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Abstract

The family of type I interferons (IFN), which consists of several IFN-a and one IFN-b, are produced not only after stimulation
by viruses, but also after infection with non-viral pathogens. In the course of bacterial infections, these cytokines could be
beneficial or detrimental. IFN-b is the primary member of type I IFN that initiates a cascade of IFN-a production. Here we
addressed the question which cells are responsible for IFN-b expression after infection with the intracellular pathogen
Listeria monocytogenes by using a genetic approach. By means of newly established reporter mice, maximum of IFN-b
expression was observed at 24 hours post infection in spleen and, surprisingly, 48 hours post infection in colonized cervical
and inguinal lymph nodes. Colonization of lymph nodes was independent of the type I IFN signaling, as well as bacterial
dose and strain. Using cell specific reporter function and conditional deletions we could define cells expressing LysM as the
major IFN-b producers, with cells formerly defined as Tip-DCs being the highest. Neutrophilic granulocytes, dendritic cells
and plasmacytoid dendritic cells did not significantly contribute to type I IFN production.
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Introduction

Interferons (IFN) were first discovered over 50 years ago by

Isaacs and Lindenmann [1]. Due to its complexity, the IFN system

is still little understood and remains a subject of intensive research.

Currently, three types of IFNs are distinguished – type I, type II

consisting of only IFN-c, and the recently discovered type III also

called IFN-l. Here, we will focus on type I IFN. This family of

cytokines comprises a single IFN-b, more than 13 IFN-a, and

several other less well characterized members [2,3]. All these

subtypes signal through a common cell surface receptor (IFNAR)

to activate IFN-inducible genes that exert a wide range of effects

central to innate and adaptive immunity [2]. As a rule, IFN-b is

produced as the earliest of type I IFN initiating a cascade of IFN-a
via autocrine and paracrine loops [4,5]. In addition, during viral

infections type I IFN may be induced in plasmacytoid dendritic

cells (pDCs) also named ‘‘natural interferon producing cells’’. Due

to constitutive expression of the transcription factor IRF-7, pDCs

are able to immediately produce large amounts of IFN-a [6]. Non-

viral pathogens (i.e., bacteria, protozoa, fungi and helminthes) may

also induce type I IFN. Interestingly, in contrast to viral infections

where IFNs are normally protective, in non-viral infections IFN

production might be defensive or deleterious [7,8].

The prototype of a deleterious type I IFN response during

bacterial infection is experimental listeriosis elicited by the gram-

positive rod-shaped intracellular bacterium Listeria monocytogenes

that was discovered in 1926 (reviewed in [9]). L. monocytogenes

induces type I IFN synthesis via triggering a still uncharacterized

pattern recognition receptor in the cytosol of host cells [10,11].

Cyclic diadenosine monophosphate (c-di-AMP), secreted by L.

monocytogenes, might be one of the cytosolic activators of type I IFN

[12]. In addition, lymphotoxin-a might be involved in the

triggering of type I IFN responses [13,14] and lymphotoxin b
receptor was shown to be crucially involved in the controlling of

Listeria monocytogenes infection [15].

Secretion of type I IFN increases susceptibility to Listeria by

inducing apoptosis of T cells and macrophages [16–18]. In

accordance, mice deficient of IFNAR are more resistant to Listeria

and show decreased T cell apoptosis in the spleen during infection

[17,19,20]. Moreover, type I IFN are able to down regulate IFN-c
receptor thereby suppressing macrophage activation and increas-

ing host susceptibility to Listeria infection [21,22].

Intravenously inoculated L. monocytogenes is taken up by the

spleen and removed from the blood predominantly by mononu-

clear phagocytes in the marginal zone of the white pulp [23].

Myeloid cells, especially monocytes and macrophages are rapidly

recruited to sites of bacterial infection and are required for initial

control of L. monocytogenes infection [11,24–26]. During bacterial

infections, circulating monocytes are known to differentiate into

tissue macrophages and dendritic cells (DCs) [27]. Additionally,

inflammatory Gr1+/Ly6Chigh monocytes are able to differentiate

into tumor necrosis factor-a (TNF-a) and inducible nitric oxide

synthase (iNOS) producing so-called Tip-DCs at sites of infection

[11].

According to recent publications, different myeloid cell populations

were shown to be responsible for IFN-b production during Listeria

infection. Stockinger et al. defined CD11b+CD11c2PDCA12B2202

macrophages to be the major IFN-b producers and pDCs were

claimed to make no contribution [28]. On the other hand, Dresing et

al. observed IFN-b exclusively in the myeloid cell population called
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Tip-DCs [29]. In the present study, we used a genetic approach to

address the question which cells produce IFN-b during experimental

listeriosis.

Previously, we generated a conditional mouse line, in which the

IFN-b coding sequence is replaced by the reporter luciferase upon

cell specific Cre expression [30]. Here we explored CD19cre,

CD4cre and LysMcre mice to activate the reporter function in B

cells, T cells, monocyte/macrophages and neutrophils. As reporter

mice, we used mice that were heterozygous for the targeted

mutation. This allowed IFN-b production from the functional wild

type allele. To demonstrate the physiological relevance of IFN-b
produced by the cell types mentioned above, we included mice

homozygous for the conditional deletion and compared them with

mice in which IFN-b was deleted in germ line. Overview of

transgenic mice used in this paper is presented in Figure S1.

Using these genetically modified mice, we highlight the

importance of IFN-b during the deleterious action of type I IFN

in the course of Listeria infection. In addition, the novel reporter

mice revealed a maximum of IFN-b induction 24 hours post

infection (p.i.) in spleen and, surprisingly, 48 hours p.i. in cervical

and inguinal lymph nodes after high dose intravenous infection.

Low dose infection followed the same pattern of IFN-b production,

although with delayed kinetics. The luciferase signal in spleen and

lymph nodes mirrored the presence of Listeria in these organs.

Moreover, our results showed that LysM-expressing cells are the

main producers of IFN-b during murine listeriosis, especially the

cells previously defined as Tip-DCs. Finally, neutrophils, DCs and

pDCs and did not significantly contribute to type I IFN production

under our conditions of L. monocytogenes infection.

Results

During Listeria monocytogenes infection, IFN-b is
produced in spleen and lymph nodes

Different strains of Listeria monocytogenes vary in their ability to

activate type I IFN production [31]. Here we compared LO28 and

EGDe, two commonly used strains of Listeria monocytogenes. First, we

asked when and where type I IFN is induced. To address this

question, we used a previously described IFN-b reporter mouse,

which allows whole body in vivo imaging of IFN-b induction using

firefly luciferase as a reporter [30]. Figure 1A shows induction of

IFN-b in albino IFN-b+/Db-luc reporter mice after intravenous (i.v.)

injection of Listeria monocytogenes LO28 and EGDe strains. At

24 hours post infection (p.i.), IFN-b induction occurred almost

exclusively in the spleen. Interestingly, 48 hours p.i. a bright

luminescent signal appeared in the cervical and in the inguinal

lymph nodes, especially when using the LO28 strain. At this time,

no production of IFN-b was detectable in the spleen any longer.

Loss of the signal from the spleen 48 hours p.i. could be due to

complete destruction of spleen together with the massive apoptosis

of lymphocytes [32]. Quantitation of luciferase activity in the

selected regions of interest (Fig. 1A, circles 1 and 2 for spleen and

cervical lymph nodes, respectively) showed that LO28, induced a

stronger signal compared to EGDe (Fig. 1B), although coloniza-

tion by bacteria was comparable (Fig. 1C). This confirmed the

findings by Reutterer et al. that LO28 is the most potent type I

IFN stimulator amongst the commonly used Listeria strains [31].

Of note, there was no significant signal from the liver at any time

point, although this organ is highly colonized by Listeria.

Listeria monocytogenes colonizes cervical and inguinal
lymph nodes

Systemic application of L. monocytogenes is used in many studies

related to host-pathogen interaction [9,33,34], and spleen and

liver were defined as the target organs of these bacteria [23]. Little

attention has been paid to lymph nodes until now. Our finding

that IFN-b is produced in the lymph nodes lead us to test whether

lymph nodes are also colonized by Listeria after i.v. infection.

Indeed, already 24 hours p.i. we could observe bacteria in cervical

and inguinal lymph nodes independent of the bacterial strain used

(Fig. 1C). Between 24 and 48 hours p.i., bacterial burdens in

lymph nodes increased about 100 fold. Colony forming units of

Listeria in spleens and livers also increased although not as

dramatic.

To investigate the influence of type I IFN on lymph node

colonization, we compared wild type C57BL/6, IFN-b2/2 and

IFNAR2/2 mice. Like in spleen, a defect in the type I IFN system

resulted in lower bacterial numbers (Fig. 2) confirming a

detrimental role of these cytokines also in lymph nodes. These

differences were only detectable at 48 hours p.i., consistent with

the peak of IFN-b production at this time point.

To rule out whether lymph node colonization is specific and is

not due to the high dose of infection, we first monitored albino

IFN-b+/Db-luc reporter mice for IFN-b production after low dose

Listeria monocytogenes infection (Fig. 3A). Luciferase expression at

24 hours p.i. peaked in spleen. At 48 and 72 hours p.i. we

observed the signal both in spleen and in cervical lymph nodes. At

96 hours p.i. the IFN-b production pattern was almost identical to

the 48 hour time point after high dose infection (Fig. 1A), although

the overall luminescent signal was lower (note the different scales).

Quantification of luminescence intensity in regions of interest

(Fig. 3B) in spleen and cervical lymph nodes (Fig. 3A, selected

circled areas 1 and 2, respectively) confirmed qualitative in vivo

data presented in Fig. 3A.

As expected, colonization of lymph nodes paralleled IFN-b
production (Fig. 3C). These observations suggested that lymph

node colonization by L. monocytogenes with subsequent IFN-b
production is general phenomenon and does not depend on the

bacterial dose, strain or type I IFN signaling.

pDCs do not contribute to the production of type I IFN
during Listeria monocytogenes infection

In response to a wide variety of enveloped DNA and RNA

viruses (e.g., Influenza virus, vesicular stomatitis virus) as well as

parasites (Plasmodium falciparum) and CpG oligonucleotides, IFN

type I is produced by pDCs [35]. L. monocytogenes was shown after

intragastric administration to activate pDCs in spleen and in

mesenteric lymph nodes as detected by an increased expression of

MHC II and CD86 [36]. By extrapolation, a contribution of pDC

to the type I IFN response after systemic Listeria infection could be

expected, although in vitro stimulation of splenic pDC with Listeria

did not induce type I IFN [28]. To evaluate the contribution of

pDC to the overall IFN production in vivo after Listeria monocytogenes

infection, we performed depletion experiments. To this end,

24 hours prior to infection mice were intravenously injected with

the depleting antibody anti-mPDCA-1. 24 hours p.i. spleens were

analyzed for the presence of pDCs. Figure 4A demonstrates gating

strategy for pDCs and depletion efficiency.

RT-PCR of spleen cells 24 hours p.i. showed that mRNA

expression of IFN-b and total IFN-a were not altered regardless of

pDC depletion (Fig. 4B). Similarly, serum levels of these cytokines

did not reveal any significant differences between mice depleted of

pDCs or control mice (Fig. 4C). Moreover, bacterial loads in

spleens and livers of such mice were also similar (Fig. 4C). Hence,

we conclude that pDCs do not significantly contribute to type I

IFN production and also do not have a physiological relevance

with regard to colonization of spleen and liver during murine

listeriosis.

Listeria Induces IFN-b in Monocytes/Macrophages
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LysM-expressing cells produce IFN-b both in spleen and
in lymph nodes

To determine the contribution of other myeloid or lymphoid

cell populations to the IFN-b production after L. monocytogenes

infection, we employed tissue specific reporter mice since these

mice allow tissue specific replacement of the IFN-b gene by the

luciferase reporter in the IFN-b+/floxb-luc mice [30]. These mice

were crossed with mice expressing Cre recombinase under

various tissue specific promoters. CD19cre mice were used to

implement the reporter activity in B cells, CD4cre mice in T

cells and LysMcre mice in monocytes/macrophages and

granulocytes. All reporter mice were heterozygous for both

markers to allow normal cellular development as well as

potential production of IFN-b in all cells. Comparison of such

tissue specific reporter mice after Listeria infection with the

‘‘global’’ IFN-b reporter mouse (IFN-b+/Db-luc) by whole body in

vivo imaging demonstrated that T- and B-cells did not have any

apparent impact on the IFN-b production after infection by L.

monocytogenes (Fig. 5A).

Moreover, about 80% of pDCs are supposed to exhibit

recombination in CD4cre mice [37]. Nevertheless, these mice did

not show any luciferase production, confirming our data from above.

Thus, we conclude that pDCs do not contribute to the type I IFN

production during Listeria monocytogenes infection. Only cells, in which

the LysM-promoter is active, significantly contribute to the IFN-b
signal in spleen at 24 and in lymph nodes at 48 hours p.i. (Fig. 5A). Of

note, the bioluminescence signal in such mice is lower than in the

mice displayed in Fig. 1A. Obviously, the signal is quenched by the

black skin and fur of the recombinant C57BL/6 mice.

To overcome the restrictions of in vivo imaging with black mice,

the results were corroborated by ex vivo quantification of luciferase

activity (Fig. 5B). Using this assay, we could confirm that T- and B-

cells did not contribute to luciferase activity in spleen and lymph

nodes at both time points. In contrast, LysMcre specific IFN-b
reporter mice contributed with similar levels of luciferase activity

compared to IFN-b+/Db-luc mice. Hence, LysM-expressing cells

almost exclusively produce IFN-b in both spleen and lymph nodes

upon infection with L. monocytogenes.

Figure 1. Induction of IFN-b after L. monocytogenes infection is restricted to spleen and lymph nodes. A) Albino IFN-b+/Db-luc mice on the
C57BL/6 background were infected intravenously (i.v.) with 56105 L. monocytogenes LO28 and EGDe strains. At the indicated time points, mice were
injected with luciferin (i.v.) and luciferase activity was visualized in the IVIS 200 whole body imaging system. The areas encircled in yellow are the
regions of interest used for quantification in Fig. 1B. B) Quantification of in vivo imaging presented in Fig. 1A by measuring of luminescence intensity
within the selected regions of interest (1 and 2 for spleen and cervical lymph nodes, respectively) at the depicted time points. C) C57BL/6 mice were
infected i.v. with 56105 L. monocytogenes LO28 and EGDe strains. Bacterial loads of indicated organs were determined at 24 and 48 hours post
infection. White spots observed at the 0/4/8 hour time points represent areas below the set detection limit. ‘‘cLNs’’ and ‘‘iLNs’’ stand for cervical and
inguinal lymph nodes respectively. Graphs are taken from 1 representative experiment with 5 mice per group. The experiment was repeated twice.
doi:10.1371/journal.pone.0018543.g001

Listeria Induces IFN-b in Monocytes/Macrophages
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Confirming the role of LysM-expressing cells during
Listeria monocytogenes infection

To confirm the contribution of LysM positive cells to the type I

IFN response against L. monocytogenes as well as to characterize their

role during infection with this pathogen, we analyzed homozygous

mice, in which the gene encoding IFN-b was cell-specifically deleted

on both alleles. As a control, we included IFN-bfloxb-luc/floxb-luc mice

to demonstrate that the genetic changes in the targeted locus have

no impact on their own on the course of infection. C57BL/6, IFN-

bfloxb-luc/floxb-luc, IFN-bfloxb-luc/floxb-luc x LysMcre and IFN-b2/2

mice were infected with Listeria monocytogenes and 24 hours p.i. serum

levels of type I IFN were determined by ELISA (Fig. 6A).

Importantly, IFN-b production was identical in C57BL/6 and

IFN-bfloxb-luc/floxb-luc mice, while the extent of IFN-b expression was

dramatically reduced in IFN-bfloxb-luc/floxb-luc x LysMcre mice. As a

consequence, since type I IFN induction in macrophages depends

on feedback signaling, total IFN-a levels were also markedly

reduced in IFN-bfloxb-luc/floxb-luc x LysMcre mice and they were

similar to the levels in IFN-b2/2 mice (Fig. 6A).

Consistent with these results, the CFUs isolated from spleen and

liver of C57BL/6 and IFN-bfloxb-luc/floxb-luc mice did not differ

significantly, while IFN-bfloxb-luc/floxb-luc x LysMcre and IFN-b2/2

mice showed strongly reduced bacterial numbers in the organs

24 hours after infection (Fig. 6B). Moreover, comparison of IFN-

bfloxb-luc/floxb-luc mice with IFN-bfloxb-luc/floxb-luc x CD11ccre,

where IFN-b production is ablated in dendritic cells, showed no

significant differences in bacterial loads in spleen and liver, as well

as in serum levels of type I IFN (Figure S2).

Taken together, our results showed that preventing LysM-

expressing cells from IFN-b production is sufficient to avoid the

detrimental effects of type I IFN during L. monocytogenes infection.

Thus, such cells are apparently the major source of IFN-b during

murine listeriosis.

Neutrophils do not produce IFN-b
The LysM gene in mice is active mostly in monocyte/

macrophages and neutrophils [38,39]. Neutrophils are essential

during the early innate response to Listeria monocytogenes and are

known to be capable to produce various cytokines, such as IL-1b,

Figure 2. Colonization of spleen, liver, cervical and inguinal
lymph nodes is independent of type I IFN. C57BL/6, IFN-b2/2 and
IFNAR2/2 mice were infected intravenously with 56105 L. monocyto-
genes LO28. Bacterial loads of indicated organs were determined 24 and
48 hours after infection. ‘‘cLNs’’ and ‘‘iLNs’’ stand for cervical and
inguinal lymph nodes respectively. Experiment was done twice with 3
animals per group. Results are expressed as means. Student’s t-test was
used for statistical analysis. *p,0.05, **p,0.001.
doi:10.1371/journal.pone.0018543.g002

Figure 3. Colonization of and IFN-b production in lymph nodes
after low dose infection. Albino IFN-b+/Db-luc mice on C57BL/6
background were infected intravenously (i.v.) with 26103 L. monocyto-
genes LO28. A) At the indicated time points, mice were injected with
luciferin (i.v.) and luciferase activity was visualized in the IVIS 200 whole
body imaging system. The areas encircled in yellow are the regions of
interest used for quantification in Fig. 3B. B) Quantification of in vivo
imaging presented in Fig. 3A by measuring of luminescence intensity
within the selected regions of interest (1 and 2 for spleen and cervical
lymph nodes, respectively) at the depicted time points. C) Bacterial
loads of organs at different time points post infection. N.D. indicates not
detected. ‘‘cLNs’’ and ‘‘iLNs’’ stand for cervical and inguinal lymph
nodes, respectively. Graphs are taken from 1 representative experiment
with 6–10 mice per group. The experiment was repeated twice.
doi:10.1371/journal.pone.0018543.g003

Listeria Induces IFN-b in Monocytes/Macrophages
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IL-6, TNF-a, IL-12, MIP-1a, MIP-1b, IL-18 and reactive oxygen

intermediates in response to different stimuli [40–43]. However,

the contribution of neutrophils to type I IFN production is still

unclear. Therefore, we wanted to determine whether neutrophils

are involved in IFN-b production after L. monocytogenes infection.

To answer this question, we depleted granulocytes 24 hours prior

infection after carefully titrating the antibody. Depletion of

neutrophils was close to complete (Fig. 7A), while changes in

other cell populations were negligible (Figure S3). Ex vivo analysis

of luciferase activity in IFN-b+/Db-luc mice depleted of neutrophils

revealed, that these cells did not have a significant impact on

luciferase expression (Fig. 7B). In addition, similar amounts of

IFN-b and total IFN-a in serum were found in C57BL/6 mice

despite of the neutrophil depletion (Fig. 7C). Hence, LysM-positive

monocyte/macrophages are the population that is responsible to

almost entirely produce type I IFN after Listeria monocytogenes

infection.

Tip-DCs express LysM and are the main source of IFN-b
after Listeria monocytogenes infection

It is known, that the LysM promoter is active not only in

monocyte/macrophages and neutrophils, but also in part of the

CD11c+ DCs, while no expression is observed in T and B cells

[44]. Since it was recently shown that CD11b+CD11cintLy6C+

cells previously defined as Tip-DCs are the major IFN-b producers

upon Listeria infection [29], we wanted to know whether Tip-DCs

belong to LysM-expressing monocyte /macrophage population

and whether we could confirm the production of IFN-b by such

cells. Therefore, we sorted CD11b+CD11c2macrophages,

CD11c+CD11b2 dendritic cells (DCs), CD11b+CD11cintLy6C+

Tip-DCs and B220+CD11c2 B cells as a negative control from

IFN-b+/floxb-luc x LysMcre mice 24 hours after Listeria infection

and tested for LysM, LysMcre as well as IFN-b expression by RT-

PCR. A strong signal was observed for LysM in Tip-DCs and

macrophages and, to a lesser extent, in dendritic cells (Fig. 8). Cre

recombinase was expressed in macrophages and in Tip-DCs, but

not in DCs. IFN-b mRNA was highly pronounced in Tip-DCs

and weakly in DCs. Faint bands were also detectible for IFN-a in

these cells. In contrast, CD11b+CD11c2 macrophages failed to

produce any detectable amount of IFN-b or IFN-a. Taking

together, our results indicate that cells defined as Tip-DCs are

within LysM-expressing cells and are responsible for the major

IFN-b production upon Listeria monocytogenes infection.

Discussion

Type I IFN are extremely pleiotropic cytokines. For instance,

they are involved in defense against many viruses [45–47], could

be either protective or detrimental during non-viral pathogens

[7,8], act in cancer surveillance [48,49], but they are also effector

molecules in toxic shock elicited by LPS [50] and TNF [51]. In

addition, recombinant type I IFN is used in the clinics as therapy

against certain cancers as well as for treatment of chronic

infections caused by HBV [52], HCV [53] and multiple sclerosis

[54]. Thus, these molecules could be of great health benefit but

could also elicit serious detrimental effects. Therefore, knowledge

about the cells involved in production of type I IFN and their

regulation is of utmost importance for the understanding of the

IFN system.

Listeria monocytogenes is an intracellular pathogen, broadly used as

a model to investigate host-pathogen interactions. Different groups

Figure 4. Plasmacytoid dendritic cells do not produce type I IFN during Listeria monocytogenes infection. pDCs were depleted in vivo by
intravenous (i.v.) injection of 100 mg anti-mPDCA-1 mAb 24 hours prior L. monocytogenes LO28 infection. As isotype control, rat IgG was used. C57BL/
6 mice were infected with 56105 bacteria i.v., 24 hour post infection spleens and sera were harvested. A) Gating strategy and percentage of pDCs in
spleens. B) Expression of IFN-b and IFN-a was analyzed by RT-PCR. RPS9 was used as housekeeping gene to control the amount of cDNA employed in
the assay. C) Serum levels of IFN-b and total IFN-a were analyzed by ELISA. D) Bacterial loads from spleen and liver. ‘‘a-mPDCA’’ stands for mice
depleted of pDCs; ‘‘control Ab’’ stands for mice injected with isotype control IgG; ‘‘WT’’ stands for mice injected with PBS. Graphs display one
representative experiment with 3–5 mice per group. The experiment was repeated 3 times.
doi:10.1371/journal.pone.0018543.g004

Listeria Induces IFN-b in Monocytes/Macrophages
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have shown the production of type I IFN in vitro and in vivo upon

infection with Listeria monocytogenes [10,11]. We followed IFN-b
induction in the mouse using non-invasive whole body in vivo

imaging. This way we derived a spatiotemporal resolved picture of

the early IFN-b response during Listeria infection. We focused on

production of IFN-b, because IFN-b appears to be the primary

member of type I IFN family that is induced after infection with

Listeria [16,17] and initiates the cascade of type I IFN in most cell

types [4,5].

By a genetic approach we investigated the cells that are

responsible for IFN-b production during murine listeriosis. We

could show that IFN-b is almost exclusively produced by LysM-

expressing cells in the spleen as well as in colonized lymph nodes.

LysM promoter is highly expressed in monocytes/macrophages

and neutrophils [44]. However, the use of the LysMcre mouse

does not allow distinction between myeloid cell populations,

although lower expression in CD11c+ cells was reported [55].

Macrophages have been identified as one of the target cell

population in the murine spleen [26]. Besides, macrophages play a

major role in the early innate defense against Listeria monocytogenes

via secretion of different cytokines [20,56]. However, DCs were

also observed to be directly infected by L. monocytogenes [57]. Since

IFN induction requires intracellular Listeria, we would have

expected that DCs, in addition to monocytes/macrophages, would

be involved in IFN-b production. This is apparently not the case,

because i) only negligible amounts of IFN-b are produced in

infected mice, in which IFN-b is conditionally deleted by LysMcre.

This also excludes a major contribution of a non-lymphoid tissue

associated cell. ii) Similar amounts of reporter luciferase are

produced in the global reporter mice and in the mice reporting

production of IFN-b by monocytes/macrophages and neutrophilic

granulocytes. Although LysMcre is supposed to be expressed by a

small population of DCs [44], CD11ccre mice experiments

confirm that conventional DCs do not significantly contribute to

IFN-b production. We also could exclude the contribution of

pDC. The depletion of this cell population had no effect on the

overall production of type I IFN. This extends the in vitro data of

Stockinger et al. [28] to the in vivo situation. Finally, the

involvement of neutrophils that are expressing LysMcre was also

excluded by a depletion experiment.

Stockinger et al. [28] defined cells with surface antigens

characteristic of macrophages as major producers of type I IFN

during Listeria infection. According to the recent publication of

Dresing et al. [29], TNF-a and iNOS producing Tip-DCs, that

share markers with macrophages, were the main cellular source of

IFN-b in the course of Listeria infection. Our data showed that a

LysM-expressing cell population is responsible for IFN-b produc-

tion in murine listeriosis. Testing sorted macrophages, DCs and

Tip-DCs for type I IFN and LysM expression revealed that the

LysM promoter was active in all three cell populations. However,

only Tip-DCs were able to express vast amounts of IFN-b in

agreement with Dresing et al. [29]. Interestingly, such Tip-DCs

showed strong expression of LysM. This sheds some doubts on the

DC nature of Tip-DCs, which was originally defined by their T

cell priming capacity in mixed lymphocyte reaction [29]. Thus,

Tip-DCs might as well be defined as inflammatory monocytes.

DCs might be involved only at the very early time points after

infection and IFN-b production might be below our detection

Figure 5. Monocytes/macrophages/neutrophils produce IFN-b in spleen, cervical and inguinal lymph nodes. Mice of indicated
phenotypes were infected intravenously (i.v.) with 56105 L. monocytogenes LO28. Mice are on the C57BL/6 genetic background. The albino gene was not
yet crossed in. ‘‘global’’ stands for IFN-b+/Db-luc; ‘‘CD4’’, ‘‘CD19’’ and ‘‘LysM’’ stand for IFN-b+/floxb-luc x CD4cre, IFN-b+/floxb-luc x CD19cre and IFN-b+/floxb-luc x
LysMcre, respectively. A) At the depicted time points after infection, mice were injected with luciferin (i.v.) and luciferase activity was visualized in the IVIS
200 imaging system. Low signals are due to quenching of the bioluminescent light by melanin in fur and skin of the C57BL/6 mice. Red arrows indicate
location of spleen and cervical lymph nodes at 24 and 48 hours post infection, respectively. B) For quantification of luciferase activity, indicated tissues
were harvested 24 and 48 hours post infection and organ homogenates were analyzed in a luminometer. ‘‘cLNs’’ and ‘‘iLNs’’ stand for cervical and
inguinal lymph nodes respectively. Experiment was done twice with 3–5 animals per group. Results are expressed as means. Student’s t-test was used for
statistical analysis. n.s. stands for not significant, p.0.05.
doi:10.1371/journal.pone.0018543.g005
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limit. We think this is unlikely given the extreme sensitivity of our

reporter system. Alternatively, infected DCs might undergo

apoptosis before they are able to significantly contribute to IFN

production or IFN production in DCs might be inhibited by L.

monocytogenes. The latter notion would be in agreement with the fact

that pDCs also do not produce IFN-b.

A similar argument we would use for the absence of IFN-b
production by hepatocytes. Such cells are known to be severely

infected by L. monocytogenes during the complete course of infection.

Nevertheless, no significant signal was observed in the reporter

mice from liver. The absence of a contribution of Kupffer cells was

expected since such cells are known to only bind Listeria but are

not directly infected [58]. IFN-b induction requires cytosolic

residence of Listeria.

The colonization of lymph nodes after i.v. infection with L.

monocytogenes has been ignored so far, although it is known that such

Figure 6. Ablation of IFN-b production in LysM-expressing cells
is equal to the overall absence of IFN-b. Mice of indicated
genotypes were infected intravenously with 56105 L. monocytogenes
LO28. 24 hours post infection mice were sacrificed and spleens, livers
and serum were isolated. ‘‘WT’’ stands for C57BL/6, ‘‘IFN-bflox/flox’’ stands
for IFN-bfloxb-luc/floxb-luc and ‘‘IFN-bflox/floxxLysMcre’’ stands for
IFN-bfloxb-luc/floxb-luc x LysMcre. A) Serum levels of IFN-b and total IFN-
a were analyzed by ELISA. B) Bacterial numbers from spleens and liver
were calculated and presented as colony forming units (CFUs).Graphs
are taken from 1 representative experiment with 3–5 mice per group.
The experiment was repeated twice. Student’s t-test was used for
statistical analysis. *p,0.05.
doi:10.1371/journal.pone.0018543.g006

Figure 7. Depletion of granulocytes does not influence the amount of type I IFN. Granulocytes were depleted 24 hours prior to infection of
mice with 56105 L. monocytogenes LO28. As isotype control, rat IgG was used. 24 hours post infection IFN-b+/Db-luc and C57BL/6 mice were sacrificed,
spleens and serum were harvested. A) Percentage of granulocytes in spleens. B) For quantification of luciferase activity, spleen homogenates from
IFN-b+/Db-luc mice were analyzed in a luminometer. C) Serum levels of IFN-b and total IFN-a from C57BL/6 mice were analyzed by ELISA. ‘‘+a-Gr1’’
stands for mice depleted of granulocytes. ‘‘WT’’ stands for C57BL/6 mice. Graphs are taken from 1 representative experiment with 3–5 mice per
group. The experiment was repeated 3 times.
doi:10.1371/journal.pone.0018543.g007

Figure 8. LysM-expressing cells include Tip-DCs - the main
source of IFN-b produced after Listeria monocytogenes infection.
IFN-b+/floxb-luc x LysMcre mice (n = 5) were infected intravenously with
56105 L. monocytogenes LO28 strain. 24 hours after infection mice were
sacrificed, splenic cells were isolated and subjected to FACS sorting.
RNA of the isolated cells was extracted, reverse-transcribed and
subjected to PCR for the indicated genes. RPS9 was used as
housekeeping gene to control the amount of cDNA employed in the
assay. As a negative control H2O was used instead of cDNA template.
doi:10.1371/journal.pone.0018543.g008
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bacteria are able to infect lymph nodes after subcutaneous [59] or

oral application [36]. Here we have shown that Listeria monocytogenes

successfully colonizes cervical and inguinal lymph nodes also after

i.v. infection. We noticed lymph node colonization due to the

activation of the IFN-b reporter in such tissues. This impressively

demonstrates the importance of using reporter systems that allow

holistic unbiased observations.

Colonization of lymph nodes could have taken place via

dissemination of bacteria from the ‘‘classical’’ target organs spleen

and liver. The delayed production of IFN-b in such organs would be

in agreement with this notion. However, production of IFN-b
correlated with the number of bacteria found in the colonized

lymph nodes, which also showed a delayed increase. Thus, lymph

nodes obviously are also primary target organs for L. monocytogenes,

although they do not show the same penetrance as spleen and liver.

Together, our work compellingly shows that LysM-expressing

Tip-DCs are the major producers of IFN-b during murine

listeriosis, which is responsible for the induction of the type I IFN

cascade in most cell types. The expression of LysM sheds some

doubt on the DC nature of such cells. We also show in vivo that

pDCs, the cell type that is able to produce type I IFN independent

of IFN-b and neutrophils do not contribute at all to the overall

production of type I IFN during murine listeriosis. Having settled

this, the question now arises: why cDCs, that are infected at least

early after i.v. application or hepatocytes that are known to be

heavily infected by L. monocytogenes, do not produce type I IFN.

Materials and Methods

Ethics statement
Mouse care and experimental procedures were performed

under the approval of local authority Niedersächsisches Land-

esamt für Verbraucherschutz und Lebensmittelsicherheit

(LAVES). Permit numbers for this study are 33.11.42502-04-

067/07 and 33.42502-071/06.

Mice
All mice were bred at the animal facility of the Helmholtz

Centre for Infection Research (HZI) and maintained under

specific pathogen-free conditions. For experiments, female mice

8 to 12 weeks of age were used. All mice used in this study were on

the C57BL/6 background. IFN-b2/2 [60] mice were backcrossed

onto C57BL/6 for more than 15 generations. Conditional

deletion/reporter mice IFN-bfloxb-luc were generated using

C57BL/6 ES-cells (Bruce4). To replace the IFN-b CDS by

luciferase in germ line (IFN-bDb-luc), IFN-bfloxb-luc mice were

crossed with K14cre mice [61]. To receive tissue specific IFN-b
deletion as well as reporter expression, IFN-bfloxb-luc were crossed

to CD19cre [62], CD4cre [63] and LysMcre [44] mice

respectively (kindly provided by Dr. Angela Schippers, HZI).

CD11ccre mice [64] were kindly provided by Prof. Dr. Ulrich

Kalinke, Twincore. Additionally IFN-b+/Db-luc mice were crossed

with albino C57BL/6 (C57BL/6-Tyr,c-2J.) kindly provided by

Thomas Blankenstein (MDC, Berlin) to improve in vivo imaging.

Splenocyte isolation
Spleen cells were prepared by gently flushing the spleen with

IMDM supplemented with antibiotics (100 U/ml penicillin and

100 mg/ml streptomycin), 10% FCS, 50 mM b-ME, and 2 mM L-

glutamine. Erythrocytes were lysed for 2 min in ACK buffer

(0.15 M NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA) and cells

were washed two times with PBS. Cell clumps were removed by

passaging through a 50 mm nylon filter. Preparation was

conducted strictly at 0uC.

Antibodies
Single cell suspensions were treated with anti-mouse CD16/

CD32 BD Fc Block (2.4G2, Becton Dickinson, NJ, USA) for

10 min followed by staining with appropriate mAbs for 20 min-

utes on ice. Abs used in this work included PE anti-mPDCA-

1clone JF05-1C2.4.1 (Miltenyi Biotec), APC CD11c clone N418

(eBioscience, San Diego, USA), Pacific Blue CD11b clone M1/

70.15 (Invitrogen), APC-Cy7 B220 clone RA3-6B2 (BD Pharmin-

gen, New York, USA), anti-mouse Ly6G PE-Cy7 (Gr1,

eBioscience, San Diego, USA), biotynylated anti-mouse Ly6C

(Pharmingen, New York, USA), streptavidin APC-Cy7 (Pharmin-

gen, New York, USA). Flow cytometric analysis and sorting was

performed using LSRII (Becton Dickinson, NJ, USA. The data

were analyzed using FACSDiva (Becton Dickinson) software.

RT-PCR
Total RNA was extracted from spleen cells using RNeasy mini

kit (Qiagen) according to the manufacturer’s instructions. DNA

contamination in the total RNA preparation was eliminated using

DNase I (Qiagen). RevertAid First Strand cDNA Synthesis Kit

(Fermentas) with oligo(dT) primers was used for reverse transcrip-

tion of purified RNA. PCR was performed using the Promega kit

according to the instructions of the supplier. The following primers

were used for RT-PCR: 59-CATCAACTATAAGCAGCTCCA-

39, 59-TTCAAGTGGAGAGCAGTTGAG-39 for IFN-b; 59-

ATGGCTAGACTCTGTGCTTTCCT-39, 59-AGGGCTCTC-

CAGATTTCTGCTCTG-39 for panIFN-a [28]; 59-AACCC-

CAAGAGCTGTGAATG-39, 59-TCGGTTTTGACAGTGTG-

CTC-39 for LysM; 59-ACG ACC AAG TGA CAG CAA TG-

39, 59- CTC GAC CAG TTT AGT TAC CC-39 for cre

recombinase; 59-CTGGACGAGGGCAAGATGAAGC-39, 59-

TGACGTTGGCGGATGAGCACA-39 for ribosomal protein

S9 (RPS9).

Bacteria
Listeria monocytogenes strain LO28 serotype 1/2c [65] (kindly

provided by Thomas Decker, Vienna, Austria) and EGDe

serotype 1/2a [66] was grown in Brain Heart Infusion (BHI)

infusion or on BHI-plates (Difco, Detroit, MI) at 37uC overnight.

The next day, suspensions were diluted and grown until reaching

log-phase. Bacteria were then centrifuged, washed several times

and resuspended in sterile PBS. Concentrations of bacteria were

determined by measurement at OD600 and confirmed by plating

serial dilutions on appropriate agar plates.

Detection of luciferase
For the determination of the enzymatic activity of luciferase,

cells were lysed in Reporter Lysis Buffer (Promega). For luciferase

activity assays from tissue, weight of tissue fragments was

determined and fragments were homogenized in proportional

volumes of Reporter Lysis Buffer using Lysing Matrix A on a

FastPrep-24 (MP Biomedicals). Lysates were mixed with LARII

(Promega) and measured in a luminometer (Berthold). For in vivo

imaging, mice were injected i.v. with 150 mg/kg of D-luciferin

(Synchem) in PBS, anesthetized using Isofluran (Baxter) and

monitored using an IVIS 200 imaging system (CaliperLS). Photon

flux was quantified using the Living Image 3.2 software

(CaliperLS).

ELISA
Sera of infected mice were collected and levels of IFN-b and

total IFN-a were measured by ELISA according to manufacturer’s

protocols (PBL InterferonSource).
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Infections
Mice were infected intravenously (i.v.) with Listeria monocytogenes

LO28 or EGDe strains. 56105 CFU/mouse is lethal dose

(256LD50), mice start dying at day 2–3 after infection.

26103 CFU/mouse is a sublethal dose (0.16LD50), all mice are

able to clear the bacterial around day 7 after infection. For

determination of bacterial loads, spleens, livers and lymph nodes of

sacrificed mice were removed and homogenized in 1 ml PBS

supplemented with 0.2% NP-40. Serial dilutions of homogenates

were plated on BHI agar plates and colonies were counted after

overnight incubation at 37uC.

Depletion experiments
Plasmacytoid dendritic cells and granulocytes were depleted in

vivo by intravenous injection of 100 mg anti-mPDCA-1 mAb (clone

JF05-1C2.4.1, functional grade; Miltenyi Biotec) or 10 mg anti-

Gr1 mAb (clone RB6-8C5) 24 hours prior Listeria monocytogenes

infection. As an isotype control, rat IgG (Jackson ImmunoR-

esearch Laboratories, Inc.) was used. Successful depletion of pDCs

and granulocytes was determined by FACS analysis 24 hours after

infection.

Supporting Information

Figure S1 Overview of transgenic mice used in this
work. The generation of the global IFN-b reporter mouse has

been previously described [30] and is since then maintained

independent of cre expression. In brief, the targeted locus contains

a luciferase gene (dark blue arrow) with a preceding polyA signal

(black box) to avoid unspecific reporter activity. Two loxP sites

(black arrowheads) allow cre-dependent replacement of the ifnb

coding sequence by the luciferase reporter (light blue arrow) which

is then driven by the endogenous ifnb promoter. In all reporter

mice we keep one wt ifnb allel to allow IFN-b expression. Tissue

specific reporter mice were obtained from breeding

IFN-bfloxb-luc/floxb-luc mice with mice expressing cre (red arrow)

in a cell type specific manner. Cre activity (light red) in the given

cell population (within the red circle) then allows ifnb promoter

dependent reporter activity while the reporter cannot be activated

in cells without cre expression (dark red). Tissue specific knockout

mice carry two cre dependent alleles. Therefore in cells expressing

cre both ifnb coding sequences are deleted. However, in cells

without cre expression the IFN-b production is normal despite the

genomic alterations introduced into the locus.

(TIF)

Figure S2 Disruption of IFN-b production in CD11c+
dendritic cells does not alter type I IFN production. Mice

of indicated phenotypes were infected intravenously with 56105 L.

monocytogenes LO28. 24 hours post infection mice were sacrificed,

spleens, livers and serum were isolated. A) Bacterial numbers from

spleens and livers were calculated and presented as colony forming

units (CFUs). B) Serum levels of IFN-b and total IFN-a were

analyzed by ELISA. IFN-bflox/flox stands for IFN-bfloxb-luc/floxb-luc,

IFN-bflox/floxxCD11ccre stands for IFN-bfloxb-luc/floxb-luc x

CD11ccre. Graphs are taken from 1 representative experiment

with 5 mice per group. The experiment was repeated 3 times.

Student’s t-test was used for statistical analysis. n.s. stands for not

significant, p.0.05.

(TIF)

Figure S3 Depletion of granulocytes does not influence
other cell populations. Granulocytes were depleted 24 hours

prior to infection of mice with 56105 L. monocytogenes LO28. As

isotype control, rat IgG was used. 24 hours post infection C57BL/

6 mice were sacrificed, spleens were isolated and depletion was

controlled by testing spleen samples. A) Gating strategy of splenic

Tip-DCs. B) Analysis of depleted populations. Populations other

than granulocytes are not significantly influenced by anti-Gr1

antibody mediated depletion.

(TIF)
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