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Abstract: The large number of poststroke recovery patients poses a burden on rehabilitation centers,
hospitals, and physiotherapists. The advent of rehabilitation robotics and automated assessment
systems can ease this burden by assisting in the rehabilitation of patients with a high level of recovery.
This assistance will enable medical professionals to either better provide for patients with severe
injuries or treat more patients. It also translates into financial assistance as well in the long run. This
paper demonstrated an automated assessment system for in-home rehabilitation utilizing a data
glove, a mobile application, and machine learning algorithms. The system can be used by poststroke
patients with a high level of recovery to assess their performance. Furthermore, this assessment can
be sent to a medical professional for supervision. Additionally, a comparison between two machine
learning classifiers was performed on their assessment of physical exercises. The proposed system
has an accuracy of 85% (±5.1%) with careful feature and classifier selection.

Keywords: data glove; home rehabilitation; machine learning; IoT

1. Introduction

Stroke is the second cause of death worldwide and is the third cause of disability [1,2].
It happens when the blood supply to some portion of the brain is hindered or decreased,
forestalling brain tissue from obtaining oxygen and nutrients, and within a few minutes,
brain cells start to die. Prompt action needs to be taken to prevent injuries or death [3].

Poststroke injuries can be a brief or permanent handicap. This incorporates loss of
muscle movement, trouble talking or gulping, emotional issues, cognitive decline, and/or
memory loss. These injuries incredibly influence the everyday lives of stroke survivors, and
while some recuperate the majority of their capacity, others need perpetual consideration [3].
Furthermore, the loss of ability can lead to poststroke depression, which influences roughly
one-third of stroke survivors [4].

Stroke rehabilitation starts when the patient’s medical condition is stabilized and there
is no danger of another stroke in the near future. Contingent upon the stroke severity, a few
patients make a fast recuperation; others need months or years after their stroke. The cycle
for the most part starts in the hospital and should then be possible in either a rehabilitation
unit, skilled nursing facility, or even the patient’s home. It includes physical and cognitive
exercises, which need the support of doctors, physical therapists, rehabilitation nurses,
and more relying on the patient’s condition. It is a recurrent cycle that includes: assessment,
goal setting, intervention, and lastly, reassessment [5].

Numerous aspects of the patient’s physical and mental performance need recurring
assessment over the rehabilitation period. Common assessment techniques include the
Fugl–Meyer [6] for the evaluation of motor functions, the Boston Diagnostic Aphasia
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Examination [7] for the assessment of speech and language, and many others for the
assessment of a wide array of functions. One of the common disadvantages among these
methods is the requirement for a physician to administer the test. The spread of COVID-19
has highlighted the need for automated in-home rehabilitation and assessment systems [8].

Automated assessment systems can be utilized to reduce the number of visits to a
physician for assessment. These systems either perform an analysis of the data [9] or
use a machine learning classifier [10]. The use of machine learning in patient diagnosis
and assessment has been on the rise [11]. However, it cannot replace the diagnosis of a
trained physician [12] and is employed when a physician is not available. The employed
algorithms need to demonstrate reliable results when diagnosing and handling absent and
noisy data. Additionally, the yielded results should be explicit to the physician. Many
advanced machine learning models are thought of as “black boxes” since their complexity
obscures them in human thinking. Therefore, physicians are reluctant to recognize them as
it is difficult to relate the models to support hypotheses. Before testing them on patients,
these models have to be approved by clinical experts [13].

Rehabilitation from a stroke injury is a financially and physically burdensome en-
deavor, which not everyone might be able to handle, without the needed amount of support.
Hence, the advent of rehabilitation robotics is needed, as it increases the number of patients
that physiotherapists can treat at a time, with usually a lower cost [14]. Additionally,
the Internet of Things (IoT) can then be combined with rehabilitation robotics to monitor
patients from their homes, to have their families motivate them [15].

These rehabilitation robotics and IoT systems will need an automated assessment
system that can track the patients’ progress and encourage them to perform better. One
example of an automated assessment system was included in [16], where a machine
learning classifier, AdaBoost [17], was combined with wearable sensors to create an IoT-
based upper limb rehabilitation assessment. Four commonly used joint actions generally
performed in clinical assessments were performed and given a classification depending on
the subject’s range of motion. Using the proposed algorithm, the average accuracy of the
classifier was higher than 98%

Another example of an automated assessment system for upper limb rehabilitation
was presented in [18], which utilizes motion capture data using the Microsoft Kinect VS [19].
The motion of 25 joints of the patient is tracked and then placed into a feedforward-neural-
network (FFNN)-based assessment model to calculate clinical scores. The proposed model
had an overall accuracy ranging from 0.87–0.96 depending on the performed task. Other
examples of automated systems were presented in [20–22].

The need for automated assessment and rehabilitation has been highlighted in recent
studies [23–25]. Automated assessment systems offer a multitude of benefits to patient
and physician alike, and they are expected to become a complementary tool for clinical
use. Hence, the use of traditional assessment methods was encouraged for automated
assessment systems, as they are still considered the “gold standard” for verifying the
effectiveness of a treatment.

This paper demonstrates the design of a data glove with a mobile application, a real-
time database for uploading and retrieval of patient data, and a web server for assessing
patient performance. The patient data were gathered using the data glove, which was
outfitted with flex sensors, force-resistive sensors (FSRs), and IMUs. This is common in
rehabilitation robotics as they can gather many kinematic data and can be paired with
other frameworks. Furthermore, the performance of two machine learning algorithms was
evaluated for in-home rehabilitation. A summary of the overall process is displayed in
Figure 1. The goal was to determine the applicability of the data glove and machine learning
in-home rehabilitation assessment. All algorithms utilized the same set of features extracted
by the data glove. This is a continuation of our previous work on home rehabilitation and
assessment [26,27].
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Figure 1. System overview.

The outline of this paper is as follows. The next section demonstrates the glove design
and system integration, respectively. Afterward, a brief theoretical description of the
employed machine learning algorithms is given before describing the utilized experimental
protocols. Then, the results are showcased in Section 3 and discussed in the last section.

2. Materials and Methods
2.1. System

The system comprises the data glove for gathering the patient’s data, a mobile app
for reviewing previous data and for performing new assessments to monitor the patient’s
progress, a web server for computing the assessment of the patient and sending back the
patient’s score to the app, and an online database to store the patient’s records.

The process begins with the patient starting the exercises through the mobile applica-
tion. The application sends the exercise information to the Arduino microcontroller, via
Bluetooth, and tells the patient to start the exercise. Based on the received information,
the microcontroller reads and processes the data from the selected sensors.

After processing, the data are sent back to the application. The application uploads
these data to the web server, where they are further processed and evaluated using machine
learning algorithms. The output is then sent back to the application, where it can be
uploaded and stored on the database for later viewing. The information on the database
can also be accessed by a medical professional through the application to monitor the
patient’s performance. The overall process is demonstrated in Figure 2.

2.2. Data Glove

For the data glove, we placed 10 flex sensors to determine the angles of each finger joint,
5 force-resistive sensors (FSR) for gripping force, and a 6-axis IMU to find the movement of
the wrist. The placement of the sensors, displayed in Figure 2, was configured according to
similar literature on hand gesture recognition [28–31]. The accuracy of similar data gloves
with machine learning algorithms has been demonstrated in several papers [28,29]. The
biggest downside, however, is the inaccuracy resulting from different hand sizes.

An image of the data glove is displayed in Figure 3, where the sensors are knit into
the glove to provide a more aesthetic appearance. Two flex sensors and one FSR are placed
on each finger. The flex sensors measure the bending angle of the metacarpophalangeal
joints and proximal interphalangeal joints, while the FSRs are placed on the fingertips. Flex
sensor F1 is placed on the metacarpophalangeal joint for the thumb, whilst F2 is placed on
the interphalangeal joint. The same pattern follows for the rest of the fingers.
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Figure 2. Integrated system.

Figure 3. Data glove.

2.3. Sensors

The flex sensor is used to determine the angle of each finger joint [32]. The sensor
works as a voltage divider with a flat resistance at the normal bend; increasing the bend
increases the resistance. With some calibration, this value can be used to determine the
angles of each finger joint. Unfortunately, this sensor fails to tell the overall orientation of
the hand and wrist, which is why an IMU sensor was also employed.

To test the repeatability of the flex sensor, the raw data at the starting position and at
maximum deflection of the fingers were recorded for 10 trials. A box and whisker plot of
the sensor readings is displayed in Figure 4.
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(a) (b)

Figure 4. Box and whisker plot of sensor readings for the calibration of the bending. (a) Minimum
Value, occurs during maximum bend, (b) Maximum Value, occurs during initial Pose.

To measure the gripping force, an FSR was placed on the distal phalanx for each
finger [33]. The FSR was less accurate due to the small range of forces utilized. Therefore,
the maximum reading that the patient reaches can give insight into his/her gripping force,
with the average person providing readings for 700 and higher. No calibration was required
for this sensor, and only the raw data were taken for feature extraction.

The IMU sensor (MPU6050) uses a tri-axial accelerometer and a tri-axial gyroscope
to determine the orientation [34]. The IMU sensor was placed on the back of the hand to
determine the orientation of the wrist, which is crucial for determining the wrist’s current
pose. Median filtering was implemented to smoothen the data from the IMU [35].

2.4. Microcontroller

An Arduino Mega was used as the microcontroller due to the abundant inputs and
outputs needed to operate the glove and transmit the data. Additionally, since the machine
learning and classification were performed using an external web server, the computing
power of the Arduino was sufficient to handle all the required tasks. These tasks included
reading data from the sensor, calibrating the data to reduce error, feature extraction, and re-
ceiving and transmitting data to the mobile app using Bluetooth serial communication.

2.5. Feature Extraction

The readings from each sensor are displayed in Table 1.

Table 1. Sensor data.

Sensor Readings

Flex Bending
Force Gripping Force
IMU Acceleration and Orientation

For the flex sensor, the mean, the root-mean-squared (RMS), the standard deviation,
and the minimum value were used. For the FSR, the mean, the RMS, the standard deviation,
and the maximum value were taken. Finally, features usually utilized in similar methodol-
ogy and procedures were extracted from the IMU, due to their statistical representation of
large datasets [36]. These features included: the mean, the RMS, and the standard deviation
for each axis of the accelerometer and gyroscope, as well as the signal magnitude area
(SMA) of the accelerometer and gyroscope.

The equation used to calculate the SMA for the accelerometer and gyroscope was:

fSMA =
1

Ttotal

∫ Ttotal

0
|x(t)|+ |y(t)|+ |z(t)|dt (1)
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The SMA is the standardized integral of the original values, given by partitioning the
region under the curve with the time interval of the readings [37].

2.6. Mobile Application

The mobile application, called iGrasp, was developed using MIT App inventor, a web-
based block coding development tool for Android phones [38]. This open-source develop-
ment tool was developed by Google and is currently maintained by MIT.

The purpose of the application was to monitor the patient’s progress and check for
any abnormalities, which is why the following features were added:

• Patients can view their score of previous attempts;
• Patients can connect to the data glove and upload the scores of new attempts;
• Doctors can view their patients’ uploaded scores.

When starting the application, the user first registers as either a patient or a doctor.
Registering as a doctor will permit him/her to retrieve patient data from the database,
whilst registering as a patient will make it possible for him/her to assess his/her perfor-
mance. The user can store his/her performance score for later viewing by uploading it
to the database, or if he/she finds the outcome unsatisfactory, he/she can retry his/her
attempt as many times as needed. While performing the exercises, the application displays
helpful images and instructions to guide the user on how to perform the exercise.

The mobile application connects with the data glove via Bluetooth. The communi-
cation protocol starts with the mobile application sending the exercise that the subject is
currently performing. The microcontroller then records the data from the needed sensors,
extracts the features, and then sends the extracted features to the app as a JSON text file.
The application sends the JSON file to the web server for assessment before retrieving the
score and displaying it to the patient. An example block is displayed in Figure 5.

Figure 5. In this block, the application reads the web response and stores it in the phone’s memory,
where it can be uploaded later. The simplicity of block-based coding makes it available for use and
editing without the need for a skilled technician.

2.7. Web Server and Database

The web server was written using Flask API [39]. It is a scalable lightweight web server
Gateway Interface (WSGI) web application framework design for simple web applications.
The function of our web application was to receive the patient’s data from the mobile
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application, which it received from the data glove, and run the employed machine learning
model to assign a score for the patient. The web application will then output a JSON file
that the mobile application reads and displays to the patient.

The web server was hosted using Heruko Platform [40]. This platform was employed
for the following reasons:

• It offers Python support;
• It supports the employed machine learning model;
• It has simple steps to run and deploy the web application;
• It is reliable and does not require constant maintenance or updating;
• It is scalable and cost-efficient.

The web server did not have a direct user interface and was only meant for interaction
with the mobile application. Other attempts at visiting the website would lead to a 404
error. The web application would only output a JSON file as the one displayed in Figure 6.
This JSON file displays the patient’s score for the attempted exercise.

Figure 6. Output JSON file.

2.8. Database

For the database, we used Firebase [41]. Developed by Google, it is a NoSQL database
that synchronizes data in real-time to all connected devices on a cloud. This platform is
designed for mobile and web applications and was utilized in this work due to its real-time
database feature, allowing us to update and store patients’ records worldwide.

Each user can preview the history of his/her attempts, including to monitor his/her
progress. The database also makes it possible for physiotherapists and doctors to monitor
their patients, if they have access to the patients’ usernames on the app.

2.9. Machine Learning
2.9.1. XGBoost

EXtreme Gradient Boosting (XGBoost), an open-source boosting system, was one of the
algorithms utilized to assess the patient [42]. Gradient boosting, in general, is a gathering
strategy where every tree boosts the elements that prompted the miscategorization of
the previous tree, by giving a continuous score for each leaf wi. For a given example,
the decision rules are used to categorize the leaves and calculate the final prediction by
adding up the score in the corresponding leaves (given by wi).

The regularized objective can then be:

L(φ) = ∑
i

l(ŷi, yi) + ∑
K

Ω( fk) (2)

where:
Ω( fk) = γT +

1
2

λ‖w‖2 (3)

l represents a differentiable convex loss function that evaluates the distance between
the expected value ŷi and the goal value yi. Ω( fk) denotes a regularization term that helps
in preventing overfitting, where fk and T denote an independent tree system and the
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number of leaves in a system, respectively. A similar regularization technique was used
in [43].

The model was trained in an additive manner, due to the inability of traditional
methods to optimize the tree ensemble model in Equation (2), since it includes functions as
parameters. Let ŷ(t)i denote the prediction of the i-th instance at the t-th iteration. ft must
be added to minimize the objective:

L(t) =
n

∑
i=1

l(y1, ŷ(t−1)
i + ft(xi)) + ∑

K
Ω( ft) (4)

Second-order Taylor expansion was employed to optimize the function. The constant
parts were then removed, and the minimized objective at t is:

L̃(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) (5)

where gi and hi denote the first- and second-order gradient statistics on the loss function,
respectively. The corresponding optimal value can be evaluated, after calculating the
weight of leaf j for a fixed structure q(x), using:

L̃(t) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (6)

Equation (6) can be used to assess the performance of a tree structure q.
XGBoost uses a modified version of the the greedy algorithm, called the approximate

greedy algorithm [44]. This version is suitable for large sets of data as it decreases the
number of thresholds that need to be observed, choosing instead to separate the data into
quantiles based on feature distribution. This is improved even further by the use of a
weighted quantile sketch. The sketch bases the difference between each quantile on weight,
not observation, where the weight of each observation is hi, meaning the quantiles are
partitioned where the sum of the weights is similar. Therefore, quantiles are generated in
areas with low confidence.

XGBoost uses a sparsity-aware-split-finding algorithm to handle missing data. This
works by adding a default direction in each tree node and having the missing values
classified. The default direction is chosen based on previous data. Moreover, the algorithm
is able to treat new observations with missing values.

2.9.2. Logistic Regression

Logistic regression [45] seeks to classify an observation by estimating the probability
that an observation is in a particular category based on the values of the independent
variables, which can be continuous or not.

The dependent variable in logistic regression follows the Bernoulli distribution having
an unknown probability p where success is classified as 1 and failure as 0, so the probability
of success is p and failure is q = 1− p [46]. In logistic regression, we estimate p for any
given linear combinations for the independent variables.

To tie together our linear combination of variables, we needed a function that links
them together and essentially maps the linear combination of variables that could result in
any variable onto the Bernoulli probability distribution where p ∈ (0, 1).

The natural logarithm of the odds ratio is the function:

ln odds = ln
p

1− p
= logit(p) (7)
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However, in our logit function, 0 to 1 ran along the x-axis, but we wanted our proba-
bilities on the y-axis; we can achieve this by taking the inverse of the logit function.

logit−1(α) =
1

1 + e−α
=

eα

1 + eα
(8)

where α equals the linear combination of our independent variables and their coefficients.
The natural logarithm of the odds ratio is equivalent to a linear function of independent
variables. The antilog of the logit function allows us to find the estimated regression equation:

logit(p) = ln
p

1− p
= β0 + ∑(βi ∗ xi) (9)

antilog =
p

1− p
= exp(β0 + ∑(βi ∗ xi)) (10)

p̂ =
exp(β0 + ∑(βi ∗ xi))

1 + exp(β0 + ∑(βi ∗ xi))
(11)

where β0 and β1 are the coefficients for the bias and weights, respectively. In order to
update the coefficients βi, we used the maximum likelihood:

likelihood = p̂ ∗ p + (1− p̂) ∗ (1− p) (12)

and then transformed the likelihood function using the log transform:

log(likelihood) = log( p̂) ∗ p + log(1− p̂) ∗ (1− p) (13)

Finally, we can sum the likelihood function across all examples in the dataset to
maximize the likelihood:

Fmax =
n

∑
i=1

(log( p̂i) ∗ pi + log(1− p̂i) ∗ (1˘pi) (14)

It is common practice to minimize a cost function for optimization problems; therefore,
we can invert the function so that we minimize the negative log-likelihood:

Fmin = −
n

∑
i=1

(log( p̂i) ∗ pi + log(1− p̂i) ∗ (1˘pi)) (15)

Calculating the negative of the log-likelihood function for the Bernoulli distribution is
equivalent to calculating the cross-entropy function for the Bernoulli distribution, where
ci represents the probability of class i and d represents the estimation of the probability
distribution, in this case by our logistic regression model.

Fcrossentropy = −∑(log(d) ∗ ci) (16)

2.10. Experimental Protocols

The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the University Ethical Review Board. All subjects gave their
informed consent for inclusion before they participated in the study.

To assess the performance, the participants were asked to perform three tasks, rec-
ommended by a rehabilitation physician. These tasks were used to measure fine and
gross patient performance, as well as any spasticity the patient may be suffering. This
system was targeted towards subjects with a high level of recovery, who can continue their
rehabilitation in-home.

All tasks started with the same initial hand pose, an open palm with the backside
facing the participant’s face. Each task was repeated five times, not including practice trials.
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This number was suitable for assessment, as per [47]. Each trial lasted for five seconds,
and the subjects were asked to complete each task and then return to the starting pose at
a comfortable pace. Participants were scored from 0 to 2 for each exercise depending on
their performance.

The first task, grasping, involved the subjects flexing all their fingers to the maximum,
before returning to the initial pose. If the subject was unable to move, then the attempt was
given a score of 0. If there was little movement, not all fingers were flexed, or the subject
was unable to return to the resting position, then the attempt was scored as 1. If the subject
achieved full motion and returned to the resting position, then the attempt was scored as 2.
The flexion of the finger joints was the only thing measured during this exercise.

In the second task, pinching, the participant was asked to pinch his/her fingers and
exert as much force as he/she could, then he/she should revert back to the initial position.
No movement during the attempt resulted in a score of 0. Incomplete motion or inability
to pinch (i.e., weak or no force exerted) or return to the initial position was scored as
1. Complete motion yielded a complete score of 2. The measurements for this exercise
included the flexion of the thumb and index finger, as well as the pinching force.

The final task involved waving. The participant was required to flex his/her wrist and
then wave repeatedly for the duration of the exercise. The motion should be performed
at a normal speed, and the participant did not revert back to the resting position. Each
attempt was scored depending on the movement of the participant. Zero was awarded in
the case of no movement and one in the case of little or some movement, incomplete flexion
of the wrist, or complete flexion, but no waving. Finally, two was awarded if the subject
completed the full motion for the duration. The orientation of the palm, the flexion of the
wrist, and the acceleration were measured during this exercise. The tasks are displayed in
Figure 7.

(a) (b)

(c)

Figure 7. Exercise protocols. (a) Grasping, (b) Pinching, (c) Waving.

2.11. Patients

The patients used for this study, gathered from a rehabilitation center, all suffered
from varying degrees of upper-extremity weakness. All three patients were able to perform
the first exercise (grasping), but only Patients 1 and 3 were able to perform the second
and third exercises. The patients’ information is displayed in Table 2. A supervising
physician was available during the data gathering and provided the FMA score for the
exercises performed.
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Table 2. Patient description.

No. Age/Gender Description

1 77/M Uncontrolled diabetes and generalized weakness
2 65/F Suspected motor neuron syndrome
3 91/M Parkinson’s

3. Results

Two different machine learning classifiers, XGBoost and logistic regression, were
employed and compared to test the most efficient algorithm. These classifiers were selected
based on their visibility, which makes it easier for clinicians to understand their process,
hence predicting where errors might occur. Each algorithm was repeated five times for
each exercise to test possible feature combinations. The feature sets for each combination
were selected randomly, with the first feature set including all the features. The dataset
was gathered using four healthy right-handed subjects, three male and one female, with a
mean age of 36.5± 17.8 y. The healthy subjects were asked to perform the exercise with
varying degrees of success and were scored from 0–2, as per the Fugl–Meyer assessment.

Both classifiers started with the same random state, and the test set was taken as
30% of the total dataset. The XGBoost classifier had a maximum tree depth of 3, and a 0.7
learning rate, whereas the logistic regression classifier used multinomial regression and
had a maximum iteration of 100. The performance of each classifier was then tested using
five-fold cross-validation [48].

For the first exercise, only the 10 flex sensors placed on the finger joints were utilized.
These features extracted from the flex sensors were the minimum, mean, standard deviation,
and root-mean-squared. Table 3 displays the k-fold accuracy for the combination of features
for XGBoost (XGB) and Logistic Regression (LR).

Table 3. XGB and LR accuracy for grasping.

Features XGBoost LR

All 90.00% ± 9.35% 87.50% ± 7.91%
STD and Min 90.00% ± 9.35% 92.50% ± 10.00%
Mean and RMS 82.50% ± 10.00% 85.00% ± 9.35%
STD and RMS 92.50% ± 6.12% 87.50% ± 7.91%
Mean and Min 85.00% ± 14.58% 90.00% ± 5.00%
Average 88.00% ± 9.88% 88.50% ± 8.03%

The second exercise utilized the flex sensors and FSRs placed on the index and thumb
fingers. The same features for the flex sensors were also extracted for the FSRs, except the
minimum value was replaced with the maximum value of the FSR. The results are displayed
in Table 4.

Table 4. XGB and LR accuracy for pinching.

Features XGBoost LR

All 82.50% ± 10.00% 90.00% ± 9.35%
STD and Min 90.00% ± 9.35% 85.00% ± 18.37%

Mean and RMS 80.00% ± 10.00% 82.50% ± 6.12%
STD and RMS 90.00% ± 9.35% 87.50% ± 7.91%
Mean and Min 75.00% ± 0.00% 70.00% ± 12.75%

Average 83.50% ± 7.74% 83.00% ± 10.90%

For the last exercise, waving, only the IMU placed on the backhand was utilized to
record the data. The results are displayed in Table 5.
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Table 5. XGB and LR accuracy for waving.

Features XGBoost LR

All 90.00% ± 9.35% 90.00% ± 9.35%
STD and SMA 90.00% ± 9.35% 87.50% ± 11.18%
Mean and RMS 77.50% ± 26.69% 87.50% ± 11.18%
STD and RMS 85.00% ± 5.00% 85.50% ± 18.37%

Mean and SMA 67.50% ± 23.18% 82.50% ± 12.75%
Average 82.00% ± 14.71% 86.50% ± 12.57%

The produced models were then tested on the three patients, and the results were
compared with the physician’s score. The performance of the XGB and LR models in
comparison with the physician’s score are displayed in Tables 6 and 7, respectively, with the
best performing feature combination (BPF) outlined as well.

Table 6. XGBoost performance.

Grasp Pinch Wave

BPF STD and RMS ALL ALL
BPF Accuracy 53% 78% 90%

Average 33% 78% 80%

Table 7. LR performance.

Grasp Pinch Wave

BPF STD and RMS Mean and RMS ALL
BPF Accuracy 87% 78% 70%

Average 56% 60% 54%

4. Discussion

To assess patient performance, the results outlined in the previous section demon-
strated the need for the careful selection of a classifier. We can observe that for the healthy
subject, the LR classifier outperformed the XGB classifier by a small margin. However,
upon taking exercises performed by the patients, each classifier performed differently
depending on the exercise. Since the selected exercises affect the selection of the classifier,
the first option would be selecting the LR classifier due to its higher overall performance.
Forfeiting the third exercise, or switching it with a similar one where the LR classifier
performs better, would be the second option. Finally, the third option would be using both
classifiers, despite the higher computational cost.

While utilizing all features often yields the highest accuracy, it is also possible to
hyper-tune your features by testing their effect. For instance, in the waving exercise,
the XGB classifier can achieve the same level of accuracy using only the STD and RMS as
using all of them. Further testing on each exercise can lead to specific feature selection; this
decreases the computational time and increases the sampling rate [49–51].

The accuracy of the classifiers expectedly decreased when tested on patients with
upper-extremity injuries. This was due to the irregularity of the motion and the difficulty
of replicating with healthy subjects for dataset training. Nevertheless, when optimizing
the classifier and feature selection, the average system accuracy reached 85% (±5.1%). This
is a clinically acceptable accuracy in comparison with other automated systems.

Table 8 presents a comparison between our system and other systems for automated
upper-body assessment. The comparison involved the equipment used, the data gathered,
and how patients were assessed and classified. Almost all employed machine learning
algorithms for classification. Arguably, machine learning was not suitable for classification
due to the lack of sizeable datasets. Therefore, the selection of scalable machine learning
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classifier was important. This highlights the benefits of classifiers such as XGBoost, which
utilize transparent classification, which can be assessed by the physician. IoT monitoring
checked if the results could be transmitted to a supervising physician, and the setting was
where this system could be implemented. Finally, the accuracy was the average accuracy
of all exercises tested on the patients.

Table 8. Comparison to other systems.

System Proposed System Sheng, B. et al. [18] Song, X. et al. [21] Otten, P. et al. [22] Lin, B.S. et al. [28]

Equipment data glove Kinect V2 Cellphone
Kinect, pressure

sensor, Data glove,
IMU

Data glove

Data
Finger bending
angle, gripping

force
Upper body

Position,
orientation,
acceleration

Upper body
kinematic data,
gripping force

Hand acceleration,
angular velocity,

angle
Assessment FMA WMFT-FAS [52] FMA FMA Brunnstrom [53]

Classification
Method Machine learning Machine learning Decision tree Machine learning Machine learning

IoT Monitoring Yes No No No No
Setting Clinic or in-home Clinic Clinic or in-home Clinic Clinic

Accuracy 85% 92% 85% 61.73% 70.22%

The study in [18] developed an automated system that assesses patients using a
feedforward neural network [54]. The Kinect V2 was employed due to its markerless 3D
vision system, as well as its reliability in clinical settings [55]. The patients performed
four tasks from the streamlined Wolf Motor Function Test (WMFT), the WFMT Functional
Ability Scale (FAS). They were limited by their use of only the Kinect V2, but argued
that the convenience was better and that the use of wearable sensors was not without
limitations, as discussed above.

The automated assessment system in [21] utilized motion data from a cellphone’s
IMU and visual data from the rear camera to reduce drift, leading to more accurate
position information. The data were then wirelessly transmitted to a computer for feature
extraction and automated assessment. The assessment was performed using a decision tree
approach. The lack of calibrations, sensor placement, and low cost make this an effective
tool. Nevertheless, it was unable to measure finger flexion/extension and gripping force.

The system proposed in [22] involved the use of several inexpensive pieces of equip-
ment to streamline the FMA assessment procedure, reducing the total assessment time
by 82%. Additionally, the equipment utilized can easily include most FMA assessment
exercises. It is just a matter of adding new features and training a dataset. The dataset was
trained using Support Vector Machine (SVM) [56]. Despite its low accuracy with individual
tests, the total scores achieved were at least within 90% accuracy to that assigned by a
physician. The accuracy on healthy subjects was much higher in comparison to stroke
patients, especially for exercises that obtained a score of one, as the range of motion was
hard to predict, whereas scores of zero and two, unable to perform and full completion,
respectively, were much easier to predict due to the minor variations.

The data glove in [28] boasted a modular design that fixed some of the limitations of
wearable sensors. This glove can fit onto patients with different hand sizes if care is taken
in the placement of its 16 IMU sensors. It uses a quaternion algorithm to extract the hand’s
acceleration, angular velocities, and joint angles. Then, it transmits the data via Bluetooth
to a computer for assessment. It classifies patients using k-means clustering based on
their Brunnstrom stage and is reasonably accurate at Stages 4 and 5 [57]. At Stage 6, most
stroke patients perform similarly to healthy subjects, making it difficult to differentiate.
Additionally, they visualized hand movements to help give insights to physicians on the
patient’s movement.

Most upper-extremity automated assessment systems use the Kinect for data gathering
and the FMA for assessment, with differing exercises, features, and/or classification
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methods [58–61]. This can be attributed to the ease of setting up the Kinect, while still
automating most of the FMA with reliable accuracy. Furthermore, by adding a few more
sensors, it is possible to fully automate the FMA. The disadvantage of such systems is the
noise that could be produced in uncontrolled environments, reducing their reliability.

It can be observed that while there are many upper-limb automated assessment sys-
tems, few have developed in-home rehabilitation that has been clinically approved. The sys-
tems proposed in [16,62] were only tested on healthy subjects. IoT monitoring systems for
elderly subjects usually monitor the patient’s movement for activity recognition [15,63].

The COVID-19 pandemic has highlighted the need for in-home rehabilitation systems,
especially for care facilities for elderly people, where outbreaks can have a fatality rate
of over 25% [64]. The work in this paper contributes an in-home automated assessment
system for rehabilitation of upper-extremity patients with high recovery. The system
utilizes IoT to allow for patient progression monitoring. This inexpensive system can be
easily set up at home and only uses the demonstrated data glove and a mobile app, with no
need for a skilled technician. Other currently available systems either require expensive
equipment, are not easily set up, or do not communicate with a supervising physician.
The rehabilitation process of poststroke injuries is physically, financially, and mentally
burdensome. Without proper care, patients find it difficult to cope with their injuries.
With training, the patient’s family can care for the patient with little added risk, as this
would elevate the patient’s mental wellness [49–51].

The demonstrated system was not without its limitations. It was only able to assess the
performance of a single hand. While it is possible to add further exercises and equipment,
the cost will proportionally increase. Additionally, it is not easy for stroke patients with
limited hand movement to wear this glove, even with help. The differing hand sizes can
also affect the readings; hence, the dataset was taken and tested on people with similar
hand sizes. However, these disadvantages are present in almost all data gloves.

The future work for this system will focus on applying more visualization and moni-
toring of kinematic features by accessing the data stored in the database. Moreover, a more
modular glove design will be implemented to assist in data gathering and patient comfort.
Finally, more exercises, features, and classifiers will be utilized to cover more FMA exercises
or even other assessment methods that can assist in home rehabilitation.
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