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Abstract
Background: Early diagnosis of lung cancer is a key intervention for the treat-
ment of lung cancer in which computer-aided diagnosis (CAD) can play a crucial
role. Most published CAD methods perform lung cancer diagnosis by classify-
ing each lung nodule in isolation. However, this does not reflect clinical practice,
where clinicians diagnose a patient based on a set of images of nodules,instead
of looking at one nodule at a time. Besides, the low interpretability of the output
provided by these methods presents an important barrier for their adoption.
Method: In this article, we treat lung cancer diagnosis as a multiple instance
learning (MIL) problem,which better reflects the diagnosis process in the clinical
setting and provides higher interpretability of the output. We selected radiomics
as the source of input features and deep attention-based MIL as the classi-
fication algorithm. The attention mechanism provides higher interpretability by
estimating the importance of each instance in the set for the final diagnosis. To
improve the model’s performance in a small imbalanced dataset, we propose a
new bag simulation method for MIL.
Results and conclusion: The results show that our method can achieve a
mean accuracy of 0.807 with a standard error of the mean (SEM) of 0.069,
a recall of 0.870 (SEM 0.061), a positive predictive value of 0.928 (SEM
0.078), a negative predictive value of 0.591 (SEM 0.155), and an area under
the curve (AUC) of 0.842 (SEM 0.074), outperforming other MIL methods.
Additional experiments show that the proposed oversampling strategy signifi-
cantly improves the model’s performance. In addition, experiments show that
our method provides a good indication of the importance of each nodule in
determining the diagnosis, which combined with the well-defined radiomic fea-
tures, to make the results more interpretable and acceptable for doctors and
patients.
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1 INTRODUCTION

According to the statistics from the World Health Orga-
nization (WHO), lung cancer is the most frequently
diagnosed malignant carcinoma and the leading cause
of cancer death worldwide, accounting for an estimated
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the original work is properly cited.
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2.09 million deaths in 2018.1,2 Early diagnosis and
treatment can reduce a lung cancer patient’s mortality
significantly. A plausible method for early lung cancer
diagnosis is the routine use of low-dose computed
tomography (CT) scans.3 To date, radiologists typically
need to visually inspect CT scans slice by slice, which
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is costly and time-consuming as well as susceptible
to human error.4,5 Computer-aided diagnosis (CAD)
for rapid early lung nodules classification based on
low-dose CT imaging has therefore attracted much
attention from researchers during the last decades.6,7

The development of CAD for lung nodules classifica-
tion has reached new peaks in last decade mainly due
to breakthroughs in deep learning neural networks8 and
its application to a wide range of medical image analysis
tasks. Several deep learning-based lung nodule classi-
fication methods have been proposed in recent years,
with steadily improving state-of -the-art performance.
Shen et al.9 developed a multiscale convolutional neural
network (CNN) to extract features (referred to as “deep
features10” in the literature) and then applied a super-
vised random forest classifier to the deep features,
reporting an accuracy of 86%. Xie et al.11 combined
handcrafted features with deep features to classify
each nodule as either benign or malignant, achieving
an area under the curve (AUC) of 0.96. Alakwaa et al.12

combined the LUNA1613 dataset with a subset of the
National Lung Screening Trial (NLST),14 and then used
a pretrained U-Net to segment potential nodules from
a CT scan automatically. The segmented nodules were
passed to a 3D CNN to detect early-stage lung cancer,
achieving an AUC of 0.83 in a randomly-split test cohort
from the abovementioned data. Ardila et al.15 developed
an end-to-end set of 3D CNN modules to compute the
overall risk of lung malignancy based on autodetection
of nodules, using the full-size publicly available NLST
dataset. In a retrospective reader study, their model out-
performed six experienced radiologists with absolute
reductions of 11% and 5% in false positives and false
negatives, respectively.

The need for transparency, interpretability, and
explainability in such computer-aided diagnostic recom-
mendations will grow to become increasingly prominent
in the immediate future. A crucial piece of law, the
General Data Protection Regulation (GDPR), governs
the rights of European Union (EU) citizens as human
data subjects and addresses processing by automated
means for decision-making anywhere in the world if
it concerns an EU individual. Specifically, the GDPR
enshrines the right of an individual to receive “meaning-
ful information about the logic involved” in an automated
decision concerning them, and on that basis to either
legally challenge the decision,or exercise conscientious
objection to the use of an automated means for deriving
the decision.16

Although definition of “meaningful” is open for debate,
it is clearly helpful to be able to point at specific regions
of interest (ROIs) that were strongly triggering for the
diagnostic recommendation, along with related features
of lung cancer and nonlung cancer cases. In this way, a
human radiologist can review the information in depth,
and either confirm or overrule the recommendations
of an automated system. Irrespective of a right to an
explanation, a computerized diagnostic support system

with high transparency and high interpretability would be
immensely valuable in clinical practice.

For automated diagnosis of lung cancer, a deep
learning-based system can be applied in two levels: at
nodule level, to identify potential malignant nodule(s)
for further biopsy and performing diagnosis at patient
level. Generally speaking, nodule classification meth-
ods need a label for each nodule to be able to train a
model.9,11 However, labeling each nodule is more time-
consuming and expensive than having a label for each
patient, which is usually already available in hospital
records. In this study, we focus on deep learning meth-
ods for lung cancer diagnosis that can make use of the
existing data to develop a lung cancer CAD system that
classifies patients based on multiple suspected nodules
in the entire CT series without the need to assign a
label to each nodule (i.e., each instance), and at the
same time provide high visibility of the triggering fea-
tures of its recommendation. Multiple instance learning
(MIL) with attention mechanism17,18,19 fits this need well.
In MIL, the nodules are grouped into “bags of instances”
(assuming multiple nodules in one CT examination of
the chest area).The task is hence to determine the diag-
nosis for the subject as a whole. Only the subject-level
diagnoses (i.e., the bag labels) are needed, but not indi-
vidual labels of every nodule found in the subject.20 This
approach is thus more amenable to real-world data min-
ing in lung cancer, because the subject-level diagnosis
is much more widely available than annotations on each
nodule.

Research on MIL problems has progressed along
instance-level versus embedding-level solutions,21 with
the latter seeming to perform better at subject-level
classification.22 Widely used embedding approaches
include MI-SVM,23 mi-Graph,24 miVLAD,25 and MI-
Net,25 but the shortcoming of these is the lack of trans-
parency of triggering instance(s). An attention-based
deep MIL21,33 has been recently introduced, which
allows a deep learning model to estimate the contribu-
tion of each instance to the predicted subject label,using
the well-established attention mechanism.26

The objective of this work was to develop a lung
cancer classification model at the subject (patient) level
from multiple examined nodules, without the need to
have specific expert findings reported at the level of
each individual nodule. An MIL method with an addi-
tional deep attention mechanism was used to help
draw an expert clinician’s eye toward the individual
nodules that were strongly triggering for the model’s
diagnostic recommendation. We propose that this will
be important by way of offering better interpretability
and the possibility of human expert verification of the
internal logic of the algorithm. A selection of commonly
used hand-crafted radiomics features was used as a
source of image features,27,28,29 and we also compared
a number of alternative MIL methods.30 We have reused
an existing open access data collection for training and
cross-validation.
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F IGURE 1 Sample selection flowchart describing the number of subjects and the number of nodules selected for this analysis

This article is organized as follows: the methods and
classifier experiments are described in Section 2. Our
results are given in Section 3. The significance of our
findings and limitations of our current approach will
be discussed in Section 4. An overall summary and
conclusion are presented in Section 5. Finally,
source code will open access for public at https://
gitlab.com/UM-CDS/combine-mil-and-radiomics-for-
lung-screening) and additional details of the system
architecture will be given in the Supporting Information.

2 METHODS

2.1 Dataset

The primary data source of data is an open access
collection from the Lung Image Database Consortium
(LIDC-IDRI),31 accessed at The Cancer Imaging Archive
(TCIA) during May 202032 under a Creative Commons
Attribution Non-Commercial 3.0 Unported (CC BY-NC)
license. The details of subjects in LIDC-IDRI have been
provided elsewhere,31 but briefly, the collection com-
prises 1018 clinical chest CT examinations from seven
disjoint institutions. Radiologists working independently
entered 7371 annotations, of which there were 2669
consensus nodules. We excluded subjects with unre-
ported or unknown diagnosis, and excluded nodules
below 3 mm in diameter according to current diagnosis
protocols.34,35 This resulted in 110 unique subjects with
a total of 310 nodules eligible for consideration. Binary
masks for the nodules were provided in the data collec-
tion as an XML file. Numbers of subjects and nodules
excluded, along with reason, are provided in Figure 1.
From the summary of diagnostic findings in Table 1, we
note that the majority of subjects and lung nodules in
the dataset are positive for lung cancer; 75% and 77%,

respectively. Index of available patients for experiments
in LIDC-IDRI can be found in Table 1 in the Supporting
Information.

Table 1 summarizes the radiological findings available
in the selected subset with definitive subject-level diag-
nosis and nodule-level classification.

2.2 Image acquisition settings

The LIDC-IDRI contains a heterogeneous set of CT of
subjects from different institutions. We used axial CT
images with dimension of 512 × 512 pixels. Radiation
exposure of selected samples ranged from 3 to 534
mAs (median:147.5 mAs),and reconstructed slice thick-
nesses ranging from 0.6 to 5.0 mm (median: 2.0 mm).

2.3 Feature extraction

Radiomics features were extracted using an open-
source Python library pyRadiomics (v2.2.0).36 Images
were resampled to 2 mm isotropic voxels prior to fea-
ture extraction. A total of 103 features were extracted.
These consisted of 13 morphology (shape) features, 17
intensity-histogram (first-order) features, and 73 textu-
ral (Haralick) features. Binary masks for the GTV were
generated from the XML file in the LIDC-IDRI collec-
tion, using an open-access library pylidc.37 DICOM CT
images were converted to 3D images by using Sim-
pleITK (v1.2.4)38 for pyRadiomics feature extraction.
The mathematical definition of each feature has been
given in the online documentation. Our pyRadiomics
extraction settings (from the params.yaml file) have
been included in Table S2 of the Supporting Information.
All features included in this analysis have been listed in
Table S3 of the Supporting Information.

https://gitlab.com/UM-CDS/combine-mil-and-radiomics-for-lung-screening
https://gitlab.com/UM-CDS/combine-mil-and-radiomics-for-lung-screening
https://gitlab.com/UM-CDS/combine-mil-and-radiomics-for-lung-screening


LUNG CANCER DIAGNOSIS WITH MIL 3137

TABLE 1 Number of patients and nodules according to ground truth diagnosis in the dataset

Lung cancer Not lung cancer Total

Numbers of (% of total) patients 82 (75%) 28 (25%) 110

Numbers of (% of total) nodules 239 (77%) 71 (23%) 310

F IGURE 2 Architecture of the attention-based deep MIL. Extracted radiomics features are used as the input to the transformation network,
which is then pooled with attention. A fully connected final layer combines the attention-based pooling to give the output probability

2.4 Classifier

We used an attention-based MIL for the lung cancer
classifier component.This consists of two parts that can
be trained end-to-end. First, the transformation network
was implemented as three fully connected neural net-
work layers with a dropout rate of 0.5. Additional details
about this network are in Table S4 in the Supporting
Information. To fix the dimension of the input layer of
neurons, the 103 features per nodule were duplicated
within the same subject until it was the same as the max-
imum number of nodules per subject, which we found
to be 12 in this case. More specifically, each nodule in
the same bag should be duplicated with the same prob-
ability. For example, if there are five nodules in a bag,
three random nodules need to be duplicates once (i.e.,
appear twice in total), and two random nodules need to
be duplicated twice (appear three times in total) in the
final fixed feature bags. Therefore, the dimension of the
input layer should be 103 and one bag consists of 12
vectors (103 × 12). Feature duplication was performed
before model training and was also used in model test-
ing.

Second, the attention-based pooling layer imple-
mented the attention mechanism popularized by long
short-term memory networks (LSTMs).39 The attention
mechanism is an important strategy that fits encoder
input sequences into a fixed-length internal represen-
tation. The architecture of the classifier is illustrated
schematically in Figure 2.

2.5 Addressing class imbalance

Imbalance in the outcome frequency (i.e., lung cancer vs.
not lung cancer) has been known to affect the classifier,

biasing this toward the dominant class.Several methods
are available to address class imbalance41 in general,
and we applied a novel sampling method to address
class imbalance specifically for MIL. It is assumed
that all nodules in noncancer subjects are, by clinical
definition, noncancerous nodules. Synthetic noncancer
patients were thus generated by randomly sampling a
finite number of instances out of all the nodules in an
aggregated pool of actual noncancer subjects. On the
other hand, synthetic cancer patients could be gener-
ated by adding a random number of negative instances
sampled from the instances pool (from both negative
and positive bags) to the original positive bags.However,
we did not simulate cancer patients in our experiments,
because positive bags were majority in our dataset.This
was only done for the training set; no class imbalance
correction was applied in the testing set.

2.6 Model development and validation

All work was executed on a Core i7 8565U CPU with
8GB of RAM. The optimizer for network training was
stochastic gradient descent (SGD),42 with batch size 1
and the learning rate fixed at 0.0001. The neural net-
work was trained for 500 epochs (taking 3–4 min) per
experiment.

We performed experiments for the attention-based
MIL in comparison with other MIL approaches—MI-
SVM, mi-graph, miVLAD, MI-Net, and a naïve MIL
algorithm that performs a simple aggregation of the
predictions by replacing the attention-based MIL pool-
ing with average MIL pooling.20 The optimizer, batch
size, learning rate, and training epochs were set same
as attention-based MIL in MI-Net. The setting of
hyperparameters in other methods was followed as
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mentioned in original literatures.23,24,25 Same training
and testing data were used in every running for all
methods.

Model training was performed on all the available sub-
jects, taking their respective diagnosis as the “bag label”
and the nodules as the instances. We ran 20 repetitions
of end-to-end training runs on the hand-crafted features
with fivefold cross-validation in each run and there is no
oversampling in testing dataset. For each repetition of
fivefold cross-validation, samples were randomly sorted
first and then split into fivefolds,so that each sample was
used once for testing and four times for training in each
repetition. We adjusted for the lower number of non-
cancer diagnoses by generating synthetic noncancer
patients as described above (Section 2.4). Specifically,
we synthesized 60 additional noncancer subjects from
the initial training dataset and added these to the actual
88 training subjects, resulting in a training set contain-
ing 148 subjects in total. No synthetic resampling was
used for positive lung cancer subjects. We further con-
ducted an additional sensitivity analysis to assess how
oversampling to overcome class imbalance might have
affected the model’s performance by using only the orig-
inal data of 110 subjects.

The discriminative performance was assessed using
the mean and standard error of the mean (SEM)
of recall, accuracy, positive predictive value (PPV),
and negative predictive value (NPV), respectively. For
dichotomization of outcome, we used a probability
threshold of 0.5 to separate lung cancer from nonlung
cancer. The area under the receiver-operating charac-
teristic curve (AUC) was computed for each model, and
the definition of AUC can be found in Ref. 43. Let TP, TN,
FP, and FN denote true positive, true negative, false pos-
itive, and false negative, respectively, and then we define
recall, accuracy, PPV, and NPV as:

recall =
TP

TP + TN
, (1)

accuracy =
TP + TN

TP + TN + FR + FN
, (2)

PPV =
TP

TP + FP
, (3)

NPV =
TN

TN + FN
. (4)

All statistical analyses were done in Python (version
3.6.1).

3 RESULTS

Figure 3 shows the violin plots comparing the results
of attention-based MIL with (Figure 3a) and without
(Figure 3b) synthetic minority oversampling. The esti-
mated mean (with SEM in the parentheses) for recall,
accuracy, PPV, and NPV and the AUC for the model
including the class imbalance correction were: 0.870
(SEM 0.061), 0.807 (SEM 0.069), 0.928 (SEM 0.078),
0.591 (SEM 0.155), and 0.842 (SEM 0.071), respec-
tively. Without the class imbalance correction, these
values were 0.889 (SEM 0.061), 0.768 (SEM 0.059),
0.842 (SEM 0.071), 0.483 (SEM 0.209), and 0.696
(SEM 0.108), respectively. The main effect of the minor-
ity oversampling was to improve accuracy, PPV, NPV,
and AUC. A representative (from a selected repetition)
set of AUC curves for the different MIL methods with
the same training and testing data can be found in
Figure 4.

Table 2 summarizes the results of comparing dif-
ferent MIL approaches. Attention-based MIL without
oversampling achieved the best recall, MI-Net achieved
the best PPV, and attention-based MIL achieved the
best accuracy, PPV, and AUC. Attention-based MIL was
better than other methods in PPV and AUC signifi-
cantly (Wilcoxon test, p < 0.01); however, attention-
based MIL was worse than best result in recall and
NPV (Wilcoxon test, p = 0.02 and p < 0.01, respec-
tively).Moreover,attention-based MIL with oversampling
is better than attention-based MIL without oversampling
in all metrics significantly except recall (Wilcoxon test,
p < 0.01 for accuracy, PPV, NPV, and AUC, p = 0.02 for
recall).

The absence of AUCs for mi-graph and miVLAD is
due to our reusing of the source code by the LAMDA
lab, Nanjing University.44 Their source code for mi-graph
and miVLAD outputs only the classification label (not the
probability), and therefore, the AUCs cannot be calcu-
lated.

To determine the level of oversampling, we ran sen-
sitivity analyses. We gradually increased the number of
included simulated noncancer subjects from 0 to 100 on
steps of 20. We ran 20-repeat fivefold cross-validation
for each experiment. The results of sensitivity analysis
are shown in Figure 5.

As shown in Figure 5, including 60 simulation samples
results in good performance for all metrics (especially for
recall) with less computation compared with other set-
tings with similar performance.

Given how important batch size is for CNNs training,45

we ran a sensitivity analysis on this parameter. We
ran 20-repeat fivefold cross-validation analyses with
different batch sizes (1–4) for each experiment. The
loss curves for model training with different batch
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F IGURE 3 Violin plot of the experimental results (a) with oversampling and (b) without oversampling

F IGURE 4 An example of AUC curves for different methods with
same training and testing data. An AUC curves for attention-based
MIL, attention-based MIL w/o oversampling, MI-SVM, MI-Net, and
naïve MIL

sizes are shown in Figure 6a and the performance of
models trained with different batch sizes is shown in
Figure 6b.

F IGURE 5 Results of sensitivity analysis for different levels of
oversampling

As shown in Figure 6, the model trained with a batch
size of 1 achieved the best performance according to all
metrics except AUC (0.842 for batch size 1 vs. 0.849 for

TABLE 2 Results of the attention-based deep MIL approach with class imbalance correction, compared to other MIL methods
(attention-based MIL w/o oversampling, MI-SVM, mi-graph, miVLAD, and MI-Net)

Methods
Attention-based
MIL

Attention-based
MILw/o
oversampling MI-SVM mi-graph miVLAD MI-Net Traditional MIL

Recall 0.870 ± 0.061 0.889 ± 0.061 0.756 ± 0.084 0.777 ± 0.048 0.871 ± 0.087 0.835 ± 0.109 0.850 ± 0.099

Accuracy 0.807 ± 0.069 0.768 ± 0.059 0.703 ± 0.080 0.749 ± 0.055 0.782 ± 0.063 0.727 ± 0.050 0.748 ± 0.065

PPV 0.928 ± 0.078 0.842 ± 0.071 0.560 ± 0.199 0.772 ± 0.042 0.835 ± 0.059 0.522 ± 0.265 0.835 ± 0.070

NPV 0.591 ± 0.155 0.483 ± 0.209 0.810 ± 0.080 0.713 ± 0.229 0.675 ± 0.160 0.838 ± 0.069 0.478 ± 0.233

AUC 0.842 ± 0.071 0.696 ± 0.108 0.625 ± 0.099 – – 0.662 ± 0.093 0.681 ± 0.080
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F IGURE 6 Results of sensitivity analysis for different batch sizes. (a) Loss curves for model training with different batch size and (b)
performance of models trained with different batch sizes

F IGURE 7 An example of attention weights for two positive lung cancer subjects (LIDC-IDRI-1004 and 1011)

batch size 2) and the loss of all models converged at the
end of the 500 epochs. Therefore, we set the batch size
to 1 in this study.

Besides model performance, one of the most appeal-
ing aspects that we selected the attention-based MIL
method for was to indicate the instances that might
have been strongly influential on the classification.In this
case, it would be the relative importance of each nodule
when predicting the subject label as either lung cancer
or not lung cancer. A couple of lung cancer examples
are shown in Figure 7 for two subjects in the dataset,
LIDC-IDRI-1004 and LIDC-IDRI-1011.

Alpha in Figure 7 means the strength of attention,
value of alpha only meaningful in the same patient, and
it is meaningless by comparing alphas across patients.

The order of nodules was arranged in random way
within same patient.

The evaluation of the attention mechanism was
performed by one of the coauthors—a radiologist
with 3-year experience, who examined some sam-
ple patients’ weights and agreed with the weighting.
In these examples, it is clearly discernable from the
weights (𝛼2 and 𝛼3 larger than 𝛼0 and 𝛼1) that the two
rightmost nodules pictured for subject LIDC-IDRI-1004
are much more strongly influential in the diagnos-
tic evaluation compared to the two leftmost nodules.
Similarly, for subject LIDC-IDRI-1011, three of the nod-
ules are influential on the subject classification, but
the nodule pictured rightmost is not influential at all
(alpha < 0.01).
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4 DISCUSSION

Our objective was to propose a lung cancer classifica-
tion at the subject level from multiple examined nodules,
with an attention mechanism for improving the inter-
pretability. The results show that our proposed classi-
fication achieves good performance compared to other
MIL methods and that the unique characteristic of the
deep attention-based MIL, namely, attention weights,
potentially makes our method more interpretable for
clinicians.

To see the effect of minority oversampling to over-
come class imbalance, we tested the model with and
without the oversampling. The results show that the
oversampling improved the model’s performance sig-
nificantly in accuracy, PPV, NPV, and AUC by compar-
ing Attention-based MIL without oversampling. However,
there seem some decrease in recall.

We observed from Figure 3 that minority oversampling
has a major effect on the AUC. In fact, the AUC sinks
below 0.5 in some experiments without oversampling.
This can be explained by the fact that the AUC is more
sensitive to the classification performance of the model
with the minority class than either accuracy or recall.40

We proposed a new synthetic subject generation
method that can be used to overcome class imbalance
by oversampling the minority class. We did this by sam-
pling from an aggregated pool of nodules from patients
with the ground truth of “not lung cancer.” To the best
of our knowledge, such methods have not yet been pro-
posed for MIL. This oversampling technique resulted in
significant improvements on accuracy, PPV, NPV, and
AUC. We believe that this strategy, which is based on
the characteristics of MIL, can be used when training
any MIL model from a class-imbalanced dataset.

The results show that our method could potentially be
applied to automated lung cancer diagnosis, subject to
further validation and studies in large datasets.However,
we acknowledge that there are some limitations and
weaknesses in the assumptions we had to make. First,
due to the need of a mask that delineates the nodules
to calculate radiomic features, our method would have
to be dependent on lung nodule detection and segmen-
tation methods such as the ones proposed by Huang
et al.46 and Anirudh et al.47 This dependence on preex-
isting or human expert segmentation is not new, and is
problem that still affects many aspects of medical image
analysis and supervised machine learning. Related to
this is the potential for interobserver disagreement about
the external outline of the nodule. This problem is well
known and documented for large and locally advanced
lung tumors, but with the small nodule volumes involved
in this study, we have assumed that the interobserver
problem does not strongly affect the extracted features.
A further question we cannot address in this study is the
problem of undetected nodules and very small nodules
(diameter smaller than 3 mm) that were omitted; more-

over, images were resampled to 2 mm isotropic voxels
prior to feature extraction, which is possibly also a rea-
son why very small nodules are not appropriate. This
work has assumed no false positives and no false nega-
tives, so we cannot elucidate what happens with imper-
fect nodule detection.

The performance of our model appears sensitive
to sampling effects; in other words, the performance
of model fluctuates across repeated experiments, as
shown in Figure 3. This is likely a direct consequence
of the relatively small sample size of the dataset.
Expanding the sample size by including small nodules
is not immediately helpful because they do not add that
many subjects and nodules to the sample, whereas
hand-crafted features would not be stable when taken
from very small volumes. The major root of the problem
appears to be the lack of ground truth and annotated
images. Related to this fact is that we currently did not
find a suitable dataset for external, independent vali-
dation. Therefore, our results should be interpreted as
preliminary indication of feasibility, and larger datasets
need to be used to demonstrate wider generalizability
of this work.

Due to the high fitting ability of neural networks and
large epochs during training, the model returns 1 or
0 almost all of the time, which means that the overall
model calibration was generally poor.48,49 Model cali-
bration plot is shown in Figure S1 of the Supporting
Information, and it appears that all MIL methods have
poor calibration except MI-SVM.

In addition, we have not explored feature dimension-
ality reduction and applied feature redundancy analysis.
This is in part due to the transformation network that
does not require explicit feature selection steps prior
to MIL pooling. The repeatability and reproducibility
of handcrafted features are subjects of numerous
investigations in radiomics and appear to be highly
modality-specific. This work has not explored the stabil-
ity of low-dose CT-derived image features, which tend
to have quite a lot of noise present.50,51 This could affect
the performance of our model in an external validation,
and image harmonization or denoising strategies may
be needed in future to support general extensibility.

Moreover, we were not able to test the performance
of the models in an external dataset, which would have
provided more reliable estimates of the models’ poten-
tial performance in a different setting .On the other hand,
the dataset used in this study (LIDC-IDRI) was collected
over 10 years ago. With new emerging CT technologies
and reconstruction methods, it is possible that different
conclusions would be reached if the proposed method is
applied to newer images currently being used in clinical
practice. Further research on this aspect is required.

Finally, our oversampling strategy is sensitive to the
quality of data’s label at patient level. More specifically,
if labels are incorrect (e.g., if one or two of the nodules
has been misclassified by error and the subject is hence
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a false negative), the noise will be amplified due to over-
sampling.

For future work, an automated nodule detection
and segmentation algorithm could be attached to this
attention-based MIL classifier to fully complete the
lung cancer diagnosis workflow. Second, methods for
improving radiomic features’ reliability in low-dose CT
may be necessary for improving model’s performance
in unseen data. Third, large scale and comprehensive
evaluation of the attention mechanism is needed in
the future to assess its reliability and reproducibility.
Fourth, a comparison between the proposed method
and a traditional deep learning-based image classifi-
cation algorithm would be of special interest. Finally,
the proposed model needs to be externally validated to
assess whether the model suffers from overfitting to the
training data or whether it is widely generalizable to CT
images from different scanners.

5 CONCLUSION

We treated computer-aided diagnosis of lung cancer as
an MIL problem,such that the classification as lung can-
cer or not is made at the subject level (i.e., the patient)
without relying on classifications at the level of individ-
ual nodules (i.e., each of suspicious lung nodules). The
addition of the attention mechanism was used to draw
the clinician’s eye toward features that were important
for triggering the recommended diagnosis, with the
aim of supporting interpretability and, importantly, ver-
ification by human experts of the algorithm’s internal
logic. We used radiomics as a source of interpretable
image-derived features, and deep attention-based MIL
was found to be a superior classifier compared to other
MIL options with regard to accuracy, NPV, and AUC. A
novel approach for minority oversampling, adapted for
MIL problems, has been used to address the outcome
class imbalance in the LIDC-IDRI dataset. We showed
how an attention mechanism could be used as an indi-
cation of the importance of each nodule for triggering
the diagnostic recommendation. Cross-validation was
used to check for model performance,but more data are
required to provide a robust test of wider generalizability.
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