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Abstract: Curcumin is a component of turmeric, a spice used in many types of cooking. 

Epidemiological evidence suggesting that populations that eat food with a substantial amount 

of curcumin were at lower risk of Alzheimer’s disease (AD) led to the idea that this compound 

might have a neuroprotective effect. Curcumin has substantial antioxidant and anti-inflammatory 

effects, and is being used as a potential preventative agent or treatment for many types of cancer. 

There is evidence to suggest that the addition of curcumin to cultured neuronal cells decreases 

brain inflammation and protects against β-amyloid-induced neurotoxicity. Curcumin also protects 

against toxicity when β-amyloid is administered to produce animal models of AD. Curcumin 

decreases β-amyloid formation from amyloid precursor protein, and also inhibits aggregation 

of β-amyloid into pleated sheets. Studies in transgenic mice with overproduction of β-amyloid 

demonstrate a neuroprotective effect of curcumin as well. Cognitive function was also improved 

in these animal models. Clinical trials of curcumin in AD have not been very promising. It is 

possible that this is due to poor oral bioavailability of curcumin in humans, and thus several 

approaches are being developed to improve delivery systems or to create analogs that will 

mimic the neuroprotective effects and easily reach the brain. The lack of efficacy of curcumin in 

humans with AD may also result from treating for too short a time or starting treatment too late 

in the course of the disease, where substantial neuronal death has already occurred and cannot 

be reversed. Curcumin may be beneficial in protecting against development or progression of 

AD if taken over the long term and started before symptoms of AD become apparent.
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Incidence of Alzheimer’s disease (AD)
AD is characterized by profound loss of short-term memory and impaired cogni-

tion, accompanied by neurodegeneration. Pathological changes including neuritic 

plaques and neurofibrillary tangles are hallmarks of the disease.1 Although the 

overall worldwide incidence of AD is 4.7%, it is higher in Europe and the Americas 

at about 6.5%. The incidence climbs from about 8% in those over age 65 years, to 

45% in people older than 85 years.2 Currently, 5.4 million Americans have AD, and 

it is the sixth leading cause of death.3 The total cost of AD in the US is estimated to 

be about $200 billion.3

Etiology of AD
The factors that precipitate neurodegeneration in AD are currently not understood. 

Although many neuronal populations degenerate as the disease progresses,4 loss of 

cholinergic neurons was one of the earliest neurochemical findings, suggesting a 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
23

R E v i E w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/JEP.S26803

mailto:ppotte@midwestern.edu
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/JEP.S26803


Journal of Experimental Pharmacology 2013:5

selective vulnerability of this population.5 Amyloid precursor 

protein (APP) is a membrane glycoprotein cleaved by three 

secretases, α, β, and γ. Cleavage by α-secretase generates 

a C-terminus fragment (C83) and soluble APP (sAPP), 

thought to be neurotrophic and neuroprotective.6,7 In contrast, 

sequential processing of APP by β-secretase (BACE-1) and 

γ- secretase generates β-amyloid
1–40

 and β-amyloid
1–42

, widely 

thought to be neurotoxic.8

One of the components of γ-secretase is presenilin-1, 

which may be the catalytic core of the enzyme.9,10 Alterations 

in presenilin-1 are associated with some cases of early-onset 

familial AD.9 Presenilin-1 is a substrate for glycogen synthase 

kinase-3β (GSK-3β), which can phosphorylate preseni-

lin-1, thus modulating its activity.11 Increased expression 

of GSK-3β has also been associated with AD.12,13 Preseni-

lin-2 mutations also increase the activity of γ-secretase.14,15 

Mice with mutations in these genes have increased levels 

and deposition of β-amyloid, as well as deficits in learning 

and memory.16–18

The “amyloid cascade hypothesis,” in which mutations 

in APP, presenilin-1, or presenilin-2 genes lead to increased 

production of β-amyloid, is now widely considered to con-

tribute to the neurodegeneration seen in AD.19 Mutations in 

these genes are linked to some forms of AD20 and although 

generally responsible for early-onset disease, they have also 

been reported in some patients with late-onset disease.21 

Nevertheless, only about 5% of AD cases are caused by these 

mutations, and so it seems that there must be other factors 

that lead to an overproduction and deposition of β-amyloid. 

β-amyloid deposition leads to many toxic sequelae, includ-

ing activation of microglia and astrocytes, oxidative stress, 

and possibly production of neurofibrillary tangles.22–25 

The neurofibrillary tangles contain hyperphosphorylated 

tau,26,27 which, unlike normal tau protein, cannot stabilize 

microtubules. Thus, the microtubules become destabilized, 

affecting axonal function and transport.27,28 β-amyloid also 

interferes with many neuronal processes, in particular those 

associated with signal transduction.29–31

Oxidative stress and inflammation have also been sug-

gested to play a role in the neurodegeneration seen in AD.32–35 

Oxidative stress is thought to be an early, precipitating fac-

tor,36 and may contribute to generation of β-amyloid, either on 

its own,37,38 or in conjunction with inflammation.39–41 This has 

led to the suggestion that treatment with anti-inflammatory 

agents or drugs that reduce oxidative stress could be useful 

in the prevention or treatment of AD.42,43 Another contribu-

tor to the generation of β-amyloid is iron, which is found 

in higher than normal amounts in the brain of AD patients, 

and appears to accelerate translation of APP messenger 

ribonucleic acid and increase β-amyloid by stimulating an 

iron responsive element.44,45

Current treatments
The finding of massive degeneration of cholinergic neurons 

in AD led to the development of treatments targeted 

towards increasing cholinergic activity.46 Thus far, the most 

successful drugs have been cholinesterase inhibitors, which 

increase the amount of acetylcholine in the synaptic cleft, 

enhancing the function of the remaining cholinergic neurons. 

The cholinesterase inhibitors donepezil, galantamine, and 

rivastigmine are the current standard of treatment.47–50 

The problem with cholinesterase inhibitors is that their 

effectiveness will decline as cholinergic neurons continue to 

degenerate. For this reason, a number of selective cholinergic 

agonists are currently in development.51 The other currently 

approved treatment for AD is the N-methyl-D-aspartic acid 

receptor antagonist memantine.48,52–54 There has been some 

evidence that both cholinesterase inhibitors and memantine 

may act to slow the course of AD progression by decreasing 

β-amyloid deposition or neurotoxicity,46,55–58 although this 

has been debated.58–62

Treatments directed at inflammation have been tested 

in patients with AD. The observation that people with 

rheumatoid arthritis treated chronically with nonsteroidal 

Table 1 The effects of curcumin on mechanisms involved in the 
degeneration in Alzheimer’s disease

Mechanisms involved  
in degeneration  
in Alzheimer’s disease

Effects of curcumin

β-amyloid
•  increased production
•  β-sheet formation
•  Neurotoxicity
•  NF-κB activation
•  ERK1/2
•  γ-secretase activity
•  Presenilin-1 mutation

•  Decrease in β-amyloid117

•  inhibition of sheet formation115,116

•  Decrease neuronal toxicity107

•  Decrease NF-κB activation30

•  Decrease ERK-1/2 expression109

•  inhibit γ-secretase119

•  Modulate presenilin-1119

Oxidative stress
•  iL-1β
•  GSK-3β
• Caspase-3
•  Akt

•  Decrease iL-1β123

•  Decrease GSK-3β112

•  Prevent β-amyloid induced increase110

•  Activate neuroprotective pathway110

•  iron chelation120

•  Decrease phosphorylation
Other
•  iron
•  Tau

Abbreviations: ERK-1/2, extracellular signal-regulated kinase-1/2; GSK-3β, 
glycogen synthase kinase-3β; iL-1β, interleukin-1β; NF-κB, nuclear factor-κB.
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anti-inflammatory drugs appeared to have a lower incidence 

of AD provided the groundwork for this hypothesis.63,64 This 

was supported by animal and cell culture studies indicating 

that treatment with nonsteroidal anti-inflammatory drugs 

could decrease levels of β-amyloid and tau, possibly by 

the inhibition of γ-secretase.65–67 Unfortunately, in spite of 

multiple trials, there has been little success with this treat-

ment in older patients with AD, and in fact the ADAPT trial 

(AD Anti-inflammatory Prevention Trial) was stopped early 

due to the incidence of cardiovascular complications.68–71 

However, there is evidence that treatment with nonsteroidal 

anti-inflammatory drugs may benefit some people, especially 

if they begin treatment when they are young.69,72,73 It is likely 

that anti-inflammatory treatments would be more useful if 

they were started before symptoms of the disease become 

apparent, as by that time the brain damage is substantial, and 

it may not be possible to reverse it.

It has been observed that the incidence of AD is quite low 

in India.74–76 This could be a result of genetics, as the incidence 

of the apolipoprotein-E4 (ApoE4) allele is also low in India. 

In one meta-analysis it was reported to be 34% ApoE ε4/- 

and 4% ApoE ε4/4 versus 56% and 11% in the US.77 Another 

study reported a frequency of 0.073 in a rural community in 

India versus 0.11 in a small Pennsylvania town.78 Although 

not completely correlated with the incidence of AD, presence 

of the ApoE4 allele is considered a risk factor.77,79–81

In spite of the genetic differences, there is also a dif-

ference in the pathology of AD in India, with a decrease in 

β-amyloid
1–42

 in both normal controls and those patients who 

do develop AD, as well as a decrease in hyperphosphorylated 

tau.82,83 It has been postulated that the reduced incidence or 

severity of AD in India might, beyond genetics, reflect dif-

ferences in diet or environment.74 Indeed, people in India 

consume large amounts of curcumin, about 80–200 mg/day,84 

which has long been known to have anti-inflammatory and 

antioxidant effects.85–88 Thus, it was suggested that curcumin 

might have a neuroprotective effect and be useful in the treat-

ment or prevention of AD.89–91

Pharmacology of curcumin
Curcumin (diferuloylmethane), a component of turmeric, 

comes from the herb Curcuma longa. It has been used for 

centuries as a spice in many foods, especially in Southeast 

Asia, and also as a coloring agent in condiments such as 

mustard. Toxicity studies have indicated that it is quite 

safe even in high doses (up to 12 g in humans).92,93 Its oral 

bioavailability, however, is poor,89,94,95 with low blood levels 

following oral administration and the majority of  metabolites 

found in the feces.96 This could limit its usefulness as an oral 

therapeutic agent. Numerous studies are under way to develop 

delivery systems that will increase blood levels following 

administration of curcumin.97

Curcumin has been used in Ayurvedic medicine for numer-

ous purposes, and there has recently been a lot of interest in 

its potential to treat many diseases.98 Its antibacterial effects 

were first described in 1949.99 In the last 10 years, interest 

in this compound for many uses has surged.  Antifungal and 

antiviral properties have been described.100–102 Curcumin 

has antioxidant properties87,103,104 and anti-inflammatory 

properties.87,88,105 It is being proposed as a treatment or 

sensitizing agent for different types of cancer or to protect 

the body from the toxicity of certain agents used in cancer 

chemotherapy.98,106 It is thought to lower cholesterol and 

may regulate glucose and insulin levels, with potential for 

treatment of type II diabetes.98

The pharmacological effects of curcumin are mediated 

via actions on multiple sites, including transcription factors, 

enzymes, growth factors, neurotransmitter receptors, growth 

factor receptors, cytokine receptors, inflammatory mediators, 

and numerous protein kinases.98 In terms of potential effects 

in AD, the ability to inhibit acetylcholinesterase, protect 

against β-amyloid toxicity and/or decrease its production, 

reduce the effects of oxidative stress, and decrease inflam-

mation may be useful.

Curcumin for AD
Given the importance of β-amyloid accumulation in the 

pathogenesis of AD, numerous in vitro and in vivo studies 

have examined the interaction of curcumin with β-amyloid. 

Several studies have investigated the dose-related neuropro-

tective effect of curcumin against β-amyloid-induced toxicity 

in cultured neuronal cells.107 Several mechanisms for this 

protective effect have been proposed. In both human neuro-

blastoma cells, blocking nuclear factor-κB with curcumin was 

shown to prevent β-amyloid-induced cell death.30 Curcumin 

also reduced hypoxia-induced cell death in mouse hippocam-

pal cells by inhibiting nuclear factor-κB-induced repression 

of peroxiredoxin-6.108 In a Human acute monocytic leukemia 

cell line (Sigma-Aldrich), curcumin was shown to reduce 

the β-amyloid-induced expression of the cytokines tumor 

necrosis factor-α and interleukin-1β, as well as activation 

of mitogen-activated protein kinase and phosphorylation of 

extracellular signal-regulated kinase-1/2.109 In rat prefrontal 

cortex neurons, the β-amyloid-mediated increase in capsase-3 

was inhibited, and the neuroprotective pathway involving Akt 

was activated, by addition of curcumin.110 Again in rat cortical 
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cells, curcumin maintained cell viability after exposure to 

β-amyloid and decreased markers of oxidative stress and 

levels of reactive oxygen species.111 Curcumin also appeared 

to reduce β-amyloid toxicity by decreasing the activity of 

GSK-3β and stimulating the protective Wnt/β-catenin path-

way in APPswe-transfected SY5Y cells.112 Thus, curcumin 

appears to act at many levels to ameliorate the neuronal dam-

age that can be caused by inflammation, oxidative stress, or 

exposure to β-amyloid.

Curcumin may also affect the production and deposi-

tion of β-amyloid, long thought to be one of the triggers for 

neurodegeneration in AD. In both rat cortical neurons and in 

solution, curcumin produced a dose-dependent decrease in 

formation of fibrillary β-amyloid
1–40

 and β-amyloid
1–42

 and 

also destabilized fibrils that had already formed, thus breaking 

up the β-sheet conformation seen in AD plaques.111,113–115 The 

mechanism for this effect is not known, but may involve bind-

ing to β-amyloid and preventing aggregation.113,114 Analogs 

of curcumin that maximize the inhibition of β-amyloid 

aggregation are being developed.116

Other lines of evidence suggest that curcumin exerts a 

benefit by decreasing levels of β-amyloid. Curcumin inhib-

ited production of β-amyloid
1–42

 in cultured cells, and also 

decreased the level of the APP protein.117 It did not appear 

that processing of APP by BACE-1, an enzyme involved in 

production of β-amyloid, was involved as neither BACE-1 

protein nor messenger ribonucleic acid levels were affected 

by curcumin; it was concluded that the effect must involve 

posttranslational processing of APP.117 Indeed, a subsequent 

study found that curcumin did not alter levels of mature APP, 

but did decrease immature and total APP.118 These authors 

suggested that inhibition of the APP maturation process could 

account for the observed decrease of both β-amyloid
1–40

 and 

β-amyloid
1–42

 by interrupting the pathway that leads to their 

production.118 Curcumin does appear to affect the activity 

of γ-secretase, by decreasing the expression of the catalytic 

component of the enzyme presenilin-1.119 This may result 

from inhibition of GSK-3β, which normally phosphory-

lates presenilin-1 to stimulate γ-secretase.112,119 In addition 

to increasing levels of β-amyloid, activation of GSK-3β 

may also phosphorylate tau, allowing it to produce paired 

helical filaments.27 Another mechanism by which curcumin 

may decrease formation of β-amyloid would be through its 

ability to chelate iron,120 as increases in iron may facilitate 

production of β-amyloid.44 Curcumin decreases iron-induced 

neurotoxicity in primary cultures,121 and it has been proposed 

that the beneficial effect of curcumin in transgenic mice ani-

mal models of AD may be due, in part, to its effects on iron.122 

Thus, curcumin may decrease production and deposition of 

β-amyloid through many different mechanisms, including 

alterations in the activity of γ-secretase and maturation of 

APP, inhibiting the activity of GSK-3β and tau production, and 

chelating iron. These actions are summarized in Table 1.

The studies described above were all done in vitro in either 

cultured cell lines or primary neuronal cell cultures. In vivo 

studies have also shown protective effects of curcumin in 

animal models of AD. The initial study was in the transgenic 

Tg2576 APPSw mouse model of AD, which contains a 

human mutation for AD and develops age-related pathology 

and behavioral changes similar to those in AD.16 Expression 

of interleukin-1, measures of oxidative damage, levels of 

β-amyloid, and plaque burden were all decreased following 

treatment of these animals with both high and low oral doses 

of curcumin for 6 months.123 The decreases were substantial at 

low doses (about 40%), and similar to those which had been 

seen previously following treatment with the anti-inflammatory 

drug ibuprofen.124 These results were confirmed in a subse-

quent study, which also showed levels of curcumin in the brain 

following chronic oral treatment.125 Another model which has 

been studied involves the administration of ibotenic acid and 

β-amyloid
1–40

 into rat brains to produce neurodegeneration and 

β-amyloid deposition, as well as memory loss.126 In this model, 

curcumin treatment for 20 days after the lesion, was found 

to improve performance in the Morris water maze, a test of 

short-term memory.126A subsequent study indicated decreases 

in measures of inflammation and apoptosis, again supporting 

the neuroprotective effect of curcumin.127  Combining curcumin 

with omega-3 fatty acids increased its effectiveness at prevent-

ing tau phosphorylation and reducing memory impairment in 

3xTg-AD transgenic mice.128

The promising results of these in vitro and in vivo 

animal studies have prompted tests of curcumin in humans 

(http://www.clinicaltrials.gov). In one, curcumin (1 g/day or 

4 g/day) was combined with gingko for 6 months. Serum 

β-amyloid levels increased in the curcumin-treated group, 

suggesting loss from the brain, but there was no difference 

in mental status at the end of the trial.129 Curcumin could 

be detected in the blood 2 hours after treatment, suggest-

ing that it had been absorbed, but levels were low.129 In a 

24-week trial of patients with mild to moderate AD, no 

improvement was seen in the curcumin-treated (2 g/day 

and 4 g/day doses) groups.130,131 The main side effect was 

gastrointestinal symptoms, but again the blood levels were 

low, suggesting that bioavailability was problematic. Other 

trials currently in progress include one combining a larger 

dose of curcumin with BioPerine® (Sabinsa Corporation, 
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NJ, USA; an ingredient of black pepper thought to improve 

absorption of curcumin) and another using Longvida®, (Ver-

dure Sciences, IN, USA) a curcumin formulation thought to 

have better bioavailability.132,133 There have been no reports 

as yet from these studies.

Future directions
One of the reasons suggested for the lack of beneficial results 

of curcumin in AD clinical trials has been the inability to 

produce sufficient brain levels following oral absorption.134 

It has been repeatedly shown that curcumin has poor water 

solubility and poor oral bioavailability, and that much of 

an administered dose is excreted in the feces.91,95,135,136 For 

this reason, there are a number of new formulations being 

developed which are hoped will improve the bioavailabil-

ity and delivery of curcumin.137 These include curcumin 

analogs that mimic the active site of the compound,138 as 

well as analogs that mimic the curcumin anti-amyloid effect 

combined with an anticholinesterase effect.139 Solid lipid 

particle complexes and carrier systems140–146 and nanoparticle 

preparations137,147–151 are also being developed, as well as water 

soluble conjugates.153 A nanoparticle preparation has been 

shown to provide higher blood levels and was effective in 

Tg2576 transgenic mice.154 Much of this research has been 

spurred on by the potential for curcumin as an anticancer 

drug, but the benefits of finding better drug delivery systems 

will also be useful in potential treatment of AD.

Another possible reason that the clinical trials with cur-

cumin have not shown any striking benefit is that they have 

been too short. When curcumin is administered to a trans-

genic mouse or a rat with toxin-induced neuronal damage, 

it may lead to disruption of β-amyloid deposition and even 

reverse some of the behavioral effects. However, in humans, 

AD progresses over a period of many years, and by the time 

symptoms are seen, there is extensive neuronal damage.155,156 

Similar results have occurred with the β-amyloid vaccine, 

β-amyloid antibody treatment, and γ-secretase inhibitors, 

which were effective in transgenic mice, but did not improve 

cognitive function in patients who were already symptomatic 

for AD.157–164 For this reason, a treatment that may be neuro-

protective should be initiated early to slow and prevent the 

damage from occurring, or if it has begun, to prevent it from 

progressing as rapidly.157 Thus, curcumin may have a role as 

a protective agent rather than a reversal agent, and it may 

benefit from being combined with other compounds, such as 

resveratrol, piperine, or epigallocatechin gallate from green 

tea, that have been shown to exert neuroprotective effects or 

that may enhance the effectiveness of curcumin.90,165,166
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