ID] of LOGx+1 transformed cell counts for BALF (counts∙105) and lung tissue (counts∙104/mg tissue). Animal numbers were in BALF in total n = 159

(Saline 60; 3d 23; 14d 39; 21d 37) and in lung in total n = 144 (Saline 56; 3d 23; 14d 32; 21d 33). See also Figure S3 for model comparisons and Figure S4 for

modeling of all 16 cell populations separated by strain.
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and mostly resolved 21 days post-bleomycin exposure (Figure 4). This suggests that the inflammatory

response is persistent, yet compartment dependent.

Early inflammatory changes were mostly dominated by the innate immune system, including both imma-

ture and mature neutrophils (immature and mature PMN), monocyte-derived alveolar macrophages

(MoAM), and interstitial macrophages (IM). In contrast we observed a concomitant decrease in AM. Inter-

estingly, the (inverted) trajectories of AM were comparable to the rise in MoAM, suggesting a functional

replacement by the latter, and support observations in earlier studies (Misharin et al., 2017). Following

the rapid increase in the first-line responders, PMN, their numbers later stagnated or gradually decreased

and even returned to baseline levels in the lung tissue. We also identified a time-dependent increase in

SiglecF+ PMN following bleomycin application. These cells have recently been described to be important

for cancer progression and murine myocardial infarction (Engblom et al., 2017; Vafadarnejad et al., 2020).

Similarly, eosinophils (EOS) and dendritic cells (DC) exhibited a bell-shape response curve. In contrast,

monocyte populations (both Gr1+ and Gr1� MoMp) exhibited a slower, but consistent, stepwise temporal

increase, which could be attributed to their contribution to both the innate and adaptive immunity and their

role in tissue repair.

At later time points, inflammation was dominated by immune cells from adaptive immunity, with a clear

preference to the alveolar compartment. In the BALF, CD3+ T lymphocytes (CD4+ and CD8+ T cells, respec-

tively) had a steep, yet non-resolving, rise early in the inflammatory response. CD19+ B cells peaked at
10 iScience 23, 101819, December 18, 2020



Figure 5. Temporal and Spatial Localization of Inflammatory Cell Kinetics in BALF and Lung Tissue

(A) Uniform Manifold Approximation and Projection (UMAP) plots of concatenated CD45+ populations (min 3

independent samples with max 100000 CD45+ cells per sample), cells were clustered according to their similarity in signal

intensity of all parameters measured by flow cytometry and overlayed with manually gated populations in the BALF. For

clarity axis labels are shown only on the first panel of the model.

(B) Spatial localization of alveolar macrophages (AM: CD11c+/SiglecF+), neutrophils (PMN: LY6G+), CD19+ B cells, and

CD4+ T cells during the time course of bleomycin challenge. Nuclei are stained with DAPI (dark blue). Representative

pictures of three independent mice at each time point. D3, D14, and D21 represent days 3, 14, and 21 post-bleomycin

treatment, respectively; scale bar represents 20 mm. High-resolution versions of these images are available in Virtual

Microscope as eSlides: VM06172, VM06173, VM06174, VM06175, respectively.

See also Table S3 for antibody details and Table S4 for instrument configuration.
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14 days post-bleomycin challenge. Interestingly, at the latest investigated time point, 21 days, T cell

numbers continued to rise, implicating their involvement at later stages in this model (Figure 4A).

Taken together, each inflammatory cell population shows dynamic and distinct inflammatory kinetics with

some compartmental preference. With time, the involved immune cells shifted from the innate (e.g. PMN)

to the adaptive immune system (e.g. T and B cells), with the BALF beingmore prominently affected than the

lung tissue. However, after 21 days the inflammatory profile was still chronically altered in both compart-

ments, suggesting ongoing inflammation.

Based on these results we went back to our FCMdata and visualized the kinetics of themost dynamically altered

populations using uniform manifold approximation and projection (UMAP)[Box 2]-derived plots (Figure 5A).
iScience 23, 101819, December 18, 2020 11
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UMAP, like PCA, is a dimensionality reduction technique that can utilize the entire flowcytometry dataset (i.e. the

positivity or negativity and intensity of each marker for each cell) and reduces this information into a new two-

dimensional space. As predicted in our modeling data and easily apparent in the UMAP plots, AM populations

strongly decreased following bleomycin exposure, whereas PMN vastly increased after three days. Adaptive im-

mune cells, such as CD4+ T cells, CD8+ T cells, and CD19+ B cells, expandedmore at later time points and were

virtually absent in saline-treatedmice (Figure 5A). Visualization, usingmulticolour immunofluorescence, revealed

the presence of CD11c+/SiglecF+ AM and Ly6G+ PMN in saline and day 3 treated mice, whereas CD4+ T cells

and CD19+ B cells were more prominent at later time points (days 14 and 21) (Figure 5B). Interestingly, CD4+

T cells were commonly spatially localized to the collagen-rich fibrotic lung tissue (Figure 5B).

The Inflammatory Cell Landscape Continually Evolves following Bleomycin Exposure

The combination of unsupervised multivariate methods and univariate modeling [Box 3] (LOGLME) iden-

tified the kinetics of each cell type with an early innate response followed later by adaptive immune

response. However, the question how the entire landscape differs between different time points or which

cell types define each stage is still open. In order to answer these questions, we applied three robust ma-

chine learning [Box 2] approaches.

Our first approach, OPLS-DA [Box 2] separates the dataset into predictive and non-predictive compo-

nents. Predictive means the ability to discern between groups in the given classification factor, which

was here SalineDay {Saline,3,14,21}. The OPLS-DA model quality was thoroughly investigated by cross-

validation and permutations tests, which showed that in both compartments the models were highly sig-

nificant (Q2>50%, p < 0.001). Similar to our PCA results (Figure 3), the inflammatory reaction was more

pronounced in the BALF than in the lung, as apparent from a clearer group separation, higher percent-

ages of variability in the predictive component, and higher predictive ability (Q2; Figure 6A). In BALF, the

inflammatory landscape at 14 and 21 days post-bleomycin were very similar, but very different from the

saline controls, whereas the landscape at 3 days bridged these two poles.

We next investigated conditional inference trees and random forest [Box 2] models to infer which

cell populations were the driving factors behind the group differences. Conditional inference

trees in the BALF demonstrated that CD3+ T cells levels separated early (Saline, day 3) and later

time points (days 14 and 21). Separating samples on low and high CD19+ B cells distinguishes

between days 14 and 21, respectively. On the other hand, low levels of PMN strongly predicts sa-

line-treated mice and the combination of low AM and SiglecF+ PMN aiding the separation between

saline, days 3 and 14 (Figure 6B). In the lung compartment, both innate cells (MoAM, AM) and adap-

tive cells (CD4+ T cells and CD19+ B cells) were needed to define the different groups. Saline mice

were defined by low levels of MoAM and high AM, whereas bleomycin treatment by high MoAM

and CD4+ T cells. Similar to the BALF, day 21 was marked by high CD19+ levels, whereas D14 by

was defined by lower B cell and MoAM levels (Figure 6B). A combination of low MoAM and low

AM defined day 3.

Random forest models were then used to compare the ability of all cell populations to drive group separation. In

agreement with previous results, again group separation was clearer in BALF than in lung, as demonstrated by

multidimensional scaling plots of the random forest proximity matrix and higher accuracy (Figure 6C). In BALF,

especially the adaptive immune cells CD8+ andCD3+ T cells aswell as the innate SiglecF+ PMNdifferedmost, as

became apparent from their low minimal depth. Between the different groups high CD8+, CD3+, and CD19+

levels were most predictive for late inflammation, whereas low SiglecF+ PMN levels were most predictive for

the cellular landscape in saline samples. The random forest suggests some fine but distinct differences between

the global inflammatory landscape 14 and 21 days after bleomycin exposure (Figure 6C). Although both are

highly inflamed (OPLS-DA), higher levels of adaptive cells are rather predictive for day 21 (e.g. all T and B cells),

whereas higher levels of some innate cells are more predictive for day 14 than day 21 (e.g. DC, IM, immature

PMN, MoAM, EOS) or day 3 (PMN). In contrast, lung models were dominated by macrophage cell populations

differing most between the inflammatory stages, foremost the depletion of AM. The random forest models un-

derline that the inflammatory landscape differs notably between lung and BALF.

DISCUSSION

In this study, we have combined computation FCM, advanced data modeling, and machine learning ap-

proaches to conclusively define the inflammatory cell kinetics following bleomycin treatment in mice. By
12 iScience 23, 101819, December 18, 2020
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Figure 6. Exploration of Inflammatory Cell Landscape Differences withMachine Learning in BALF and Lung Tissue

(A) Scores plot of OPLS-DA[Box 2] models per compartment for the factor SalineDay {Saline,3,14,21} with 95% confidence

ellipses for each group. The predictive ability of the models Q2 was calculated by 7-fold cross validation, and 1,000

permutation tests reconfirmed model significance with p < 0.001.

(B) Conditional inference trees per compartment, showing cell types and cut-offs that define each group; saline, days 3,

14, and 21 post-bleomycin treatment (SalineDay). Model accuracy was evaluated with a stratified split into 65% trainings

and 35% test set.

(C) Multidimensional scaling (MDS) [Box 2] plot (left panel) of the proximity matrix of random forest [Box 2] models grown

with 5,000 trees. Model accuracy was evaluated with a stratified split into 65% trainings and 35% test set. The distribution

of theminimal depth [Box 2] is shown for each cell type according to the number of trees; the mean of theminimal depth is

shown (middle panel). The rank of the mean decrease in accuracy [Box 2] within each group is shown for each cell

population (right panel). Animal numbers in all models from A-C were in BALF in total n = 159 (Saline 60; 3d 23; 14d 39; 21d

37) and in lung in total n = 144 (Saline 56; 3d 23; 14d 32; 21d 33). Models were based on LOGx+1-transformed cell counts for

BALF (counts∙105) and lung tissue (counts∙104/mg tissue).

(D) Schematic, abstracted summary of the five lead cell types (highlighted in bold in panel C) and scaled 0 to 1 to highlight

relative changes between cell types and compartments BALF and lung tissue.
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combining the data from 15 independent experiments, we amassed very large sample numbers, which

were far in excess of those normally found in animal experiments. The aggregation of historical samples

inherently led to an unbalanced experimental design, which was handled by sophisticated, robust statisti-

cal methods. By using pre-processing techniques such as data transformation, we substantially improved

analysis power, which crucially contributed to clearer data interpretation. Changes in the inflammatory pro-

file were dissected usingmultivariate and univariate statistical methods, including linear mixedmodels with

log10 transformation. Only by applying these techniques in unison were we able to create the most
iScience 23, 101819, December 18, 2020 13
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comprehensive picture of inflammatory cell trajectories to date and characterize the sustained inflamma-

tion in the bleomycin model of pulmonary fibrosis. Importantly, these techniques and workflow can be

easily applied for analysis of other datasets.

FCM data are normally highly asymmetric i.e. it has many larger values but no values smaller than zero; this

non-normal distribution prevents the use of more powerful analysis methods. To re-establish normality we

trialed several transformations but ultimately settled on LOGx+1 as it normalized the data distribution, can

be easier to interpret, and also slightly improved the scedasticity compared with 4RT. Our data modeling

approach resulted in a very large sample size, which notably increased statistical power and outweighed

the potential drawbacks of added confounding variation from experimental runs or the use of different sub-

strains. Furthermore, when experimental covariance was accounted for as random factor in LOGLME

models, the inflammatory profiles in the BALF and lung tissue of all saline-treated animals, irrespective

of experiment, were sufficiently similar to be combined into one large control group. Secondly, the trajec-

tories of inflammatory cell profiles were found to be consistent for all five substrains, although their mag-

nitudes slightly differed, which is important for experimental reproducibility in light of using different

knockout lines or mice sourced from different companies.

The application of unsupervised and supervised as well as multivariate and univariate methods demon-

strated that the majority of cell populations showed consistent trajectories in both compartments. Howev-

er, the changes for most cells were more prominent in BALF than in lung tissue. This is in part due to fact

that in healthy mice the vast majority of cells in the BALF are AM, whereas in the lung tissue even at baseline

conditions, a highly heterogeneous pool of inflammatory cells exists, including macrophages, PMN, T, and

B cells. The most informative results will be achieved by sampling both BALF and lung tissue. The investi-

gation of lung tissue alone could lead to misinterpreting the duration or intensity of inflammation due to

weaker changes, whereas analysis of the BALF alone could potentially miss cell populations that are not

normally found within this compartment, e.g. interstitial macrophages or to a lesser extent DC. Therefore,

deep inflammatory cell phenotyping requires the analysis of both compartments to give the full picture of

the inflammatory status of the lung.

Our comprehensive analysis of multiple inflammatory cell population at several time points describes the ki-

netics not only during disease development but also when it is fully established. The initial inflammatory phase

after bleomycin exposure was dominated by early responder cell types from the innate immune system of the

myeloid lineage. Neutrophils constitute the first-line defense of the immune system and consequently show

very acute kinetics, being rapidly recruited and also being the first cell type to resolve, visible as pronounced

decreases from day 3 to day 14 after the challenge. In contrast, cells from adaptive immune system, such as B

and T cells, increased much slower but continue to expand even at 21 days. The worth of subtyping cell pop-

ulations is apparent by the inverse kinetics displayedwithinmacrophages, which is only possible by usingmul-

ticolour analysis. We could show that although the number of AMquickly decreased, MoAM increased. These

contrary trajectories would explain the early observation that macrophages numbers were unchanged in this

model (Izbicki et al., 2002), but the closer analysis of macrophage subtypes revealed strong dependent

changes, as shown by (Misharin et al., 2013, 2017) and now reconfirmed by our results.

Increasingly macrophage heterogeneity has been suggested to play an important role in the pathogenesis

of lung fibrosis and have implications for therapeutic strategies. MoAM undergo marked transcriptional

changes during their differentiation in the injured lung tissue. These changes are not only associated

with a continuous downregulation of genes typically expressed in monocytes and upregulation of genes

expressed in AM but also with markedly elevated expression of proinflammatory and profibrotic genes

related to M1 and M2 phenotype. This unique transcriptomic signature of MoAM provides an explanation

on how bleomycin-induced lung fibrosis is attenuated following selective depletion of these cells (Misharin

et al., 2017; McCubbrey et al., 2018; Joshi et al., 2020). Interestingly, the existence of common profibrotic

pathways in MoAM harvested from mice during fibrosis development and profibrotic macrophages ob-

tained from the lungs of IPF patients has been reported (Misharin et al., 2017; Aran et al., 2019). All these

observations strongly suggest that selective targeting profibrotic macrophages, rather than the M1 or M2

phenotype, is more likely to be of benefit in such a complex disease as IPF. The potential contribution of

MoAM to the resolution of lung fibrosis remains the subject of future studies, although very recent data

supports this hypothesis (Cui et al., 2020). Hence, MoAM could represent a very plastic cell population

with distinct functions in different phases of lung fibrogenesis.
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Early and late fibrotic stages were characterized by increased numbers of T and B cells in the BALF, whereas

numbers in the lung tissue remained relatively stable; this reflects earlier reports describing the presence of

T cells in IPF lungs (Todd et al., 2013; Balestro et al., 2016). Here B cells are of particular interest, as

abnormal B cell aggregates have been described in IPF lungs (Marchal-Sommé et al., 2006) and diverse

circulating IgG autoantibodies were found in IPF plasma (Ogushi et al., 2001; Kurosu et al., 2008; Taillé

et al., 2011). Furthermore, individual auto-immunoglobulins were linked to severity and/or poor prognosis

of IPF (Ogushi et al., 2001; Kahloon et al., 2013), thus suggesting the causal role of certain autoantigens in

IPF. Accordingly, transcriptome-profiling of lung tissue derived from pirfenidone-treated patients revealed

downregulation of B-cell-related genes (Kwapiszewska et al., 2018). Future studies will, however, demon-

strate whether these findings open an exciting new avenue for immunotherapy-based approaches in IPF.

Recommendations

This study explored fundamental aspects of the bleomycin animal model with good power owing to the

high sample numbers so that constructive recommendations can be inferred.

(I) In order to ascertain technical success of the experiment we strongly recommend to always include

a negative control (saline) and a positive control (bleomycin, transgenic, or knock out otherwise un-

treated) group with each n R 8. Foremost this serves to rate the strength of induced fibrosis and

technical quality of the experiment. Statistical power gain is very high for every added sample in

the single digit region. An n R 8 leaves some safety margin to stay above the critical level of n =

5 to handle the occasional, unavoidable loss of samples due to premature death or technical prob-

lems.

(II) For more sensitive and pronounced inflammatory readouts the BALF should be routinely sampled

together with lung tissue and both samples subjected to analogous analysis.

(III) For statistical analysis we strongly recommend to first investigate distribution and pre-processing

(transformation, scaling, centering) paired with unsupervised multivariate methods.

(IV) Specific and detailed analysis should be based on the main trends identified in unsupervised

models. For detailed investigation of cell-specific differences univariate mixed models offer the

highest flexibility and insights. Supervised multivariate methods are well capable to confirm

wholistic trends and dissect main drivers of these trends. We strongly recommend to pre-process

data before investigating first with unsupervised and second with supervised methods as well as

relying on both multivariate and univariate methods, as they complement each other well in their

type of generated insights.
Conclusions

The measurement of inflammatory cellular landscapes in the bleomycin-induced lung-injury mouse model

with flow cytometry is very robust and suitable to quantify kinetic changes in multiple cell populations

simultaneously. The results allowed to infer recommendations such as to add negative and positive control,

apply data pre-processing, combine multivariate and univariate methods, and to routinely also investigate

BALF. We also found that the unintended development of potential substrains does not per se hinder gen-

eral reproducibility of results and that the approach to adapt bleomycin doses to the current experimental

run is viable. This study underlines the relevance of combined analysis for more holistic insights into inflam-

matory profile changes. Cell populations show quite distinct trajectories in their kinetics. We also conclude

that inflammatory cell-based response is active before, during, and after manifestation of fibrosis with a

shift from the initial innate immune cell dominance toward the adaptive immunity, and importantly inflam-

matory cell accumulation is not resolved after three weeks.

Limitations of the Study

Despite analyzing three independent time points, which cover the major stages of the bleomycin model,

some time points are still missing. However, we consciously wanted to reuse existing experiments and

avoid sacrifice of new animals. Future investigation would profit from an expansion, e.g. by inclusion

of existing measurements from other groups, to cover also the progression from the initial inflammation

toward active fibrosis phase by including analysis between days 3 and 14. Similarly, inflammatory

profiling during fibrosis resolution, i.e. after 28 or 35 days, would deliver valuable insights on the involve-

ment of specific subtypes during resolution. From a statistical point of view, the unbalanced study design
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with differing sample numbers in subgroups is unfavorable, which complicates analysis and loses some

power. However, our use of robust methods such as LOGLME and machine learning methods (random

forest) were able to overcome these limitations. Although over a dozen independent experimental runs

were included, this is not a multicentric study. Quantitative comparison of results from other laboratories

at other sites and other strains/substrains would allow to even better explore bleomycin model system

robustness and reproducibility. In this study, manual gating was used to identify different cell popula-

tions, thereby including expert knowledge into the analysis, and gating specificity was confirmed by

UMAP overlays. For some populations in the UMAP plots (e.g. AM), the populations were more spread

than expected; this was most likely due to different marker intensity (in this case CD11c) between

different experimental runs. The topic of auto-gating is rapidly developing and promises to considerably

save hands-on time and foremost the potential to detect rare, otherwise undetected cell subpopulations.

The focus of this study was to primarily determine the inflammatory cell kinetics; however, to further un-

ravel the role of inflammation and potential therapeutic targets in fibrosis, a quantified link of cell sub-

populations to fibrotic processes is warranted.
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Supplemental Information 

Supplementary Figures 

 
Figure S1. Data transformations improve distribution and scedasticity. (A) List of tested data transformations with equations. 

(B) Normality and scedasticity was tested for each of the 16 cell populations in either 159 BALF or 144 lung samples for each 

of the transformations. The horizontal line denotes pBH= 0.05. Related to Figure 2. 



 
 

 
Figure S2. MacroPCA and PCA deliver similar results. (A-C) MacroPCA scores plot of combined BALF (159 samples) and 

lung tissue (144 samples), before (untransformed, (A)) and after data transformation by LOGx+1 (B) or 4RT (fourth root; (C)). 

Samples are coloured to highlight effect of bleomycin (Saline or Bleo) and compartment (BALF or Lung). Middle and right 

panels show the linear fit of the first two principal components derived from the macroPCA and PCA results. (D-E) Separation 

of entire LOGx+1 transformed dataset into the tissue compartments, BALF (D) and lung (E). Middle and right panels show the 

linear fit of the first two principal components derived from the macroPCA and PCA results. Samples are coloured to highlight 

different days and substrains. Shapes are in all plots circles for saline and triangles for bleomycin. Related to Figure 2. 

 



 
 

 
Figure S3. Simplified mixed[Box 3] models[Box 3] exhibit best performance. Overview of ANOVA model performances for 

model selection by: (A) Comparison of model performance by AIC and logLik for all 16 cell populations in BALF and lung, 

better performance is indicated by lower relative estimate of information loss (AIC; Akaike information criterion) and higher 

goodness of fit (log-likelihood, logLik). (B) Direct comparison of fitted[Box 3] values (on LOGx+1 scale) of the simplified 

mixed model versus the most complex mixed model. The Pearson correlation is shown as black line and R2 is given. Related 

to Figure 4. 

 



 
 

 
Figure S4. Modelling[Box 3] of 16 cell populations in 159 BALF or 144 lung samples reveals complex cell kinetics. Overview 

of ANOVA model performances for model selection by: (A) Plot of median cell counts at each time point for each substrain 

and their standard deviation, coloured according to each substrain. (B) Plot of LOGx+1 back transformed, fitted[Box 3] or 

predicted[Box 3] mean cell counts for each substrain and their standard errors from linear mixed models with log10-

transformation [SalineDay+Substrain, ~1| Exp_ID] from cell counts (BALF ∙105, lung ∙104/mg tissue). Related to Figure 4. 

  



 
 

Supplementary Table S1. Overview of group distribution. Related to Figure 1. 

Substrain A B C D E 

Compartment BALF Lung BALF Lung BALF Lung BALF Lung BALF Lung 

Condition Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo

                  5|8 5|7 

Day 3         8|11 8|12     3|4 3|4 

                      

      0|4               

Day 14 4|4   0|8 0|9 7|13 4|13 6|10 6|10     

      5|0 7|0             

  5|7               3|6 3|6 

Day 21 5|9 5|9       6|3     4|8 4|8 

  5|7 5|7                 

 

Supplementary Table S2. Antibodies, fluorophores and sources for flow cytometry. Related to Figure 1. 

Panel  Antigen Label Company Catalogue Clone Isotype Identifier Dilution

M
ye

lo
id

 

CD45 FITC Thermo Fisher 11-0451-82 30-F11 Rat IgG2b, κ AB_2753206 1:200 

SiglecF PE BD Bioscience 562757 E50-2440 Rat IgG2a, κ AB_2687994 1:20 

CD11c ef450 Thermo Fisher 48-0114-82 N418 Armenian hamster IgG AB_1548654 1:50 

CD11b ef506 Thermo Fisher 69-0112-82 M1/70 Rat IgG2b, κ AB_2637406 1:50 

Gr-1 (Ly6G/Ly6C) PE-Cy7 Biolegend 108402 RB6-8C5 Rat IgG2b, κ AB_313367 1:800 

CD64a/b AF647 BD Bioscience 558539 X54-5/7.1 Mouse NOD/Lt IgG1, κ AB_647120 1:20 

CD24 PerCP Cy5.5 BD Bioscience 562360 M1/69 Rat IgG2b, κ AB_11151895 1:500 

MHC-II APC-Cy7 Biolegend 107628 M5/114.15.2 Rat IgG2b, κ AB_2069377 1:400 

L
ym

ph
oi

d 

CD45 PerCP Cy5.5 eBioscience 45-0451-82 30-F11 Rat IgG2b, κ AB_1107002 1:200 

CD3 AF700 Thermo Fisher 56-0033-82 eBio500A2 Syrian hamster / IgG AB_837094 1:50 

CD19 BB515 BD Bioscience 564531 1D3 Rat IgG2a, κ AB_2738836 1:50 

CD8 PE Biolegend 100708 53-6.7 Rat IgG2a, κ AB_312747 1:100 

CD4 APC Biolegend 17-0041-82 GK1.5 Rat IgG2b, κ AB_469320 1:100 

gdTCR ef450 Thermo Fisher 48-5711-82 eBiogL3 Armenian hamster IgG AB_2574071 1:50 

 

Supplementary Table S3. Antibodies, fluorophores and sources for immunofluorescent staining. Related to Figure 5. 

Antigen Host Brand Catalogue Identifier Dilution 

Collagen I Goat Southern Biotech 1310-01  AB_2753206 1:500 

CD4  Rat Synaptic Systems HS-360 017 AB_2800530 1:300 

CD11c Rabbit Thermo Fisher PA5-79537 AB_2746652 1:150 

SiglecF Goat R&D Systems AF1706 AB_354943 1:500 

Ly6G Rat Biolegend 127602 AB_1089179 1:150 

CD19 Rat eBioscience 14-0194-82 AB_2637171 1:500 

 
  



 
 

Supplementary Table S4. Instrument configurations. Related to Figure 5. 

Instrument Laser lines Bandpass Filters 

LSRII  

488 nm 780/60 695/40 670/14 610/20 576/26 530/30 488/10

633 nm 780/60 730/45 660/20         

405 nm 610/20 525/50 440/40         

355 nm 530/30 440/40           

Cytoflex S 

488 nm 690/50 525/40 488/8         

561 nm 780/60 690/50 610/20 585/42       

633 nm 780/60 712/25 660/20         

405 nm 660/20 610/20 525/40 450/45       

                  

Instrument Parameter Acquistion seq 1 Acquistion seq 2       

Leica TCS-SP8  Pinhole  67.9 µm 67.9 µm       

  PinholeAiry  1 AU 1 AU       

  EmissionWavelength for PinholeAiry Calculation  580 nm 580 nm       

  Excitation Beam Splitter TD 488/552/638 TD 488/552/638       

Hybrid Detectors  

HyD 1 (nm)   410 - 460       

HyD 2 (nm) 492 - 522 560 - 571       

HyD 3 (nm)   613 - 630       

HyD 4 (nm) 530 - 548 705 - 740       

HyD 5 (nm) 645 - 675         

Solid state lasers (nm) 

405, Intensity (%): - 0.30       

488, Intensity (%): 0.30 -       

552, Intensity (%): - 0.40       

638, Intensity (%): 0.30 0.04       

 

  



 
 

Transparent methods 

Animals 

All animal experiments were approved by the local authorities (Austrian Ministry of Science, Research 

and Economics) (BMWF-66.010-0038-II-3b-2013, BMWFW- 66.010/0038-WF/II/3b/2014, 

BMWFW-66.010/0049-WF/V/3b/2017, 66.010/0177-WF/3b/2017) and were performed in accordance 

with relevant guidelines and regulations. Wild type groups of 15 independent experiments (unpublished 

and published (Biasin et al., 2017)) were pooled and analysed. For each experimental run, wild type 

mice were obtained from Charles River, or bred in-house in case of wild type littermates, and are 

annotated as separate strains. Overview of all strains and group sizes is given in Supplementary Table 

S1. All mice were maintained with 12 h light/ dark cycles and had access to water and standard chow 

ad libitum.  

Bleomycin challenge and animal handling 

Male mice (19-32 g body weight, 7-18 weeks old) were anesthetized with isoflurane 2–2.5 % and intra-

tracheal administered with bleomycin (Sigma, Vienna, Austria) or saline solution (0.9 % w/v NaCl) 

using a MicroSprayer® Aerosoliser (Penn-Century Inc., PA, Pennsylvania, USA), as previously 

described (Biasin et al., 2017, 2020). Each bleomycin lot was titrated to give a comparable response for 

each strain; dose range was 0.7-3.5 U/kg b.w., Supplementary Data 1). After bleomycin instillation, 

mice were closely monitored till they completely recovered from anaesthesia. Bleomycin or saline 

solution administration was performed once and animals were sacrificed after 3, 14 or 21 days.  

BALF and lung tissue preparation for flow cytometry  

Mice were euthanized via exsanguination and the lungs were perfused with phosphate buffered saline 

(PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.2), through the right 

ventricle. Mice were then lavaged with 1 ml PBS containing the Pierce protease inhibitor cocktail 

(ThermoFisher Scientific, Vienna, Austria) and 1 mM EDTA. The obtained BALF was centrifuged, 

washed with 1 ml MACS buffer (2 mM EDTA, 0.5 % BSA in 1X PBS), before being resuspended in 

0.5 ml for cell counting and consequent FCM staining. Single cell lung tissue homogenates were 

performed as previously described (Nagaraj et al., 2017). Briefly, the lower right lobe was weighed, cut 

into approximately 1 mm pieces and digested with 0.7 mg/ml Collagenase and 30 μg/ml DNAse in 

RPMI medium supplemented with 10 % FCS, 2 mM glutamine and 1 % penicillin-streptomycin 

(ThermoFisher Scientific) for 40 min at 37 °C with rotation at 350 rpm. The minced tissue was passed 

through a 100 μm cell strainer to obtain a single cell suspension. In case of red blood cell contamination, 

the cell suspension was treated with erythrolysis buffer (2.6 mM NH4Cl, 0.09 M KCO3, 0.6 M EDTA) 

for 5 min at room temperature. The number of live cells were counted using trypan blue exclusion and 



 
 

then stained with fixable viability stain (ThermoFisher Scientific), washed and then fixed with 1 % 

paraformaldehyde for 15 min on ice before being resuspended in MACS buffer. 

Flow cytometry 

Single cell suspensions were initially incubated with an Fc-receptor-binding antibody (ThermoFisher 

Scientific) for 5 min on ice to prevent nonspecific binding. A master-mix containing one of two different 

antibody combinations against cell surface markers (Supplementary Table S2) was added and cells were 

incubated for 20 min at 4 °C. For each sample between 30’000 and 300’000 events were recorded on a 

LSRII Flow Cytometer (BD Biosciences, Vienna, Austria) or Cytoflex S (Beckman Coulter, Vienna, 

Austria). Samples were analysed either using FACSDiva (BD Biosciences) or FlowJo v10.6.2 (LLC, 

Ashland, Oregon) software by users blinded to treatment condition. Cells were initially gated on FSC 

and SSC characteristics and duplexes were removed using FSC-A / FSC-H dot blot, dead cells were 

gated out using viability exclusion. Cells positive for the pan-leukocyte marker CD45 were taken for 

further analysis, cell populations were identified using the gating strategy (Fig. 1C and Table 1), as 

described in the results and based on published studies (Misharin et al., 2013, 2017; Biasin et al., 2017; 

Gungl et al., 2018; Tighe et al., 2019). A complete description of all antibodies is given in 

Supplementary Table S2. Cell numbers are reported 105 in the BALF and 104/mg tissue for the lung. 

Uniform Manifold Approximation and Projection (UMAP) plots were performed in FlowJo, using 

default settings (nearest neighbours 15, minimum distance value 0.5, Euclidean distance). First, fcs files 

from at least three individual mice per analysis timepoint were downsampled to max 10’000 events and 

then concatenated. Manually gated populations were then overlaid on UMAP plots to determine they 

kinetics. 

Trichrome and immunofluorescence staining 

After BALF, the lungs were inflated with 4 % formalin via the trachea and then paraffin embedded. 

Slides were cut at 2.5 µm thick and stained with Masson’s trichrome according to standard protocols. 

Slides were scanned and imaged with a Virtual Slides VS120 Microscope and OlyVia Software (both 

from Olympus, Vienna, Austria). For multi-colour immunofluorescence staining, 2.5 µm paraffin-

embedded lung sections were dewaxed and subjected to heat induced antigen retrieval at pH6 (Perkin-

Elmer, Waltham, MA) using an antigen retrieval chamber for 15 min at 200 W. Slides were blocked 

with Perkin-Elmer Antibody Block solution for 20 min in a humidified chamber, and primary antibodies 

(Supplementary Table S3) were sequentially incubated o/n 4 °C in Perkin-Elmer Antibody Diluent. 

After washing with TBS-T (274 mM NaCl, 47.6 mM Tris HCl + 2 % v/v Tween20 in H2O) primary 

antibodies against CD4, SiglecF and CD19 were detected with the Opal Polymer HRP secondary 

antibody (Perkin-Elmer), using the Opal 540, 620, 690 substrates, respectively. Antibodies against 

Collagen I, CD11c and Ly6G were used simultaneously and detected with AlexaFluor-conjugated 

secondary antibodies, donkey anti-goat AlexaFluor488, donkey anti-rabbit AlexaFluor555, chicken 



 
 

anti-rat AlexaFluor647, respectively. Nuclear counterstaining was performed with DAPI solution 

1 mg/ml (ThermoFisher Scientific). 

Confocal imaging 

For imaging immunofluorescence stained slides, a Leica TCS-SP8 (DMi8 inverted microscope with a 

LIAchroic scan head) lightning confocal microscope was used (Leica, Wetzlar, Germany). The 

acquisition process followed a “sequential workflow” with well-defined settings (shown in 

Supplementary Table S4). In order to minimize fluorescent overlap the plugin “Channel Dye 

Separation” of Leica Imaging system was used. The following objectives were used: Plan Fluotar 

20x/0.75 multi immersion objective and Plan Fluotar 40x/1.25 glycerol immersion objective. Images 

were acquired at 2048 x 2048 and a pixel size of 142 x 142nm. 

Statistical analysis 

Data visualisation and statistical analysis were performed with R v3.6.3 (R Core Team, 2020) (using 

the packages readxl, openxlsx, plyr, stringr, tidyr, reshape, colorspace, RColorBrewer, ggplot2, ggpubr, 

ggrepel, gridExtra, magrittr, cowplot, plotly, lemon, lawstat, dendsort, pheatmap, cellWise, missMDA, 

FactoMineR, nlme, emmeans, MetaboAnalystR 2.0, caret, randomForest, randomForestExplainer, 

partykit, e1071), TIBCO Spotfire v10.9.0, TIBCO, Palo Alto, CA and FlowJo v10 (LLC, Ashland, 

Oregon). Animals with >30% missing values in the investigated 16 cells populations were excluded 

from the analysis. 

All reported p-values were adjusted for multiple testing according to Benjamini-Hochberg (BH) 

denoted as pBH (R function p.adjust). Distribution and scedasticity were investigated with Kolmogorov-

Smirnov test and Brown-Forsythe Levene-type test, respectively (pBH Supplementary Data 1). Seven 

common transformations were tested: square root, reciprocal, Freeman Tukey, logit (on counts mapped 

to 0.25-0.75), LOG, LOGx+1, 4RT (Supplementary Fig. S1).  

Principal component analysis (PCA)[Box 2] analysis (R function prcomp) was performed centred and 

scaled to unit variance (z-scaled) on total cell counts (untransformed, LOGx+1 or 4RT transformed). The 

dataset (303 samples, 16 cell populations) contained no missing values and 1.3 % zeros. MacroPCA 

analysis (R function MacroPCA) was performed centred and scaled to unit variance on total cell counts 

(untransformed, LOGx+1 or 4RT transformed). The number of components was set to cumulatively 

retain 80 % of explained variance, but to deliver between two and ten components. Hierarchical 

clustering analysis was performed centred and scaled to unit variance (R function scale) on total cell 

counts, for untransformed data per cell type than samples. LOGx+1 or 4RT data was centred and scaled 

only per cell type. The dendrograms were clustered by Lance-Williams dissimilarity update with 

complete linkage (R function dist and hclust) and sorted (R function dendsort) at every merging point 



 
 

according to the average distance of subtrees and plotted at the corresponding heat maps (R function 

pheatmap). 

Linear mixed models[Box 3] were fitted[Box 3] (R function simple models gls or mixed models lme with 

maximum likelihood (ML) using the integrated log10-transformation (LOGLME) reporting back-

transformed readouts (R function emmeans, option type = “response”). This renders the approach non-

linear mixed models, however due to the name similarity to the nlme function we used LOGLME for 

clarity. No longitudinal covariance was applied, the mice were sacrificed at each time point. Model 

selection was based on the forward addition approach and complex models were rechecked by backward 

dropping of factors. Simple[Box 3] models were constructed using the forward addition approach 

incorporating the fixed[Box 3] factors Treatment {Saline,Bleo}, Day {3,14,21} post treatment and the 

mouse background, Substrain {A,B,C,D,E}. The interactions[Box 3], Treatment:Substrain and 

Treatment:Day were include to determine whether the treatment effect depended on the Substrain or 

Day. Mixed[Box 3] models additionally included the experimental ID as a random[Box 3] factor 

(~1|Exp_ID). Complex mixed models were created by combining mixed models with the interactions 

Treatment:Substrain and/or Treatment:Day. Models were then simplified by merging all saline samples 

into one control group generating the simple model [SalineDay+Substrain] and by including Exp_ID 

as a random factor the mixed model [SalineDay+Substrain~1| Exp_ID]. Due to rank deficiencies arising 

from the unbalanced[Box 1] design the model SalineDay:Substrain was not possible. Criteria for model 

performance and suitability were lower AIC (Akaike information criterion; relative estimate of 

information loss), higher log-likelihood (goodness of fit), significance in log likelihood ratio test 

comparing two models, quality of Q-Q plots and randomness in residual[Box 3] plots (Supplementary 

Data 1 and Supplementary Fig. S2). Post-hoc pairwise comparisons were readout as back transformed 

estimates (R function emmeans, type = “response”) with pBH ≤0.05 being considered statistically 

significant. 

Orthogonal projections to latent structures discriminant analysis (OPLS-DA) [Box 2] on LOGx+1 data was 

performed centred and scaled to unit variance (R function Normalization with scaleNorm=”AutoNorm” 

and R function OPLSR.Anal) with a standard 7-fold cross validation for the classification factor 

SalineDay. Model stability was additionally verified with 1000 random label permutations. 

Conditional inference trees were fit with default settings (R function ctree) which limits tree size to 

include only significant splits avoiding overfitting, so that no further cross-validation or pruning was 

applied. The random forest[Box 2] (R function randomForest) error rates decrease markedly within the 

first 100 trees and stabilized fully after 1500 to 2500 trees. All reported random forests were grown 

with 5000 trees to guarantee stability and hyperparameter, mtry (8 in BALF and 2 in lung) was tuned 

to minimal out-of-bag errors (OOB) (R function tuneRF). The model stability and prediction quality (R 

function confusionMatrix) of conditional inference trees and random forest was evaluated by splitting 



 
 

the LOGx+1 randomly into trainings/test set (65 % / 35 %) stratified for the classification factor 

SalineDay (R function createDataPartition). 
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