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Abstract  

Temporal memory enables us to remember the temporal order of events happening in 

our life. The human medial temporal lobe (MTL) appears to contain neural 

representations supporting temporal memory formation, but the cellular mechanisms that 

preserve temporal order information for recall are largely unknown. Here, we examined 

whether human MTL neuronal activity represents the temporal position of events during 

memory formation and recall, using invasive single and multi-unit recordings in human 

epilepsy patients (n = 19). Participants freely navigated a virtual environment in order to 

explore and remember locations and temporal positions of objects. During each 

exploration period, they sequentially encountered two or three different objects, placed in 

different locations. This allowed us to examine single- and multi-unit neuronal firing rates 

(FR) as a function of the temporal position the objects were presented in. We found that 

a significant number of multi-units and single-units in various MTL regions including the 

hippocampus showed selectivity to the temporal position of objects during the exploration 

period. During recall, patients were asked to indicate which one of two objects from the 

same trial was found latter. Neural firing rates during recall showed a selectivity 

supporting recall of temporal positions. Interestingly, most of the selective single-units 

that stayed selective during encoding and recall preserved their temporal position 

preference. Our results thus suggest that neuronal activity in the human MTL contains a 

preserved neural code for temporal order in memory formation and recall.  

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.12.618011doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.12.618011
http://creativecommons.org/licenses/by-nc/4.0/


Introduction  

Our lives are organized in time, therefore events happening in our lives follow a temporal 

order. Thus, when the brain form memory traces about events in our lives, they aim to 

maintain the same temporal order because it is ecologically beneficial. Amnesia for 

temporal order and content were observed in patients with thalamus lesions (1, 2). 

Furthermore, bilateral damage to the fornix, eliminating communication between frontal 

lobe and hippocampus, was found to cause retrograde temporal order amnesia without 

affecting non-temporal memories (4). The medial prefrontal and retrosplenial cortices 

have also been reported to play a role in recency memory in rodents (4–6). In the context 

of working memory, the order of items in a sequence is encoded by neural firing phase 

with respect to theta oscillations (7, 8). In the context of memory that covers longer 

periods of time combined with other behavioral tasks such as navigation, previous human 

single-neuron studies in epilepsy patients observed neurons in the human medial 

temporal lobe (MTL) regions that track the time and temporal order of events (9–12). 

Together, these different lines of research suggest that the human brain contains 

dedicated neural mechanisms for temporal order memory. 

Here, we aimed at understanding whether neural processes for temporal order during 

memory formation are related to those during retrieval. Specifically, it currently remains 

elusive whether neuronal activations that encode temporal order during memory 

formation get reactivated during temporal order recall. This would suggest a preserved 

neural code in a population of neurons that is involved in both computations of encoding 

and recalling. A prior study indicates that time cells, which are neurons that fire 

consistently in specific moment of time in a task, may be unrelated to this process as time 

cells were found to comprise two different populations that were active either during either 

the encoding or recall period of episodic memory (13). Though time cells’ activity during 

encoding predicted the temporal organization of retrieved memory, the activity of the 

encoding and recalling populations of time cells were segregated: Most of the time cells 

which were selective to time during encoding were not selective to time during recall, and 

a small proportion of the encoding population that stayed selective to time during recall 

did not show consistent activation similar to the one during encoding (13). Thus, how the 
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encoded information about temporal order is transferred to neuronal populations 

supporting recall remains unknown. 

Hence, in this study, we examined neuronal activity in the human MTL related to temporal 

memory encoding and recall in a virtual-reality task combining elements of navigation and 

episodic memory which required participants to recall the temporal order of items 

presented in a sequence. We investigated whether the transfer of temporal order 

information from encoding to recall might engage neuronal populations that are engaged 

in both processes. To maintain the temporal order information across both processes, we 

furthermore hypothesized that the selectivity exhibited by MTL neurons during encoding 

would be preserved during recall. Our results revealed three neuronal populations that 

are engaged in temporal order memory. The first group of neurons appeared to be 

involved in encoding temporal order, the second in recalling temporal order information, 

and the in both encoding and recalling temporal order information, predominantly at 

identical temporal positions. We finally show that a small number of neurons is enough to 

preserve the temporal code, potentially playing a central role in transferring the temporal 

order code between both processes. 

 

Results  

To test our hypotheses, we used invasive neuronal recordings in human epilepsy 

patients. We recorded neural activity while the participating patients freely navigated a 

virtual environment to collect different objects hidden in treasure chests (so-called 

Treasure Hunt task, TH). The task required participants to encode and remember the 

identity of the objects, their locations, and their temporal positions. 

During each trial, participants sequentially encountered two or three different objects, 

randomly placed in different locations (Fig. 1A, B). The identity of the objects changed 

on a trial by trial basis. After collecting these objects, participants either had to report the 

locations of where they collected the objects or to recall the object’s name if the location 

of where they were collected was indicated (Fig. 1C). Afterwards, they were asked to 

report the relative temporal order of the objects by selecting one of two objects they had 
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collected later than the other during the same trial (Fig. 1D). We refer to the time needed 

to collect an object, including navigating toward and collecting it, as epoch (see Fig. 1E, 

for patient 12). On average, patients needed around 8.3 ± 2.8 seconds (mean ± standard 

deviation (std)) for each epoch. All patients showed a tendency for faster trial completion 

over time, indicated by a negative slope of a linear regression fit of the epoch duration to 

the trial index (Fig. 1F). Thus, participants became better in navigating the virtual 

environment with time. During the retrieval period, participants reported the temporal 

order of objects correctly with an average accuracy of 90 ± 9% (mean ± 95% confidence 

interval (ci)). Thus, our recordings from the MTLs of these patients offer a window into the 

neuronal mechanisms governing temporal memory encoding and recall. 

To carefully explore these mechanisms, we distinguished between single- and multi-unit 

neuronal recordings (SUI) and (MUI), based on the variability of their spike waveforms 

(see methods). To assess the quality of this classification, we examined the hypothesis 

that SUI recordings have a higher signal-to-noise ratio, because they putatively originate 

from a single neuron with consistent biophysical properties, in contrast to MUI recordings. 

Exploring three biophysical criteria suggested that our classification as SUI or MUI was 

accurate: First, higher peak-peak amplitude and second lower spikes counts for SUI (Fig. 

S1A, B). Peak-peak amplitude for SUI was around 107.1 ±39.3 µV (mean ± std) and 51.1 

± 10.4 µV for MUI (p<0.001; Wilcoxon rank sum test, Fig. S1Ci). Median spike count for 

SUI was 2495 (25%-75% ci: 945.5-7155.5) spikes and 8004 (3117-16978) spikes for MUI 

(p<0.0001; Wilcoxon rank sum test, Fig. S1Cii). The variability of the spike waveform was 

much lower for SUI than for MUI recordings. A linear regression fit of the spike waveform 

variability, measured by the standard deviation, to the peak-peak amplitude as input 

resulted in much steeper slope for MUI recordings as compared to SUI, (Fig. S1Ciii). We 

confirmed this statistically by repeating the fitting process 100 times for 100 randomly 

chosen data points, bootstrapping with replacement. The resulting slopes for MUI data 

was significantly steeper with 0.1153 ± 0.022 (mean ± std) as compared to the ones of 

SUI 0.023 ± 0.004 (p<0.0001; Wilcoxon rank sum test). 

After establishing the quantitative difference between both signals, we separately 

examined their relation to temporal memory encoding. We evaluated the SUI and MUI 
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FRs as a function of the temporal position which the objects were presented in during the 

navigation period. Both signals exhibited significant preferences to different temporal 

order positions (Fig. 2). For example, a hippocampal single-unit recording (Fig. 2Ai) 

showed a clearly higher FR in epoch 1 (i.e., the first temporal position) during which the 

participant was required to navigate toward and collect the first object. The average FR 

of this neuron was 2.4 ± 0.6, 1.1 ± 0.4 and 0.9 ± 0.5 Hz (mean ± 95% confidence interval 

(ci)) for the first, second and third positions respectively with a significant different 

between the three positions (p<0.001; ANOVA-surrogate statistics, see methods). 

Since the patients knew in which temporal position they were at, right from the beginning 

of each epoch, we hypothesized that temporal order information must be available 

already early during the epochs. To probe this hypothesis, we restricted our analysis of 

temporal order to the shortest time needed to finish any epoch, which we refer to as the 

shortest epoch duration (SED). For this neuron example, SED was 2.6 seconds. Hence, 

when averaging FR during the first 2.6 seconds of each epoch, despite the average length 

of all epochs being 8.2 ±33.9 seconds (mean ± std) for this session, the preferred 

temporal position stayed the same. Specifically, the FRs during SED were 3.2 ± 0.9, 1.5 

± 0.6 and 0.7 ± 0.4 (mean ± ci) for the first, second and third epoch, respectively, and the 

firing rates were significantly different from each other (p<0.001; ANOVA-surrogate 

statistics, see methods). Thus, the temporal position preference seems to be present 

already early during each epoch (Fig. 2Aii). This was not only the case for neurons 

preferring the first temporal position, but also for neurons preferring later positions (Fig. 

2B, C). 

We found that the temporal position selectivity was not limited to SUIs, but MUIs showed 

similar selectivity to different temporal positions (Fig. S2). Then we tested SUI and MUI 

recordings that showed significant preference to a specific temporal position and 

confirmed that the information encoded by FR is preserved independently of the epoch 

length (Fig. 2D). We did that by testing if the normalized FRs across temporal positions, 

when taking into account the whole period, is correlated with the normalized FRs when 

limiting analysis to the SED. The FRs correlation was strong and significant (r = 0.79, p < 

4·e-38). Moreover, we confirmed that the preferred temporal position was the same for 
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either length (Fig. 2D, right panel). Even when applying this FR correlation analysis 

between the whole epoch duration and a shorter period of 4.5 seconds aligned with the 

chest opening (last 1.5 seconds are the object presentation), the preference was 

preserved (Fig. 2E), with a significantly positive correlation (r = 0.74, p < 9·e-31). Thus, 

the FRs preference was preserved across the whole navigation and object collection 

period. Since the identity of objects changed on each trial, the FR preference exhibited 

by these neurons relates to their different temporal positions and not the objects’ identity, 

reflecting temporal order encoding at the single-neuron level in the human MTL. 

Next, we analyzed the prevalence of neurons encoding temporal order in different regions 

of the MTL. Our results replicate the temporal selectivity reported recently in amygdala 

(AMY), entorhinal cortex (EC), and hippocampus (HC) (9, 10), but also show that neurons 

in parahippocampal cortex (PHC) and temporal pole (TP) exhibited similar selectivity. We 

evaluated 294, 160, 218, 114 and 149 units from AMY, EC, HC, PHC and TP, 

respectively, which showed 44, 37, 45, 19 and 23 units that were modulated by temporal 

order (Fig. 2Fi). Among these units, there were 93, 65, 74, 38 and 42 SUIs recorded from 

AMY, EC, HC, PHC and TP, respectively, among which 18, 11, 18, 6 and 6 units were 

significantly modulated by temporal order. This corresponds to 19%, 17%, 24%, 16%, 

and 14% of the neurons being temporal order cells, a selectivity higher than chance level 

(p < 3·e-07 , 1.6·e-04, 5.6·e-09, 0.005, and 0.009; one-sided binomial tests, Fig. 2Fii, lower 

panel ). We recorded 201, 95, 144, 76 and 107 MUIs, from AMY, EC, HC, PHC and TP, 

respectively, which showed 26, 26, 27, 13 and 17 MUIs with selectivity to temporal order 

resulting in ratios of 13%, 27%, 19%, 17%, and 16%, which is significantly higher than 

5%-selectivity produced by chance ( p < 6·e-06, 1·e-13, 1·e-09, 4·e-05 and 1·e-05; one-sided 

binomial tests, respectively , Fig 2Fii upper panel). Both SUIs and MUIs showed a 

preference to be more selective to the first and third position (Fig. 2Fiii, upper panel), 

which may reflect primacy and recency effects at the single neuron level, as previously 

reported (10). When we tested whether FR is selective to one temporal positon against 

the rest after passing the surrogate test, post-hoc tests (FR of preferred temporal position 

> rest of temporal positions; Wilcoxon rank sum test, p < 0.05) showed that 53% and 48% 

of the modulated SUIs and MUIs preferred one temporal position over the rest. In total, 

these results suggest that the FRs of the temporal position selective population contain 
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information about the temporal position of the object collected from treasure box in the 

TH task. 

In a next step, we thus asked whether we would be able to decode the temporal position 

from the FRs of these neurons. To do so, we utilized a support vector machine (SVM) 

classifier that used the neurons’ FRs as features to classify the temporal positions. We 

constructed the classifier analysis in a binary way, classifying one position against the 

others. Thus we repeated this analysis three times: first position versus the rest, second 

versus the rest and third versus the rest. We trained the classifier on 80% of the data and 

tested on the remaining 20%. We repeated this procedure 10 times for the classification 

of each temporal position, using randomly selected 80% and 20% to cross-validate our 

results. Our results confirmed that the FRs can classify the temporal positions significantly 

better than the classification obtained after shuffling the labels of the temporal position 

(Fig. S3A) with an accuracy of 88.9% ± 9.6% (mean ± std), 70.7 ± 8.6%, and 78.6 ± 5.8%, 

with (p < 0.001, p = 0.11 and p = 0.036; permutation test) for first, second and third 

temporal position, respectively. The results for the area under the curve (AUC) were 96.4 

± 4.3 (mean ± std), 76.5 ± 6 and 80.6 ± 8, with (p = 0.001, p = 0.069 and p = 0.033; 

permutation test) for the first, second, and third temporal position, respectively. These 

results show better classification for the first and third temporal position, which 

presumably stems from the overrepresentation of these positions by individual neurons 

(Fig. 2Fiii, upper panel). This overrepresentation also affects the accuracy of the same 

SVM classification using FRs of MUIs which was 95.7±6% (mean ± std), 76.4 ± 4.8% and 

82.1 ± 7.7%, with (p < 0.001, p = 0.048 and p = 0.006; permutation test) for the first, 

second, and third temporal position, respectively (for more details see Fig. S4A). 

After establishing how temporal order is encoded by MTL neurons, we examined whether 

MTL neurons might also play a role in reading out the temporal order associated with the 

collected items. When the patients answered temporal retrieval questions, as shown in 

Fig. 3A, they were asked to recall which of two objects was presented later in the 

preceding encoding period. When the trial had three objects, this required three retrieval 

questions to cover all object combinations, while trials with two objects required just one 

question. 
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To directly evaluate the neurons’ engagement in temporal memory recall, we tested 

whether the FR of a given neuron increased significantly when an object associated with 

a specific temporal position was presented in a question as compared to not being 

presented. For example a neuron recorded in AMY (Fig. 3B) showed a relatively higher 

FR for questions that included objects associated with first temporal position with 2.1 ± 

0.2 Hz (mean ± ci) and 2.3 ± 0.4 Hz for questions including objects of temporal positions 

1 and 2 (“q12”) or 1 and 3 (“q13”), respectively, vs. 1.9 ± 0.4 Hz for questions including 

objects of temporal positions 2 and 3 (“q23”). These FR differences were not significant 

(p = 0.70; ANOVA-surrogate statistics). This was not surprising, given that we expected 

the neurons to be selective to objects associated with temporal position and not to the 

questions themselves which included two objects presented at different positions. So, to 

infer the FR associated with a specific temporal order, we took the FR during the 

questions that presented objects associated with a specific temporal position and divided 

this FR by the average FR during questions that did not include an object associated with 

that position. For example, to infer the FR associated with the first temporal position, we 

took the FRs during the q12 and q13 and divided it by the averaged FR during q23. We 

refer to the outcome as FR ratio. This procedure enabled us to see a significant 

preference to the first temporal positon with a ratio of 1.13 ± 0.11, 0.9 ± 0.1 and 1.0 ± 0.13 

(mean ± ci) for the first, second and third position, respectively (p=0.005; ANOVA-

surrogate statistics).  

We then tested whether the entire question presentation period was needed to read out 

this information, or if the initial period of the question presentation already contained 

sufficient temporal information. We repeated our FR ratio analysis for the shortest 

reaction time (RT) that was needed to answer a question in a session (e.g., 1.3 seconds). 

Restricting the analysis to these 1.3 seconds showed that the early period of the question 

presentation already contained sufficient temporal information for classification, whereas 

the averaged RT the patient needed to answer a question was 3.9 ± 6.7 seconds (mean 

± std). For the shortest RT, we observed similar FRs for the questions with 2.2 ± 0.3 Hz, 

2.2 ± 0.6 Hz and 1.5 ± 0.4 Hz for q12, q13 and q23, respectively (same example neuron 

as above). The FR ratios similarly indicated a preference to the first temporal position with 

1.4 ± 0.2, 0.9 ± 0.1 and 0.87 ± 0.17 for the first, second, and third position, respectively 
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(p < 0.001; ANOVA-surrogate statistics). Other neurons preferred different temporal 

positions during recall. For the neurons in Fig. 3C and D, recorded from HC and PHC, 

we observed that their FR ratios for the shortest RT indicated their preference for the 

second and third temporal positions, respectively (p < 0.001 in both cases; ANOVA-

surrogate statistics). When including the whole question periods the results remained the 

same (p < 0.001 in both cases; ANOVA-surrogate statistics). This selectivity was not only 

seen for SUIs but also for MUIs (Fig. S4).  

When comparing the FR ratios for the whole question period with the FR ratios during the 

shortest RT, for both SUI and MUI, we found a strong and significant correlation 

(Pearson’s correlation; r = 0.76, p = 2·e-238; Fig. 3E). The preferred temporal positions 

also stayed the same for both periods (Fig. 3F). Thus, the information about temporal 

order appears to be available in the MTL before reporting the answer, potentially shortly 

after the visual perception of item identity. This suggests an association between each 

item’s identity and its temporal position. We compared the results of the FR ratio analysis 

with the result produced from linear mixed models (LMM) to infer the preferred position 

during recall. LMM fits the FR of a SUI or MUI to a model that have four linearly added 

components, three of which represent a particular temporal position as an independent 

variable, and the fourth component representing random effects (see methods). When 

comparing the preferred temporal position indicated by the FR ratio approach with the 

preferred temporal position indicated by LMM, we observed similar preferences. 

However, most of the neurons did not show a significant modulation in the LMM. Hence, 

when comparing the preferred positions resulting from both methods, we referred to the 

significant neurons using FR ratios independently of the significance level resulting from 

LMM analysis (Fig. 3G). We confirmed that our FR ratio analysis did not produce false-

positive detections of modulated neurons by feeding the pipeline with shuffled question 

labels for all our recorded neurons. The detection rate was 9 neurons out of 312 with a 

percentage of 3%, which is similar to chance level (see methods).  

All the MTL regions we included in our analysis showed a significant involvement in 

temporal position recall (41, 18, 26 15 and 18 out of 84, 52, 61, 29 and 48 SUIs) recorded 

from AMY, EC, HC, PHC and TP, respectively. The involvement of these regions 
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exceeded 5%-chance level with percentages of 49%, 35%, 43%, 52% and 38%, 

respectively ( p < 9·e-32, 5·e-12, 4·e-19, 1·e-13 and 1·e-12; one-sided binomial tests, 

respectively, Fig. 3H).  

As for encoding, these results suggest that the relative FRs of MTL neurons reflect the 

temporal position of the collected item when the temporal recall question is answered. 

Hence, we tested whether we would be able to decode the temporal position from the 

relative FR ratios of MTL neurons. As for the encoding period, we utilized a SVM classifier 

that used relative FRs of the neurons showing temporal selectivity during recall as 

features to classify the temporal position during recall (same procedure as in the decoding 

analysis for the encoding period). Our results confirmed that the relative FRs can be used 

to classify the temporal position significantly better than the classification produced by 

shuffling the labels of the temporal position (Fig. S3B) with an accuracy of 91% ± 6.5%, 

97.8% ± 2.3 96.1% ± 4.3% for the first, second, and third temporal positions respectively 

(p < 0.001 for all positions;  permutation test). The AUC was as high with 0.987 ± 0.019, 

0.994 ± 0.009, and 0.995 ± 0.0124, respectively, which is significantly higher than AUC 

produced by chance (p < 0.001 for all positions; permutation test). This classifier did 

extremely well, much better than the one used for encoding analysis, which may be due 

to the higher number of trials and selective neurons we found during recall than during 

encoding (110 selective neurons and at least 116 trials per neuron during recall, 

compared to 58 selective neurons and at least 70 trials per neuron during encoding. To 

control for data size differences, we repeated the SVM procedure with trial and neuron 

numbers matching those of the encoding period. We randomly selected 58 neurons and 

70 trials, repeating the procedure 10 times. The results of this procedure (Fig. S5) showed 

decreases in the decoder accuracy and AUC, yet decoding of the second and third 

temporal positon during recall was still better than during encoding. The accuracy of the 

SVM classifier was 83.5 % ±4.1%, 91.4 % ±2.3% and 93.4% ± 2.3% for first, second, and 

third temporal positon, respectively, with significant difference for second and third 

temporal positions (p = 0.36, p = 0.00015, and p = 0.002; two-sample rank-sum test). The 

AUC was 0.9 ± 0.035, 0.98 ± 0.0179 and 0.98 ± 0.012, being significantly higher for the 

second and third temporal positions too (p = 0.18, p = 0.0001, and p = 0.026; two-sample 
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rank-sum test). Running the same SVM classification using FRs of MUIs produced similar 

results to the ones in SUIs (Fig. S4B). 

As with SUI recordings, MUIs recordings indicated similar MTL involvements in temporal 

memory recall (84, 40, 69 39 and 48 out of 268, 131, 194, 102 and 155 MUIs) recorded 

from AMY, EC, HC, PHC and TP, respectively. The involvement of these regions 

exceeded 5%-chance level with 46%, 51%, 52%, 53% and 45%, respectively (p < 2·e-59, 

6·e-32, 4·e-54, 2·e-32 and 1·e-34; one-sided binomial tests, respectively). The LMM method 

showed the involvement of 15, 5, 11, 3 and 9 MUIs, respectively, with percentages of 8%, 

6%, 8%, 4% and 8%, which were not higher than the chance level (p=0.05, p=0.41, 

p=0.07, p=1 and p=0.0840, respectively; one-sided binomial tests). When we tested 

whether FRs were selective to one temporal positon during recall against the rest after 

passing the surrogate test, post-hoc tests (FR of preferred temporal position > rest of 

temporal positions; Wilcoxon rank sum test <0.05)  found 67% of modulated SUIs and 

81% of modulated MUIs to prefer one temporal position over the rest during recall. 

So far, we have described how MTL neurons contribute to encoding and recall of temporal 

positions. We next asked whether these two processes, encoding and recall, express a 

preserved temporal-order code at the cellular level. We hypothesized that it is more 

efficient to have a neuronal population using a preserved temporal order code in both 

processes. During encoding, the population must get activated by associating both inputs, 

the temporal position and the item associated with it. This is what we observe by the 

continuing activation during navigation across the whole epoch, including the presentation 

of the item (Fig. 3D and E). However, during recall, either input would trigger the activation 

of this population. This would allow the readout of the associated input. This is a likely 

scenario because both the encoding and recall neurons are distributed in overlapping 

MTL regions. However, in an alternative scenario, separate circuits may utilize different 

computational mechanisms. In such a scenario, no neurons are engaged in both 

processes, or even if they are engaged, they do not preserve the same preference for 

temporal positions. Here, we tested these scenarios by evaluating whether the neurons 

that were selective during encoding stayed selective during recall. Indeed, we observed 

a significant population of MTL neurons, represented in our SUI recordings, to preserve 
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their selectivity in both processes. Two exemplary neurons (Fig. 4A), recorded from AMY 

and PHC, exhibited a preference to the first temporal position during both encoding and 

recall. The FR during the encoding was 1.7 ± 0.4 Hz, 1.1 ± 0.2 Hz, and 1 ± 0.5 Hz (mean 

± ci) for the first, second and third position respectively, for the neuron 4A left with p < 

0.001 ANOVA-surrogate statistics; p = 6 e-9  Wilcoxon rank sum test (first vs rest). The FR 

was 5.5 ± 0.5 Hz, 3.1 ± 0.4 Hz and 3.0 ± 0.6 Hz, respectively for the neuron 4A right with 

p < 0.001 surrogate statistics; p = 0.009 Wilcoxon rank sum test (first vs rest). During 

recall, the FR ratio was 1.29 ± .26, 0.97±0.22, and 0.86±0.22 (mean±ci) for the first, 

second and third position respectively, for the neuron 4A left, and 1.19 ± 0.13 , 1 ± 0.13 , 

and 0.87±0.13  for the neuron 4A right with p = 0.044 and p = 0.008 surrogate statistics 

for left and right neurons; p = 0.022 and p = 0.011 Wilcoxon rank sum test (first vs rest) 

for left and right neurons. Another two example neurons (Fig. 4B), recorded from EC and 

TP, showed a preference or tendency to prefer the second temporal position. During 

encoding, the FR was around (1.2 ± 0.3 Hz, 2.2 ± 0.3 Hz and 1.6 ± 0.5 Hz and 2.3 ± 0.4 

Hz, 2.5 ± 0.3 Hz and 1.9 ± 0.5 Hz for the first, second and third position, for the neuron 

4B left and right respectively, with p < 0.001 and p = 0.02 surrogate statistics; p = 0.22 

and 0.15 Wilcoxon rank sum test (second vs rest) for left and right neurons respectively). 

During recall, the FR ratios were (0.99± 0.23, 1.21 ± 0.23, 0.88 ± 0.24, and 1.15 ± 0.2, 

1.24 ± 0.2, and 0.78 ± 0.2 for the first, second and third position, for the neuron 4B left 

and right respectively with p = 0.15 surrogate statistics for left neuron and p = 0.014 

ANOVA-surrogate statistics and 0.016 Wilcoxon rank sum test (second vs rest)) for the 

right. EC neuron in 4B showed a FR modulation tendency indicating a higher FR ratio to 

the second temporal position during recall, but this did not reach significance. Such 

neurons were pooled in an encoding pool that we analyzed afterward. Another two 

neurons (Fig. 4C) from PHC showed a preference or tendency to prefer the third temporal 

position. During the encoding, the FR was around (2.2 ± 0.3 Hz, 2.5 ± 0.5 Hz, and 3.4 ± 

0.6 Hz, and 4.0 ± 0.8 Hz, 3.0 ± 0.4 Hz, and 4.4 ± 0.7 Hz for the first, second and third 

position, for the neuron 4C left and right, respectively; with p<0.001 and p=0.01 surrogate 

statistics; p=0.002 and 0.027 Wilcoxon rank sum test (third vs rest) for left and right 

neurons respectively). In recall, the FR ratios were 0.89±0.11, 0.94±0.1, and 1.15±1.18, 

and 0.9±0.16, 0.9±0.14, and 1.18±0.24 for the first, second and third position, for the 
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neuron 4C left and right respectively; with p=0.02 and p=0.085 surrogate statistics for left 

and right neurons respectively; p=0.018 Wilcoxon rank sum test (third vs rest) for left 

neuron). The right neuron in 4C were pooled in encoding only too.  

Hence, when we evaluated the whole population of cells that showed a significant 

modulation for different temporal positions (p<0.05; ANOVA-surrogate statistics, n=27) in 

both processes, we saw that the majority of these neurons preserved their preferred 

temporal position (Fig. 4D). This corresponds to the significant correlation between the 

normalized FRs across temporal positions during encoding with the FR ratios during recall 

(r=0.48, p=0.02; Pearson’s correlation). This correlation indicates that if a neuron had a 

high FR in one temporal position, it also exhibited a high FR when the item associated 

with that temporal position was presented in the recall question, providing support for our 

hypothesis of shared neural representations for temporal order between encoding and 

recall. 

To further illustrate this result, we pooled these neurons based on their preference during 

encoding, and evaluated their preferences during recall (Fig. 4D middle panels). The 

yellow histograms indicate that the neurons preferring the first temporal position during 

encoding, also preferred it during recall, together with the second position. The neurons 

which preferred the second temporal position during encoding preferred the second 

during recall. Finally, the ones preferring the third position during encoding, also preferred 

the third position during recall. When summarizing these histograms in a confusion matrix 

plot for the bars that passed the chance level of 0.33. We see that the diagonal line is 

highlighted, demonstrating the preservation of the neuronal code of temporal positions 

(Fig. 4D right panel). We applied the same analysis on the neurons that showed 

significant modulation during encoding independent of recall. We did not see a significant 

correlation between the normalized FRs and the FR ratios (Fig. 4E left panel) for this 

population, but the histograms (Fig. 4E middle panels) and the confusion matrix (Fig. 

4E right panel) still indicated that the temporal position preference was preserved to 

some extent. When testing the same procedure on the population which was significantly 

modulated during recall independently of the significance during encoding, we observed 

a significant correlation between the normalized FRs and the FR ratios (Fig. 4F left 
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panel). We also found that the histograms and the confusion matrix (Fig. 4E middle and 

right panels) indicate that the temporal position preference is preserved, too, across 

encoding and recall. If we restricted our analysis to just the neurons that passed the post-

hoc tests (FR of preferred temporal position > rest of temporal positions) after passing 

the surrogate test, we obtained similar results (Fig. S7). Thus, our results are not affected 

by the criteria of statistical testing. Moreover, when comparing the preferred retrieval 

temporal positions for the population in D with the preferred position result from LMM 

analysis, independent of the significant level of LMM, we see that the preferred positions 

are the same (Fig. 4G left panel). The overall preferred temporal positions for the 

population in Fig. 4D during encoding and recall (Fig. 4G middle blue and yellow 

panels) show a slight recency effect during encoding. The percentage of the neurons, 

which were significantly involved during both processes, encoding and recall, in MTL 

regions was significantly higher than chance level. We found 11, 5, 7, 3 and 2 selective 

neurons out of 293,158, 222, 108 and 155 neurons from AMY, EC, HC, PHC and TP, 

respectively. Thus, the resulting percentages were 3.8%, 3.2%, 3.2%, 2.8% and 1.3%, 

respectively, being significantly higher than the random chance level (0.05 for encoding 

multiplied by 0.05 for recall = 0.0025). All regions’ involvements exceeded random chance 

level (p = 4.1·e-11, 6.9·e-06, 2.4·e-07, 3.4·e-04 and 0.0143; one-sided binomial tests, Fig. 

4G right panel). 

Thus, we show here for the first time that, by preserving a selective firing to an item 

associated with a temporal position, MTL neurons may help to form and recall temporal 

order for a sequence of events by the same neuronal circuit. A straightforward 

computation that is ecologically efficient as it requires a low number of neurons to be 

involved. To proof that in practice, we trained the SVM classifier on all the encoding trials 

(n=70) using the FRs of the neurons (n=27) in 4C as features. Using this for training, we 

successfully decoded the temporal positions associated with each item in the retrieval 

questions (n=112). The SVM classifier confirmed that the encoding FRs can be used to 

classify the temporal position during recall significantly better than the classification 

produced by shuffling the encoding FRs labels (Fig. S3B) with accuracy equals 60%, 

56%, 66% for first, second and third temporal positions respectively, with (p=0.001, 

p=0.043 and p<0.001 for first, second and third positions respectively; permutation test). 
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The AUC was around 0.774, 0.56 and 0.65 respectively, which was significantly higher 

for first and third than the AUC produced by chance with (p<0.001, p=0.15 and p=0.003, 

respectively; permutation test). This is a very striking and important test because the 

classifier never saw the FRs of these neurons during recall except during testing, and 

because the recall trials (test trials) are around double the number (n=112) of the 

encoding trails (training trials, n=70). This shows that the FRs preferences are robustly 

preserved across both processes. We repeated this procedure but by training the 

classifier on the relative FRs (FR ratios) during recall, and then tested whether we can 

decode the temporal position during the encoding period based on the FRs of the same 

neurons in 4D. Indeed that worked out very well and the classifier showed accuracy of 

59%, 64% and 81% which was significantly higher for second and third than accuracy 

produced by chance with (p=0.22, p=0.02 and p<0.001, respectively). The AUC was 

0.669, 0.682, and 0.839 which was significantly higher than the AUC produced from 

shuffled labels (p=0.011, p=0.007, and p<0.001).  

We repeated the SVM analysis on MUIs using a similar number of units and trials. The 

performance of the resulting classifier was much worse with respect to accuracy and AUC 

in comparison to the classifier trained on SUI data. When training the classifier on the 

encoding trials to decode the temporal position during recall, the accuracy was 64%, 52% 

and 63% which was significantly higher just for first and third temporal positions than the 

accuracy obtained after shuffling the labels (p=0.001, p=0.26 and  p=0.002). The AUC 

was 0.71, 0.45, and 0.48 which was significantly higher just for the first temporal position 

than AUC obtained after shuffling (p<0.001, p=0.8, and p=0.064). When flipping the 

process to training using the recall part to decode the temporal positions during encoding 

periods the accuracy was 54%, 60% and 49%, not significantly different from the accuracy 

obtained after shuffling (p=0.86, p=0.17, and p=1). AUC was 0.405, 0.490, and 0.293, 

also not significantly different from AUC produced by shuffling (p=0.91, p=0.54, and 

p=0.99). This means that it is not a rate code alone but as well the network needs to 

identify which neurons fire each spike to preserve the temporal order an observation 

speaks against anatomical clusters of neurons that prefer the same temporal positions. 

The results of AUC was 0.405, 0.490 and 0.293 which was not significantly different than 

AUC produced by shuffling (p=0.91, p=0.54 and p=0.99). In total, this indicate that MUIs 
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contain higher noise they offer less information to preserve temporal order as to SUIs, 

confirmed by SVM classification results and their preferred temporal position across 

encoding and recall (Fig. S8).  

 

Discussion  

In this study, we demonstrated that neurons in the MTL play a crucial role in supporting 

temporal order recall. This finding bridges the gap between the established role of MTL 

neurons in temporal order encoding (9, 10) and their involvement in the recall process. 

Notably, we observed that a larger proportion of MTL neurons are selective for temporal 

order during recall than during encoding. SVM classifier analysis further confirmed this, 

showing higher accuracy in decoding temporal order during recall compared to encoding, 

even after controlling for the number of neurons and trials. Interestingly, most neurons 

selective during recall were not selective during encoding, suggesting a transfer of 

temporal order information across different neural populations in the MTL. 

We identified a subset of neurons that maintained their selectivity across both encoding 

and recall phases, possibly serving as the core for preserving and transferring temporal 

order information. Training the SVM classifier on this small group of neurons during 

encoding was sufficient to accurately decode temporal positions during recall, and vice 

versa. This indicates that these neurons contain the essential information needed to track 

temporal order throughout the entire process, from navigation to recall. These findings 

show that firing rate information can encode and recall temporal order; however, whether 

neuronal spike timing relative to theta oscillations (7, 8) supports this mechanism remains 

to be tested. Firing rate information and spike-field interactions might offer complementary 

perspectives on the same underlying computations. The fact that a small number of 

neurons can efficiently encode temporal order suggests this mechanism could be 

universal across different types of associative memory. Similar rapid encoding of new 

memories by linking associated items has been observed at the single-neuron level in the 

human MTL(12),  aligning with our findings of single-neuron associations between 

temporal order and objects. Long-term associations between items, or between items and 

locations, have been linked to mechanisms like spike time-locking to local field potential 
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oscillations and ripples activation(13, 14). Further studies are needed to explore how 

these mechanisms interact with firing rate computations in the context of temporal 

memory.  

MUIs showed similar temporal order selectivity during both encoding and recall as SUIs. 

This was confirmed by an SVM classifier trained solely on MUA, which successfully 

decoded temporal positions during both processes. However, MUA did not maintain its 

selectivity across both encoding and recall, likely due to different neurons being selective 

in each process. This suggests that neurons in the MUA group that are active during one 

process prefer different temporal positions. This finding indicates that selectivity for 

temporal positions is not based on anatomical clusters, as observed in sensory and motor 

modalities (15–17). It implies that preserving temporal order relies not on a simple rate 

code but on the network’s ability to identify which neurons fire at specific times. If neurons 

in the same MUI cluster preferred the same temporal positions, we would expect better 

classification performance in MUI-based SVM analysis. Thus, the firing rate code of 

neurons with a specific temporal order preference is sufficient to elegantly preserve 

temporal order across encoding and recall using only a small number of neurons 

The sustained selectivity of temporal order neurons throughout the entire navigation and 

object collection phases during encoding, and across the full recall question period, 

suggests that these neurons differ from time cells. Time cells are selective to specific 

moments in a task, firing at precise time points (11, 18, 19). In contrast, temporal order 

neurons track order over extended periods, providing a continuous representation of 

temporal order. The sequential activation of time cells, which can track different task 

epochs in a low-dimensional space (20), suggests potential interactions between both 

systems. Additionally, the consistent observation of temporal order selectivity across five 

MTL regions suggests a universal temporal memory code in the MTL, though the exact 

underlying mechanisms remain to be explored.  
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Figures  

 

Figure 1. Behavioral evaluation of patients’ performance in the Treasure Hunt (TH) paradigm. A. Top view 

of the virtual reality in which the subjects had to navigate and collect two or three objects per trial, hidden 

in treasure chests that are presented in a temporal sequence (memory encoding). B. Subject view while 

navigating and collecting treasures. When navigation starts, epoch1 starts and the subject navigates the 

way until collecting treasure1. Then epoch2 starts until the collection of treasure2. That will indicate the 

start of epoch3 or the end of the whole navigation part (if the trial has just two treasures). C. Presents the 

spatial memory retrieval part of the task that is consisting of either: 1- asking the subject to indicate the 

location in which a specific treasure (object) was collected at (object cued trial) or by asking the subject to 

say the name of the object that was collected at a shown location (location cued trial). D. Presents temporal 

memory retrieval part, in which the subject is presented by two collected objects from the current trial and 

has to indicate the object collected latter. E. Shows the durations of each epoch per trial conducted in one 

session by subject 12. Note that epoch1 is indicated in very light blue, epoch2 in light blue and epoch3 in 

dark blue. F. Presents the relationship between epoch duration, time needed to collect an object in a trial 

and the trial index. Left, shows a tendency for less time needed to collect objects in later. Middle and right, 

on average most sessions showed that subjects needed less time to collect objects in later trials. G. 

Presents the accuracy percentage of correct retrieval responses of temporal positions, all sessions of a 

given patient are indicated in the same color. The response accuracy of all subjects was higher than chance 

level.   
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Figure 2. Neurons in the MTL are selective to different temporal positions during navigation. Ai Plots the 

spiking events within 100ms bins of a HC neuron, superimposed on the temporal positions (epochs) in blue 

(very light, light and dark blue for epoch 1, 2, and 3, respectively). Note that spiking events of the neuron 

are concentrated in epoch 1 and the ones of neuron B and C are concentrated in epochs 2 and 3,  

respectively. Note the density function plot in Ai which plots the spike waveform Aii. Quantifies the 

selectivity of the neurons. The left bar plot present the averaged firing rate during each epoch (colors 

indicate the epoch as in Ai. Black circles indicate the average firing rate per epoch per trial, black lines 

connect between them for the same trial. The right bar plot presents the averaged firing rate during each 

epoch showing the time needed for the fastest reaction time (RT). The two histogram plots at the right 

present raw F-value in red with respect to surrogate F-values generated from one-way ANOVA testing of 

shuffled data across the three epochs. The upper plot is generated for the shortest time needed for fastest 

RT. The lower plot is generated using the whole epoch. Note that both plots show similar and strong 

selectivity to the first epoch. B and C replicate the plots in A for two neurons preferring the second and third 

epoch, respectively. D. Plots the averaged firing rate for each epoch, normalized by the average firing rate 

across all epochs. The x-axis plots FRs averaged over the time of the shortest epoch against FRs averaged 

across the whole epoch on the y-axis. Thus each neuron provides three data-points, one for each epoch. 

Note the significant correlation between the FRs across both periods of time. The highest FRs across the 

epoch stay the same independently of the period chosen to average the FR, as indicated by the heat plot. 

E. Replicates D, but for FRs averaged across the whole epoch with FRs averaged from 3 seconds before 

chest open to 1.5 after chest open. F. Quantifies the overall neural recordings. i. Illustrates the number of 

MUIs and SUIs recorded from each region in gray and the number of selective UIs in black. ii. Plots the 

percentages of selective SUIs per region in pink and for MUIs per region in blue. iii. Plots the preferred 

epoch of each SUI in pink and MUI in blue. Note that both signals exhibit similar preferences to the first and 

third position. 
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Figure 3. Neurons in the MTL are selective to temporal positions during retrieval. A. Illustrates a sequence 

of questions which ask the subject to recall which of two objects was presented later in a given trial. When 

the trial has three objects, it requires three retrieval questions as shown in A. Trials of two objects require 

just one question. B. (up) Illustrates the region in which the neuron was recorded at and (low) Plots the 

spike waveform as a density function. The next two panels to the right plot the spiking events of the neuron 

within 100ms bins (cyan), superimposed on the temporal retrieval questions in purple (very light, light to 

dark purple for questions 12, 13, and 23, respectively). The first panel shows the questions’ order in the 

experiment and the second panel shows them reordered (12, 13 and 23). The bar plots in purple illustrate 

the firing rate of the neuron during different questions, during the whole question period (low), or during the 

time required for the shortest reaction time (RT) (up). The bar plots in yellow show the FR ratio of when an 
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object (associated with temporal position) is presented divided by the FR when it is not presented. Note 

that spiking events of the neuron in B are concentrated in q12 and q13, indicating that the neuron gets 1.5 

times as active in questions containing objects associated with the first temporal position compared to 

questions that do not contain it. This FR ratio is significantly higher than FR ratios of objects presented in 

the second or third temporal position, which are not reaching 1 here. Note that the p values in the bar plots 

are based on surrogate statistics, in which the raw F-value is compared to the surrogate F-values, similar 

to Fig. 3. C and D present neurons that show a significant selectivity to the objects presented in the second 

and third temporal positions, respectively. E. Plots the normalized FR ratios for all temporal positions. The 

x-axis plots FR ratios calculated for the whole questions periods against y-axis of FRs ratios calculated for 

the time required for the shortest RT. Thus each neuron provides three data-points, one for each temporal 

position. Note the significant correlation between the FR ratios in both time windows. The highest FR ratio 

across temporal positions stays constant independently of the chosen time interval, as indicated by the 

heat plot in F. G. A heat plot showing the preferred temporal position, based on the FRs ratio during the 

shortest RT on the x-axis, against the preferred temporal position during retrieval, based on a mixed linear 

model for the same time period (see methods for more details). Note that the estimated preferred temporal 

positions are consistent across both methods. H. Illustrates the percentages of significantly selective MUI 

and SUI recordings from each region based on FRs ratio analysis in pink and blue respectively, and based 

on mixed linear model method in in black.   
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 Figure 4. Neurons in the MTL 

which are selective to temporal 

position during encoding and 

retrieval preserve their selectivity. 

A. Presents two neurons that 

prefer the first temporal position 

during encoding and retrieval. 

The neuron in the left panel is 

recorded from AMY and the one 

in the right from PHC. Each side 

illustrates the region the neuron 

was recorded from (up) and plots 

the spike waveform as a density 

function (low). The bar plot in blue 

presents the neuron’s FR for each 

temporal position, averaged 

during the time required for the 

shortest epoch. The bar plot in 

yellow shows the FR ratios for 

each temporal position for the 

time required for shortest RT. The 

neurons presented in B and C 

illustrate preserved selectivity for 

the second and third position, 

respectively. D. Plots the 

normalized FR ratios against 

normalized FRs for the neurons 

which stayed significantly 

selective during encoding and 

retrieval. Note the significant 

correlation indicating a preserved 

selectivity to the same temporal 

position. The bar plots in yellow 

present the fraction of neurons 

with a preference for temporal 

positions during retrieval for 

neurons that were selective for 

first, second, and third temporal 

position, respectively during 

encoding. The bar plots indicate a 

trend to preserve the same 

temporal position. This is 

summarized in the heat map on 

the right that includes 

percentages exceeding the 

chance level of 33%. E and F 

replicate D but for the neurons 

which were selective during 

encoding, independent of 

retrieval, and F for selective 

neurons in retrieval, independent of encoding. Despite that both did not show correlation between FRs 

ratios and normalized FRs, both populations showed a tendency to preserve the selectivity to the same 
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temporal position. G. Left is a heat plot the preferred temporal position during retrieval based on linear 

mixed model against the positions estimated by FRs ratios, for the neurons in D.  The blue and yellow bar 

plots show the overall preferred temporal positions during encoding and retrieval for the neurons in D. The 

right plot shows the percentages of selective neurons during encoding and retrieval.  
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Supplementary figures   

 
Figure S1. Evaluation of single- and multi-unit spike sorting. A. Plots density functions of three separate 

multiunits (MUIs). B. Plots density functions of three separate single units (SUIs). Note that the SUIs have 

a higher amplitude and a thinner waveform (i.e. less variability). Ci. Evaluates the peak to peak amplitude 

of the spike waveform of MUIs and SUIs in red and blue, respectively. Cii. Evaluates the action potential 

counts of MUIs and SUIs. Note that MUIs have higher numbers of counted action potentials. Ciii. Plots 

Spikes (action potentials) noise, measured by the standard deviation of the spike waveform, against the 

peak to peak amplitude. Note that the noise increases linearly with the amplitude but with much steeper 

slope for the MUIs than the SUIs. The small panel in Ciii plots 100 slopes estimated from a bootstrapping 

procedure that was repeated once for each slope to estimate it by fitting it to 100 randomly chosen data 

points from MUIs and SUIs. The 100 MUIs slopes are significantly steeper than the ones of SUIs indicating 

a noisier MUIs spike waveforms.  
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Figure S2. MUIs in the MTL are selective for different temporal positions during navigation. (A, left) Plots 

a density function of the spike waveform of a MUI recorded from PHC. The bar plot presents the averaged 

firing rate during each epoch taking the time needed for the shortest epoch, as in Fig. 2 (blue degree 

indicates the epochs 1, 2, and 3 using light, middle and dark blue respectively). The p-value indicates a 

significant modulation with higher FR for the first epoch (p<0.001; surrogate ANOVA). Note that the plots 

in A-right, show another MUI with similar selectivity recorded from AMY. The plots in B and C and repeating 

the same in A, but with a selectivity for the second and third temporal positions, respectively. 
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Figure S3. Classification results of a support vector machine classifier. A. Presents SVM classifier results 

for the encoding period, using FRs of selective neurons during encoding as features to predict temporal 

position. SVMs are used as binary classifiers; one temporal position against all the others, i.e., first position 

versus the rest (green), second versus the rest (red) and third versus the rest (orange). Cross-validation 

was performed by training the classifier on a random subset of 80% of the data and testing it on the 

remaining 20%, with 10 repetitions for each temporal position. The results confirmed that the FR features 

can be used to classify the temporal positions significantly better than by chance, estimated by the 

classification of shuffled labels with accuracy of 88.9 ± 9.6% (mean±std), 70.7±8.6% and 78.6±5.8%, with 

(p<0.001, p=0.11, and p=0.036; permutation test) for first, second and third temporal position respectively. 

The results for the area under the curve (AUC) was 0.964±0.043 (mean±std), 0.765±0.06 and 0.806±0.08, 

with (p=0.001, p=0.069, and p=0.033; permutation test) for first, second, and third temporal position, 

respectively. B. Similar to A, presents SVM classifier results for the recall period, using FR ratios of selective 

neurons during recall as features to predict temporal position during recall. The SVM classification accuracy 

of the temporal positions was significantly better than chance level, estimated by classification of shuffled 

labels with accuracy 91±6.5%, 97.8±2.3%, and 96.1±4.3% for the first, second and third temporal position 

respectively, with (p<0.001 for all positions;  permutation test). The AUC was 0.987±0.019, 0.994±0.009, 

and 0.995±0.0124, respectively, which is significantly higher than AUC produced by chance with (p<0.001 

for all positions; permutation test). Note that cross-validation was applied as in A. C. The SVM classifier 

was trained on the encoding periods of the trials, using the FRs of the selective neurons during encoding 
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and recall as features. The classifier was tested on the recall period, aiming to decode the temporal 

positions. FR ratios of the same neurons were used as features for testing, i.e., features the classifier was 

not trained on. The SVM succeeded in classifying the temporal positions with higher accuracy than chance 

level estimated by classifying shuffled labels with accuracy 60%, 56%, and 66% for first, second and third 

temporal positions, respectively, with (p=0.001, p=0.043, and p<0.001 for first, second and third positions, 

respectively; permutation test). The AUC was around 0.774, 0.56, and 0.65, respectively, which was 

significantly higher for first and third temporal position than AUC produced by chance with (p<0.001, p=0.15 

and p=0.003, respectively; permutation test). D. Represents the same procedure line as C, but the classifier 

used here was trained on FR ratios during recall and tested on FR during encoding.  The classifier showed 

accuracy of 59%, 64%, and 81%, which was significantly higher for second and third temporal position than 

accuracy produced by chance with (p=0.22, p=0.02, and p<0.001, respectively). The AUC was 0.669, 

0.682, and 0.839, which was significantly higher than the AUC produced after shuffling labels (P=0.011, 

P=0.007 and P<0.001). 
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Figure S4. Classification results of a support vector machine classifier applied to MUIs. This figure repeats 

the same analysis as in S3, but with MUI data. A Accuracy of 95.7±6% (mean±std), 76.4±4.8% and 

82.1±7.7%, with (p<0.001, p=0.048, and p=0.006; permutation test) for first, second and third temporal 

position, respectively. The results for the area under the curve (AUC) was 0.993±0.015 (mean±std), 

0.857±0.069 and 0.842±0.15, with (p<0.001, p=0.07, and p=0.017; permutation test) for first, second and 

third temporal position, respectively. B. Accuracy was 99.0 ±1%, 98.1 ±2%, and 99.9 ±2%, with (p<0.001 

for all; permutation test). The AUC was 0.995 ±0.054, 0.993 ±0.035 and 0.991 ±0.026 with (p<0.001 for all; 

permutation test). C. Accuracy was 64%, 52%, and 63% which was significantly higher just for first and 

third temporal positions than the accuracy obtained after shuffling the labels (p=0.001, p=0.26 and  

p=0.002). The AUC was 0.71, 0.45, and 0.48 which was significantly higher just for the first temporal 

position than AUC obtained after shuffling (p<0.001, p=0.8, and p=0.064). D. When flipping the process, 

i.e., using the recall part for training to decode the temporal positions during encoding periods, the accuracy 

was 54%, 60% and 49%, not significantly different from the accuracy obtained after shuffling (p=0.86, 

p=0.17, and p=1). AUC was 0.405, 0.490, and 0.293, also not significantly different from AUC produced 

after shuffling (p=0.91, p=0.54, and p=0.99). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.12.618011doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.12.618011
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure S5. MUIs in the MTL are selective for different temporal positions during recall. This figure repeats 

the analysis shown in Fig. 3.  A-left. Plots a MUI that is recorded from PHC. The density plot shows the 

spike waveform. The yellow bar plots in yellow show FR ratio of FR when an item (associated with temporal 

position) is presented divided by FR when that item is not presented. Note that this neuron is modulated 

towards higher FR when items associated with the first temporal position are presented in the question than 

items associated with the second or third position. Note that the p-values in the bar plots are based on 

surrogate statistics, in which the raw F value is compared to the surrogate F values, similar to Fig. 3. A-

right. Presenting another MUI which is selective to the first temporal position. C and B replicate A with a 

significant selectivity for the items presented in the second and third temporal positions., respectively. 
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Figure S6. Comparison between the classification results during encoding and recall. This figure shows 

the SVM classification results for encoding (solid lines) and recall (disconnected lines) for the same data 

size. We randomly selected 58 neurons and 70 trials, repeated the classification 10 times, selecting 80% 

of the data set randomly for training, the remaining 20% for testing in each round. Note that SVM 

classification was better for recall than for encoding for the second and third temporal positions. The 

accuracy of the SVM classifier during recall was 83.5±4.1%, 91.4±2.3% and 93.4±2.3% for first, second 

and third temporal positon, respectively, after reducing the data size, with a significant difference for second 

and third temporal positions (p=0.36, p=0.00015, and p=0.002; two groups rank-sum test). The AUC during 

recall become 0.9±0.035, 0.98±0.0179, and p=0.98±0.012, significantly higher for second and third 

temporal positions, too (p=0.18, p=0.00018 and p=0.026; two groups rank-sum test). 
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Figure S7. Quantification of neurons that are selective to one temporal position during encoding and recall.   

The blue and yellow bar plots show the overall preferred temporal positions during encoding and retrieval, 

respectively, for the neurons preferring one temporal position. The right plot shows the percentages of 

selective neurons during encoding and retrieval in all regions that have these neurons with a percentage 

higher than chance level (p<0.05; one-sided binomial tests). 
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Figure S8. Quantification of MUIs that showed selectivity to temporal positions during encoding and recall.   

A. The bar plots in yellow present the percentage of MUIa that showed a preference for temporal positions 

during recall for neurons that were selective for first, second and third temporal position, respectively, during 

encoding. B. The heat map summarizes the bar plots in A including percentages exceeding the chance 

level of 33%. The blue and yellow bar plots show the overall preferred temporal positions for these MUIs 

during encoding and recall. 
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Methods  

Human subjects 

This study included data of 19 patients with pharmacologically intractable epilepsy who were implanted with 

depth electrodes at the Freiburg Epilepsy Center, Freiburg im Breisgau, Germany. Written consent 

conforming to the guidelines of the ethics committee of the University Hospital Freiburg, Freiburg im 

Breisgau, Germany was obtained from all patients. 

Neurophysiological 

Patients underwent surgical implantation of intracranial depth electrodes in the medial temporal lobe to 

accurately identify the focus of epileptic seizures for potential resection. The specific locations and number 

of electrodes varied across individuals, based on clinical requirements. Neuronal signals were recorded 

using Behnke-Fried depth electrodes (AD-TECH Medical Instrument Corp., Racine, WI, USA), each 

consisting of a bundle of nine platinum-iridium microelectrodes with a diameter of 40 mm, extending from 

the tip of the depth electrode (21). Eight of the microelectrodes were used for electrophysiological 

recordings, which were later filtered to capture action potentials and local field potentials, while the ninth 

served as a reference electrode. Microwire data were recorded at a sampling rate of 30 kHz using the 

NeuroPort system (Blackrock Microsystems, Salt Lake City, UT, USA). The microelectrodes were implanted 

in various brain regions, including the amygdala, entorhinal cortex, fusiform gyrus, hippocampus, insula, 

parahippocampal cortex, temporal pole, and visual cortex.  

Spike detection and sorting  

We used Wave_Clus (22) to detect and sort neuronal spikes. Each cluster was visually inspected and 

evaluated with respect to spike shape, its variability, and the presence of a clear refractory period based 

on inter-spike interval (ISI) distribution. We manually adjusted or excluded clusters where necessary. We 

excluded clusters with mean firing rates below 0.1 Hz during the analysis window (following (23, 24)). We 

classified our clusters as single-unit when variability of their spike waveforms was low or multiunit for 

clusters with high waveform variability. This classification was quantified afterwards as shown in (Fig. S1). 

We identified 935 units, 623 multiunits and 312 single units. Neuronal responses from different sessions 

were treated as statistically independent. An experienced rater assigned depth electrode locations to brain 

regions using post-implantation MRI scans in order to link neurons recorded from each microelectrode 

bundle to a specific brain area. 

Spatial navigation–episodic memory task with embedded temporal memory  

In the treasure hunt task, the patients sat in bed and performed a hybrid spatial navigation–episodic memory 

task running on a laptop. The task was adapted from previous studies (9, 25) and implemented using 

Unity3D (Unity Technologies, San Francisco, CA, USA). The virtual environment was designed to resemble 
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a beach, enclosed by a circular wooden fence with a diameter of 100 virtual units (vu). Navigation was 

restricted to the area inside the fence. There were no landmarks within the environment itself, but, some 

landmarks, such as palm trees and barrels, were positioned just outside the fence. One side of the beach 

bordered the sea, and the background featured mountains, palm trees, and the sky (Fig. 1A-C). Patients 

completed up to 40 trials per session. At the start of each trial, they were placed at a random location on 

the virtual beach ("passive home base transport"; Fig. 1A) and remained there until they initiated the trial 

by pressing a button. They then navigated to a series of treasure chests that appeared one after another 

on the beach ("navigation–encoding period"; Fig. 1A). Participants were encouraged to reach the chests 

as quickly as possible to earn bonus points for efficient navigation. Upon reaching a chest, they were 

automatically rotated to face it, and the chest opened to reveal an object and its name (Fig. 1A-C). After 

1500 ms, the chest and object disappeared. Each trial involved visiting 2 or 3 chests, and across 40 trials, 

patients encountered 100 chests in total. After visiting the final chest in a trial, patients were passively 

transported to one of two elevated positions where they had an overhead view of the environment ("passive 

tower transport"; Fig. 1A-C). They then played a distractor game in which they tracked which of three 

moving boxes contained a coin. After the distractor game, the recall phase of the trial began. During the 

recall phase, patients either completed location-cued object recall or object-cued location recall on a trial 

by trial basis. We did not analyze these recall parts in this study. After recalling all locations and objects 

from a trial, patients completed a temporal order judgment task, where they were asked to decide which of 

two objects they had encountered later. Thus, the recall phase tested all components of episodic memory: 

object, location, and temporal information. At the end of the trial, patients received feedback on their 

performance, including points for correct object, location and temporal order recalls. Patients navigated the 

virtual environment using a game controller (forward, turn left, turn right), and their virtual positions and 

heading directions were recorded at 60 Hz. We synchronized the behavioral and electrophysiological data 

using triggers sent from the task paradigm to the recording system. 

General information on statistics 

We used MATLAB 2020b with different MATLAB toolboxes and custom MATLAB code to analyze our data. 

The specifics of the statistical testing are indicated in the results, in general we considered results 

statistically significant when the corresponding p value fell below an alpha level of a = 0.05. Surrogate and 

permutation statistics were generally one-sided to assess whether an empirical test statistic exceeded a 

distribution of surrogate statistics significantly, unless otherwise specified. We adjusted the neuronal spike 

times to the behavioral time axis using the time stamps of trigger pulses that were sent from the laptop 

running the paradigm to the recording system. We then downsampled the behavioral data to 10 Hz following 

(24) and calculated the neuronal firing rate (Hz) for each sample (i.e., for each 100 ms time bin). We 

identified single- and multi-units to be temporally selective during encoding if they showed modulation of 

their firing rate across different epochs during navigation using one-way ANOVA with the factor temporal 

position. To measure how selective the units were during recall, we looked at their firing rates related to a 
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specific object linked to a temporal positon. Since the recall question involved two objects at a time, we 

calculated the firing rate for a specific temporal position by checking firing rate of the units during questions 

with objects from that temporal position. Then, we divided this by the average firing rate during questions 

without objects from that temporal position. We named these values "FR ratios."  We calculated a FR ratio 

for objects associated with each temporal position. Then we compared the empirical F-value resulting from 

one-way ANOVA for a temporal position to 101 surrogate F-values resulting from the same ANOVA test of 

shuffled temporal position. The results of this test was checked using permutation testing in which the 

empirical difference between two FR ratios of two temporal positions was compared to 101 permutated 

difference value of the same positions after shuffling the labels. We applied this check three times per 

neuronal unit to cover the comparison between three temporal positions. We considered a unit selective if 

the empirical difference between any two temporal positions exceeded the 95th percentile of 101 

permutations of the same positions. The difference between the permutation testing and the surrogate-

ANOVA is that we apply one time ANOVA across all temporal positions to extract an F-value. In permutation 

testing, we extract the difference between every pair of temporal positions without any assumptions about 

the dependencies across the FR ratios of temporal positions. Each unit that was significant using the 

surrogate-ANOVA procedure was found significant in the permutation testing. In the linear mixed models 

(LMM) analysis, we inferred the preferred position during recall by LMM fits of the firing rates to a model 

that had four linearly added components, three representing each temporal position as effects, and one 

component representing random effects. We compared the empirical beta, being the maximum beta with 

surrogate beta generated by shuffling the temporal positions labels. We considered a unit significant if the 

empirical beta f exceeded the 95th percentile of 101surrogate beta factors. The preferred temporal position 

indicated by the FR ratio approach was similar to the preferred temporal position indicated by LMM (Fig. 

3G and Fig. 4G), yet LMM showed lower percentages of significant units. The LMM analysis showed the 

involvement of (8, 3, 3, 4 and 3 SUIs, respectively) with percentage of 10%, 6%, 5%, 14% an 6%, that are 

higher than chance level for AMY and PHC only (p=0.049, p=0.52, p=0.73, p=0.03 and p=0.44; one-sided 

binomial tests, respectively). To test whether the surrogate-ANOVA or the permutation are causing false 

positives, we applied an additional control analysis. We shuffled the question labels for each unit and then 

fed it to our surrogate-ANOVA analysis pipeline. Since the data was shuffled across the questions, our 

pipeline should not detect significant neurons higher than a chance level of 5%. Indeed that was the case 

as we detected rate was 9 neurons out of 312, i.e. 3%, lower than chance level. We tested the stability of 

our analysis to the duration of epochs or the questions. We compared the normalized firing rates between 

different temporal positon for different duration, the start, the whole, or end of the periods. The selectivity 

stayed stable for both encoding and recall for the different periods (Fig. 2D).  

SVM decoding analysis  

We employed support a vector machine decoder implemented in Matlab to test whether we can decode the 

temporal position from the firing rates of the selective single- and multi-units. We constructed the classifier 

analysis in a binary way, classifying one position against the others. We repeated this analysis three times: 
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first position versus the rest, second versus the rest and third versus the rest. We trained the classifier on 

80% of the data and tested on 20%. We repeated this procedure 10 times for each temporal position 

classification, using randomly selected 80% and 20% to cross-validate our results. Our results confirmed 

that the FRs can classify the temporal positions significantly better than the classification produced by 

shuffling the labels of the temporal position (Fig. S3A) with accuracy and area under the curve higher than 

chance level. Similar decoding was applied to data recorded during recall but with the FR ratios as 

predictors to decode the temporal positions. The amount of data used with the classifier during encoding is 

smaller than the amount of data collected during recall because more neurons showed stronger selectivity 

during recalls, and we collected more data-points per trial, as each trial had two to three recall questions. 

Therefore, the classifier had a much higher accuracy when decoding the temporal position during recall.  
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