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A B S T R A C T

The present study attempted a computer simulation of the metabolism of a model cyanobacteria, Synechocystis sp.
PCC 6803 (PCC 6803) to predict allosteric inhibitions that are likely to occur in photoautotrophic and mixo-
trophic conditions as well as in a metabolically engineered strain. PCC 6803 is a promising host for direct
biochemical production from CO2; however, further investigation of allosteric regulation is required for rational
metabolic engineering to produce target compounds. Herein, ensemble modeling of microbial metabolism was
applied to build accurate predictive models by synthesizing the results of multiple models with different
parameter sets into a single score to identify plausible allosteric inhibitions. The data driven-computer simulation
using metabolic flux, enzyme abundance, and metabolite concentration data successfully identified candidates for
allosteric inhibition. The enzyme assay experiment using the recombinant protein confirmed isocitrate was a non-
competitive inhibitor of phosphoribulokinase as a novel allosteric regulation of cyanobacteria metabolism.
1. Introduction

The model cyanobacteria, Synechocystis sp. PCC 6803 (PCC 6803) is a
promising host for the direct biochemical production from CO2 (Anger-
mayr et al., 2015; Hirokawa et al., 2017; Lai and Lan, 2015; Mohammadi
et al., 2016; Oliver et al., 2016; Shirai et al., 2016). Further under-
standing of the mechanism of metabolic regulation in PCC 6803 is
required to guide metabolic engineering research for more efficient
production of target compounds (Matsuda et al., 2017). The metabolic
regulatory mechanism of photoautotrophic PCC 6803 is unique and
distinct from that of heterotrophic bacteria like Escherichia coli. Several
mechanisms have been reported to play key regulatory roles in PCC
6803. These include a carbon fixation reaction (RuBisCo) as the ultimate
rate-limiting step in photosynthetic carbon fixation (Kanno et al., 2017;
Raines, 2011; Stitt and Schulze, 1994), a transcriptional global regulation
under nitrogen starvation conditions by SigE (Osanai et al., 2005, 2013),
a post-translational regulation by CP12 as a response to the redox state
(Tamoi et al., 2005; Wedel and Soll, 1998), and allosteric regulation by
pyruvate kinase (Pyk) (Knowles et al., 2001). However, our current
knowledge on allosteric regulation is still limited, which has become a
bottleneck in metabolic engineering studies (Nishiguchi et al., 2019).
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Allosteric regulation has been identified and investigated by genetic
analysis of over-producing mutants as well as biochemical characteriza-
tion of metabolic enzymes (Knowles et al., 2001; Takeya et al., 2017,
2018). Furthermore, a more systematic search method consisting of a
computer simulation of allosteric regulation using an ensemble of kinetic
metabolic models has been recently suggested (Christodoulou et al.,
2018). Ensemble modeling of microbial metabolism has been applied to
build accurate predictive models by synthesizing the results of multiple
models into a single score (Contador et al., 2009; Dash et al., 2017;
Khodayari et al., 2014a, 2014b; Khodayari and Maranas, 2016; Rizk and
Liao, 2009; Tran et al., 2008). Recent computational simulation of E. coli
metabolism identified NADPH feedback inhibition on G6PDH, since in-
hibition has a large contribution to predictability and stability of the
kinetic metabolic model of E. coli (Christodoulou et al., 2018).

This study aimed to use the ensemble modeling approach to investi-
gate allosteric regulation in the PCC 6803 metabolism. The data driven-
computer simulation using metabolic flux, enzyme abundance, and
metabolite concentration data successfully identified candidates for
allosteric inhibition. The enzyme assay experiment using the recombi-
nant protein confirmed that isocitrate was a non-competitive inhibitor of
phosphoribulokinase (Prk) as a novel allosteric regulation of cyanobac-
teria metabolism.
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Abbreviations

2PG 2-phosphoglycerate
3PG 3-phosphoglycerate
AcCoA acetyl coenzyme A
aKG α-ketoglutarate
Cit citrate
CoA coenzyme A
DHAP dihydroxyacetone phosphate
E4P erythrose 4-phosphate
F6P fructose 6-phosphate
FBP fructose 1,6-bisphosphate
G6P glucose-6-phosphate
G6PDH glucose-6-phosphate dehydrogenase
GAP glyceraldehyde 3-phosphate
GAPDH glyceraldehyde 3-phosphate dehydrogenase
GPM phosphoglycerate mutase

IsoCIt isocitrate
NAD(H) nicotinamide adenine dinucleotide
NADP(H) nicotinamide adenine dinucleotide phosphate
PEP phosphoenolpyruvate
PGK phosphoglycerate kinase
PRK phosphoribulokinase
PS photosystem
PYK pyruvate kinase
Pyr pyruvate
R5P ribose 5-phosphate
Ru5P ribulose 5-phosphate
RuBP ribulose 1,5-bisphosphate
RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase
S7P sedoheptulose 7-phosphate
SBP sedoheptulose 1,7-bisphosphate
TCA cycle tricarboxylic acid cycle
Xu5P xylulose 5-phosphate
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2. Materials and methods

2.1. Strains and culture conditions

Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain (PCC 6803) as
well as its metabolically engineered ethanol producing strain (Et-g,
glgC:Kmr, NS1:PnblA-pdc-adhII-Am) were used in this study (Namakoshi
et al., 2016; Yoshikawa et al., 2017). The Et-g strain lacks the glgC gene
and overexpresses Zymomonas mobilis-derived pyruvate decarboxylase
(pdc) and alcohol dehydrogenase (adhII) genes.

For the preculture, cells were cultured in 40 mL modified BG11 me-
dium [2.7 μM EDTA disodium salt, 46 μMH3BO3, 20 mM HEPES, 1.6 μM
Na2MoO4⋅2H2O, 220 μM K2HPO4, 300 μM MgSO4⋅7H2O, 260 μM CaCl2,
9.1 μM MnCl2⋅4H2O, 0.77 μM ZnSO4⋅7H2O, 0.32 μM CuSO4⋅5H2O, 0.17
μM Co(NO3)2⋅6H2O, 16 μM FeCl2⋅4H2O adjusted to a pH of 7.5 using 1 M
KOH] containing 50 mM NaHCO3 (in 200 mL flask). The cells were
cultivated at 34 �C with a rotary agitation of 150 rpm under continuous
illumination (approximately 100 μmol of photons m�2 s�1) with white
light-emitting diodes (LC-LED450W, TAITEC Co., Ltd., Japan). Kana-
mycin (10 μg/mL) and ampicillin (1 μg/mL) were added to the preculture
of the Et-g strain, as selectionmarkers of genetically engineered cells. The
bacterial cell density was measured as absorbance at 730 nm (OD730)
using a spectrophotometer (UVmini-1240, Shimadzu Co.). The OD730
was converted to a dry cell weight using the following formula: dry cell
weight (g dry cell weight [DCW] l�1)¼OD730� 0.16 (g DCW l�1 OD730

�1 ).
For the ethanol production test, cells were inoculated in 4 mL BG11

medium containing 50 mM NaHCO3 (in 20 mL test tube) with an initial
OD730 of 1.0. The cells were cultured for 4 days under the same condi-
tions. Every 24 h, 400 μL of culture broth was collected for the medium
component analysis, which was complemented by the addition of 400 μL
of BG11 containing 500 mM NaHCO3. No antibiotics were added to the
culture of the Et-g strain. Extracellular ethanol concentration was
analyzed by gas chromatography (GC; Agilent 7890 A GC [Agilent]),
using a Restek 10,657 Stabiliwax column (60 m � 0.32 mm ID � 1 μm,
Shimadzu). The column temperature was 70 �C, the injector temperature
was 250 �C, and an FID was used for detection.

For the metabolome and proteome analysis, cells were inoculated in
40 mL BG11 medium containing 50 mM NaHCO3 (in 100 mL flask) with
an initial OD730 of 0.05 and cultured for 48 h under the same conditions.
No antibiotics were added to the culture of the Et-g strain.

2.2. Metabolome and proteome analysis

Cells were collected 48 h after the start of cultivation. Cells in the
culture broth (20 mL) were filtered through a 0.5-μm pore size filter
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(PTFE-type membrane, Advantec, Japan), immediately immersed in 1.6
mL methanol (�80 �C), and then stored at �80 �C until extraction.
Intracellular metabolites were extracted by the water-methanol-
chloroform method using a previously described method (Nishino
et al., 2015). The metabolite extracts were employed in the targeted
metabolome analyses using liquid-chromatography (LC)/mass spec-
trometry (MS) as described previously (Nishino et al., 2015). For the
analysis of organic acids, metabolites were derivatized using methoxy-
amine hydrochloride in pyridine and N-methyl-N-(trimethylsilyl) tri-
fluoroacetamide, and then analyzed by GC–MS, as described previously
(GCMS QP-2010 system, Shimadzu, Kyoto, Japan) (Nagai et al., 2018).

Targeted proteome analysis was performed using a previously
described method (Tokumaru et al., 2018). Briefly, crude proteins were
extracted from PCC 6803 cells and digested with trypsin. Equal amounts
of digested peptides derived from the target strains (cultured using
non-labeled glucose) and isotope-labeled strains (cultured in 15N me-
dium as an internal standard) were mixed. The peptide samples (2 μL)
were analyzed by a previously described method using a nano-LCMS
system (LC-20ADnano and LCMS-8040, Shimadzu, Kyoto, Japan)
(Tokumaru et al., 2018). The MRM assay method for targeted proteome
analysis was obtained from a previous study (Tokumaru et al., 2018).
Chromatographic data were processed using Skyline software, version
3.1 (Bereman et al., 2012) to determine relative peak areas for all pep-
tides using 15N labeled peptides as internal standards.

2.3. Preparation of kinetic model

The metabolic model of the PCC 6803 strain constructed in the pre-
vious study was used with slight modifications (Supplementary Table 1, 2
and 3) (Nishiguchi et al., 2019). The reaction rate equation for pyruvate
kinase was changed to the irreversible Michaelis-Menten equation for the
bi-bi reaction (Supplementary Table 3). Furthermore, the ethanol
biosynthesis pathway was added as a reaction with constant metabolic
flow. The metabolic model used in this study includes 34 metabolic re-
actions, 6 photosynthetic reactions, 3 buffer reactions, and 4 reactions
pertaining to biomass synthesis, glycogen degradation, and ethanol
production. The model consisted of 42 metabolites, 109 KM values, and
31 Keq parameters (Supplementary Table 4). For the photosynthetic re-
actions, ATP synthase was described using the irreversible Michae-
lis–Menten equation, and the other 5 reactions were described by the
mass action equation. Metabolic-flux levels of biomass synthesis,
glycogen degradation, and glucose uptake were set at constant levels
based on their respective measured values (Supplementary Table 1).
Generalized Michaelis–Menten equations were employed for other re-
actions, as well as for reactions with allosteric inhibition (Supplementary
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Table 3) (Liebermeister et al., 2010). The coefficients of each metabolite
used for biomass synthesis were calculated based on literature data
(Shastri and Morgan, 2005).

2.4. Preparation of the trans-omics dataset

The trans-omics dataset of PCC 6803 cells grown under photoauto-
trophic and mixotrophic conditions was obtained from our previous
studies (Nakajima et al., 2014, 2017). Missing values in the metabolome
and proteome data were imputed using the following method: the con-
centrations of eight metabolites were arbitrarily set to 0.01 μmol (g
DCW)�1 (BPG, SBP, glyoxylate, OAA, Q, QH2, Hex, Photon, SubsGlc,
CO2, glycogen) (Supplementary Table 2); the G3P concentration was
theoretically calculated as the reaction catalyzed by triosephosphate
isomerase (dihydroxyacetone phosphate <-> glyceraldehyde 3-pho-
phate) in a near-equilibrium reaction state; units of all data and param-
eters were adjusted to μmol (g DCW)�1; the expression levels of
unmeasured proteins were considered constant. The specific volume of
cyanobacteria (2.66 mLg dry cell weight) was used in this study (Law-
rence et al., 1998; Loferer-Krossbacher et al., 1998).

2.5. Ensemble modeling

In silico modeling experiments were performed using an in-house
script written with Python 3.6, NumPy 1.16, and Scipy 0.17. For the
numerical integration of the metabolic model, the scipy. integrate.odeint
was used as an ordinary differential-equation solver. The convergence of
the models was checked by comparison of all metabolite concentration
levels between current and previous steps (Δ < 0.00001), and confirmed
by performing linear-stability analysis. The KM and Keq values were
randomly sampled from a log uniform distribution (Supplementary
Table 4). Because the measured and predicted values were available from
the literature and the eQuilibrator database (Flamholz et al., 2012), 7 KM
values for PRK, PGK, and RuBisCo and all Keq values were randomly
sampled at 1/5 to 5 times the measured values (Tsukamoto et al., 2013).
Other KM and Ki values were randomly sampled from a uniform distri-
bution between 0.01 and 100, with a logarithmic scale. (Supplementary
Table 4). All ppi values were randomly sampled from a uniform distri-
bution between 0.0 and 1.0 (Supplementary Table 4).

2.6. Expression of recombinant protein

The prk and gpm genes were amplified by PCR with KOD FX Neo
(Toyobo Co., Ltd., Osaka, Japan) from the genomic DNA of PCC 6803
using the following primers (prk/forward cgGAATTCATGACCACA-
CAGCTAGACCG, prk/reverse gCTCGAGTTACACAGAGGCCGGGACCT,
gpm/forward cgGGATCCATGGCAGAGGCACCGATCGC, gpm/reverse
cgCTCGAGCTAACGGGAGAGATTGACCG). Each amplified fragment was
cloned into a Zero Blunt TOPO vector (Thermo Fisher Scientific, Wal-
tham, MA), followed by sequence confirmation. The EcoRI - XhoI frag-
ments (for prk) and BamHI - XhoI fragments (for gpm) of Zero Blunt TOPO
were cloned into the same restriction site of the pET28-a(þ) vector,
generating pET28-a(þ)/prk, and pET28-a(þ)/gpm. The recombinant
strains of BL21(DE3) harboring the plasmids were cultured overnight in
LB medium at 37 �C. The culture broths were transferred to 200 mL
baffled Erlenmeyer flasks containing fresh 50 mL LB medium (initial OD
¼ 0.05) and cultured at 30 �C in a rotary shaking incubator at 200 rpm
(BR-43FL, Taitec Tokyo, Japan). Isopropyl-β-d-thiogalactopyranoside
was added at OD¼ 0.5 (final conc. 0.1 mM). After 20 h of cultivation, the
cell pellets were obtained from 10 mL of culture broth by centrifugation
at 2500�g for 5 min at 4 �C and lyophilized using a xTractorTM Buffer kit
(TaKaRa, Kyoto, Japan). Target proteins were purified using Capturem
His-Tagged Purification Miniprep kit (TaKaRa) and Centrifugal Filter
Units (30 K, Millipore, Burlington, MA) to replace with 1 M HEPES buffer
(pH 7.5). Purification was confirmed by SDS-PAGE using e-PAGEL HR
(ATTO) with CBB staining. Protein concentration was determined using a
3

Pierce BCA Protein Assay Kit (Thermo).

2.7. Enzymatic assay of Prk and Gpm

The enzyme activity of the purified Prk was assayed by a coupling
reaction catalyzed by pyruvate kinase and lactate dehydrogenase at 37 �C
as previously described (Wadano et al., 1998). Gpm activity was
measured by a coupling reaction catalyzed by enolase, pyruvate kinase,
and lactate dehydrogenase. The reaction mixture contained 40 mM
Tris-HCl (pH 7.9), 5 mM KCl, 0.6 mMMgSO4, 0.054 mM PEP, 0.036 mM
EDTA, 100 μM NADH, 3.3 mM glutathione, and approximately 10 U/mL
of pyruvate kinase and lactate dehydrogenase (from Rabbit P0294 Sig-
ma–Aldrich Co, St. Louis, MI)) was commonly used. For Gpm, 1.2 mM
ADP and 458 unit/mL enolase (Sigma–Aldrich E6126) was added to the
mixture. The decrease in absorbance of NADH at 340 nm was monitored
for 20 min using a microtiter plate reader (SYNERGY, BioTec, Green
Mountains, VT). Enzyme activity was determined from ΔA340nm and the
extinction coefficient of NADH (6300 L mol�1 cm�1).

3. Results

3.1. Design of in silico simulations

In this study, trans-omics data-driven ensemble modeling was per-
formed using three datasets obtained from the PCC 6803 GT strain under
photoautotrophic conditions (auto), a metabolically engineered strain
(Et-g) under photoautotrophic conditions (EtOH), and the GT strain
under mixotrophic conditions (mixo). Computer simulations were used
to predict allosteric inhibition (or a combination of an inhibitor metab-
olite and a regulated enzyme) effectively working in the PCC 6803
metabolism under these conditions. Two in silico simulations (Simula-
tions I and II, Table 1) were performed for this purpose by the procedure
shown in Figs. 1 and 2. Simulation I was for the systematic survey of
allosteric inhibition using the auto and EtOH datasets. Simulation II was
for validation of the systematic search result using different (auto and
mixo) datasets (Table 1).

4. Detailed procedures were shown in Figs. 1 and 2

Figs. 1 and 2 show the procedures for the in silico simulation. For
explanatory purposes, a metabolic network including three reactions was
used in Figs. 1 and 2. The in silico simulations required two trans-omics
datasets obtained from two distinct conditions (designated as condi-
tions X and Y as an example, Fig. 1A). One dataset included metabolome
([S]), fluxome (J), and proteome data ([E]). Fluxome (J) data of condi-
tion Y was not used in this study.

Here, “structure of metabolic model” indicated a collection metabolic
reactions (the stoichiometry and rate equation) including allosteric in-
hibitions. The values of all parameters (i.e., Michaelis (KM) and reaction
rate (k) constant) were undetermined. “Plain structure”meant a structure
without allosteric inhibition (Fig. 1B).

It should be noted that an “ensemble of models” indicated a popu-
lation of metabolic models with an identical structure but different
parameter sets in this study. All models in an ensemble were generated
using an identical plain structure, and then equally modified by an
addition of same allosteric inhibition, as mentioned below. Thus, an
ensemble of models, including various structures, was not used in this
study.

An ensemble of models was prepared from the plain structure
(Fig. 1C). Following the assignment of [E], [S], and J levels of condition X
dataset, each parameter in three rate equations such as the Michaelis
constant (KM) were randomly determined. For the case of the irreversible
Michaelis–Menten equation, J¼ k[E][S]/([S]þ KM), KM was obtained by
random sampling. The remaining constant k was determined by k ¼ J
([S] þ KM)/[E][S], using the [E], [S], and J levels available from the
dataset. By the procedure, a metabolic model with the plain structure (no



Table 1
Comparison of two in silico simulations (Simulations I and II) to predict allosteric
inhibition effectively working in the PCC 6803 metabolism.

Procedures1) Simulation I: Systematic search
of allosteric regulation using
trans-omics data

Simulation II: Validation of
systematic search using
different datasets

Trans-omics
dataset
(Condition X)

Synechocystis sp. PCC 6803 GT
strain under photoautotrophic
condition (auto). Metabolome:
[S]auto (Nishiguchi et al., 2019).
Fluxome: Jauto (Nakajima et al.,
2017). Proteome: [E]auto
(Nishiguchi et al., 2019)

Same as on the left

Trans-omics
dataset
(Condition Y)

Metabolically engineered Et-g
strain producing ethanol under
the photoautotrophic condition
(EtOH). Metabolome: [S]EtOH
(This study). Proteome: [E]EtOH
(This study)

Mixotrophic condition
(mixo). Metabolome: [S]mixo

(Yoshikawa et al., 2013).
Proteome: [E]mixo

(Nishiguchi et al., 2019)

Plain structure of
metabolic
model

Total 47 reactions, including 34
metabolic reactions, 6
photosynthetic reactions, 3
buffer reactions, and 4
reactions responsible for
biomass synthesis, glycogen
degradation, and ethanol
production without allosteric
regulations.

Same as on the left

Preparation of an
ensemble of
models

By the method 1 (Fig. 1C).
Ensemble of 10,000 models
reproducing the auto condition
(no allosteric regulation,
distinct random parameter sets)

By the method 2 (Fig. 1D).
Ensemble of 100,000
models reproducing the
auto condition (no allosteric
regulation, distinct random
parameter sets)

Systematic survey
of allosteric
inhibition

Total 1056 combinations
(single allosteric inhibition
among 32 metabolites by 33
enzymes).

Total 84 combinations
(single allosteric inhibition
among 14 top-ranked
inhibitor metabolites and
the six top-ranked enzymes
in Simulation I)

Scoring method Median of sum of square (RSS)
for remaining models

Survival rate in a numerical
integration
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allosteric regulation, random parameters) reproducing condition X was
obtained. To select better models, the model was checked by using
condition Y dataset. After the levels of [E] of condition Y were assigned
for all reactions, a new steady state was found by numerical integration.
A surviving model without divergence was added to an ensemble of
models. By iteration of the procedure, an ensemble of models with the
identical plain structure (no allosteric regulation, distinct random
parameter sets) reproducing condition X was generated (Fig. 1C). The
method 1 was used for Simulation I (Table 1). For the case of low survival
rate during the numerical integration such as Simulation II, an ensemble
of models was produced without checking (The method 2, Fig. 1D).

Fig. 2 shows a procedure for a test of an allosteric inhibition using the
ensemble of models. An allosteric inhibition seemed to be working in the
PCC 6803 if an addition of the allosteric inhibition can improve a pre-
diction capability and robustness against metabolic perturbations of the
ensemble. To test an allosteric inhibition, same one allosteric inhibition
was added to the structure of all models in the ensemble (Fig. 2A). Thus,
an ensemble of models with an identical modified structure with
different parameter sets was used to test the allosteric regulation.
Structures with two or more allosteric inhibitions were not considered in
this study. Fig. 2 shows the addition of allosteric inhibition of the enzyme
(EA) by the inhibitor metabolite (S3) as an example. The addition of
allosteric inhibition was performed by replacement with a rate equation
including allosteric inhibition. For the irreversible Michaelis–Menten
equation, the rate equation including allosteric inhibition was: J ¼ (ppi
þ (1-ppi) Ki/(Ki þ[I])) k[E][S]/([S] þ KM), where [I] and Ki are the
concentration of inhibitor and the inhibition constant, respectively.
Partial inhibition by inhibitor binding (range: 0–1.0) is represented by
4

the parameter ppi. For the replaced rate equation, the random sampling
of Keq, KM, Ki, and ppi, as well as the determination of k using trans-omics
data ([E], [S], and J) were performed (Fig. 2A).

To test the added allosteric inhibition (Fig. 2B), following the protein
abundances of all reactions were changed to the [E] levels of condition Y,
new steady states were found by numerical integration. Some of the
models were discarded due to divergence. Finally, an ensemble of the
remaining models reached new steady states was obtained. The simula-
tion result was scored by twomethods (Fig. 2C). The first was the survival
rate in the numerical integration to assess the robustness of the modified
structure. The second method was the similarity (residual sum of square,
RSS ¼ Σ([S]pred ‒ [S])2) between the predicted ([S]pred) and the
measured ([S]) metabolite abundances under condition Y. A median RSS
of multiple remaining models were used as a score of the predictability
(Fig. 2C). The procedure was performed for all allosteric inhibitions
tested. Scores of all tests were compared to find promising allosteric
inhibitions.

4.1. Preparation of trans-omics dataset

The auto dataset, including [E]auto, [S]auto, and Jauto, as well as the
mixo dataset, including [E]mixo, and [S] mixo, were obtained from liter-
atures (Nakajima et al., 2014, 2017; Nishiguchi et al., 2019; Yoshikawa
et al., 2013). (Table 1, Supplementary Tables 1 and 2). It is worth noting
that the metabolic flux levels of Jauto during the exponential growth
phase (OD730 ~1.0), were prepared by combining the 13C-based meta-
bolic flux analyses (Nakajima et al., 2017) with the flux balance analysis
(FBA) performed in our previous study (Nishiguchi et al., 2019). Carbon
flux levels were determined based on the 13C-based metabolic flux ana-
lyses (Nakajima et al., 2014, 2017). In the metabolic flux data, the
metabolic flux level of malic enzyme (0.14 mmol (g dry cell weight)�1

h�1) was lower than that of pyruvate kinase (0.6 mmol (g dry cell
weight)�1 h�1) (Supplementary Table 1). Conversely, malic enzyme has
previously been reported as a major pyruvate source in Synechococcus
elongatus PCC 7942, as pyruvate kinase was inhibited under photosyn-
thetic conditions (Jazmin et al., 2017; Young et al., 2011). Since the
13C-based metabolic flux analyses did not consider the photosystem, FBA
was performed to estimate flux levels of the photosystem reactions by
minimizing the photon flux as the objective function (Nishiguchi et al.,
2019). The photosystem reactions included photosystems 1 and 2 (PS1
and PS2), ATP synthase, cytochrome oxidase, and the cyclic electron flow
(Supplementary Table 1). Other mechanisms, like the water-water cycle,
were not considered.

4.2. Acquisition of proteome and metabolome data from metabolically
engineered PCC 6803 strain producing ethanol for modeling

The EtOH dataset, including [E]EtOH and [S]EtOH, was obtained from
the ethanol-producing PCC 6803 (Et-g) strain in this study The Et-g strain
was constructed by over-expressing pyruvate decarboxylase (pdc) and
alcohol dehydrogenase (adhII) genes from Zymomonas mobilis and de-
leting the glgX gene responsible for the glycogen biosynthetic pathway
(Namakoshi et al., 2016). Batch cultures of WT and Et-g strains were
performed under photoautotrophic conditions. The culture profile data
showed that the Et-g strain continued cell growth and ethanol production
for 96 h (Supplementary Fig. 1). The specific production rate of ethanol
was determined to be 5.2 � 0.0 mg g-DCW�1 h�1 that was similar to the
literature value. The specific cell growth rate of the Et-g strains (0.013 �
0.000 h�1) was 19% lower than that of the wild type strains (0.016 �
0.000 h�1), probably due to the stress derived from ethanol production
by the artificial pathway. Cyanobacteria or PCC 6803 strains lacking
glycogen biosynthesis pathway produce organic acids under nitrogen
starvation conditions (Carrieri et al., 2017). However, GC-MS analysis of
the culture medium of this study showed that no other metabolites were
produced during the culture period (data not shown).

Cells of WT and Et-g strains were collected at a mid-log phase (at 48



Fig. 1. The procedures for preparation of an ensemble of models. The figure describes required (A) trans-omics datasets, (B) the plain structure of metabolic model,
and (C and D) procedures for preparation of an ensemble of models by method 1 and 2. For explanatory purposes, a metabolic network including three reactions was
used. Gray characters indicate parameters whose values were undetermined. Colors of boxes represent measured trans-omics data obtained at conditions X (blue) and
Y (orange) and predicted values obtained by numerical integration (gray).
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h) and their metabolic profiles were measured by targeted metabolome
analyses (Fig. 3 and Supplementary Table 5). The comparison of the
relative metabolite abundance showed that the amounts of metabolites in
the lower glycolysis, such as 3-phosphoglycerate (3PG), increased in the
Et-g strain, (3.6 times). On the contrary, the amounts of G6P and F6P
drastically decreased, suggesting that carbon supply in glycogen
biosynthesis was suppressed in the Et-g strain. The amount of metabolites
at the entry point of the TCA cycle, such as citrate and isocitrate, slightly
decreased in the Et-g strains. PCC 6803 is known to have a redox regu-
lation by which low NADP(H)/NAD(H) level induces the formation of a
GAPDH-CP12-PRK super complex to suppress the metabolic activity of
the Calvin-cycle (Tamoi et al., 2005). The suppression of the Calvin cycle
would not work in the Et-g strains since the NADP(H)/NAD(H) level in
the Et-g strain was larger than that of the WT, as shown in Fig. 3.

Moreover, relative abundances of central metabolism-related
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enzymes as well as the photosystem-related proteins (60 proteins in total)
were successfully measured by targeted proteomics (Supplementary
Table 6). The results showed that the abundance of most proteins
decreased in the Et-g strain. The abundances of PsaA and GabD in the Et-g
strain were 0.25 and 0.33 times relative to that of the WT, respectively.
The key enzymes involved in carbon fixation, including Prk, RbcL, RbcS,
and Pgk, were also down-regulated.
4.3. Preparation of plain structure of metabolic model

Rate equations for 47 reactions of the PCC 6803 metabolic network,
without allosteric regulations, were prepared as the “plain structure” of
the metabolic model (Supplementary Table 1). The plain structure was
prepared based on a metabolic network used in ensemble modeling in
our previous study, which was able to successfully identify metabolic



Fig. 2. The procedure to test one allosteric regulation. For explanatory purposes, a metabolic network including three reactions and their modification by addition of
allosteric inhibition of enzyme [EA] by metabolite [S3] was represented. Gray characters indicate parameters whose values were undetermined. Colors of boxes
represent measured trans-omics data obtained at conditions X (blue) and Y (orange) and predicted values obtained by numerical integration (gray). The procedure was
performed for all tested allosteric inhibitions.
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engineering targets (Nishiguchi et al., 2019). The plain structure
included 34 metabolic reactions, 6 photosynthetic reactions, 3 buffer
reactions, and 4 reactions responsible for biomass synthesis, glycogen
degradation, and ethanol production, respectively. This network of 34
metabolic reactions is shown in Fig. 3. The TCA cycle was reported to
operate as a complete cycle under photoautotrophic conditions. How-
ever, the metabolic pathway from aKG to succinate is bifurcated (Knoop
et al., 2013). In this study, bifurcated pathways were considered as a
single reaction (GabD) for the sake of simplification. The reaction ki-
netics of the enzyme and five photosystem reactions were described
using generalized Michaelis–Menten and mass action equations (Sup-
plementary Table 3). The plain structure did not include allosteric inhi-
bition and no fixed parameter values (Fig. 1B).
4.4. Simulation I: systematic search of allosteric regulation using trans-
omics data

Simulation I was performed using the auto and EtOH datasets
(Table 1). An ensemble of 10,000 models with the identical plain struc-
ture (no allosteric regulation, distinct random parameter sets) repro-
ducing condition X was prepared by the method 1 (Fig. 1C). It should be
noted that, for random sampling of parameters, KM and KI was obtained
from a log uniform distribution (10�2

–102 μmol (g-DCW)�1) (Supple-
mentary Table 4). For reversible reactions, Keq was also included in the
rate equations. In the cases of Keq values as well as KM values for phos-
phoribulokinase (PRK), phosphoglycerate kinase (PGK), and RuBisCo,
the lower and upper limits (20%–500%) of known values from the
database, or literature, were used (Tsukamoto et al., 2013). Moreover,
unstable or unpromising models were removed by linear stability
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analysis to reduce the number of models served for the computationally
expensive numerical integration step. The procedure was repeated until
10,000 models were obtained (approximately 4 h of parallel calculations
using an Intel Core i7 processor).

Using the ensemble of 10,000models and themixo dataset, the role of
allosteric inhibition was tested for 1056 combinations (allosteric inhi-
bition among 32 metabolites by 33 enzymes) by the procedure shown in
Fig. 2. The systematic survey of 1056 cases could be completed within
approximate 7 days. Here, the median RSS was used for scoring, as it is a
reliable value that can be obtained from the large numbers of remaining
models. As a control, the median RSS of the ensemble of the models
without allosteric inhibition was determined to be 1054 (Table 2).
Among the 1056 allosteric regulations tested, a total of 239 cases showed
smaller median RSSs than that of the control (Supplementary Table 7).
Smaller median RSS values suggested that these allosteric inhibitions
would be effective in improving the predictability of the ensemble.

The top 10 allosteric inhibitions, with the smallest median RSS among
the 1056 cases, are listed in Table 2 (all results in Supplementary
Table 7). The results showed that intermediates around the entrance of
the TCA cycle, including acetyl-Coenzyme A (AcCoA), citrate, isocitrate,
and α-ketoglutarate (aKG), would be effective inhibitors of pyruvate ki-
nase (Pyk), phosphoribulokinase (Prk), and phosphoglycerate mutase
(Gpm). For example, when the allosteric inhibition of Pyk protein by aKG
was added to all 10,000 models in the ensemble, which was followed by
numerical integrations, a total of 6897 models were found reaching a
new stable steady state without divergence (survival rate ¼ 69.0%), with
a median RSS of 951 (Rank 1 in Table 2, Supplementary Table S7). For
the allosteric inhibition of Prk protein by isocitrate, the median RSS of
the 6980 remaining models (survival rate ¼ 69.8%) was 959 (Rank 5 in



Fig. 3. Metabolic network of Synechocystis sp. PCC 6803 strain. The trans-omics dataset, including the metabolite concentration, protein abundance, and
metabolic flux levels used in this study is represented. The metabolic model consisted of 47 reaction rate equations. The circle areas and arrow widths are proportional
to the literature reported metabolite concentration ([S]auto) and flux (Jauto) levels of the wild-type strain under the photoautotrophic condition (auto), respectively.
Boxes with protein names indicate proteins whose relative abundances ([E]EtOH/[E]auto) in the Et-g strain under the photoautotrophic condition (EtOH) were
determined by targeted proteome analysis in this study. The colors of circles and boxes represent a heatmap representation of the relative abundance levels (EtOH:auto
ratio). Metabolite concentrations and protein abundances were determined by analyzing samples in triplicates.
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Table 2, Supplementary Table S7).
4.5. Simulation II: validation of systematic search using different datasets

Results of Simulation I were validated by similar computer simula-
tions using the different datasets (Simulation II, Table 1). The mixo
dataset obtained from the GT strain under mixotrophic conditions (mixo)
was used in addition to the auto dataset (Nishiguchi et al., 2019; Yosh-
ikawa et al., 2013). It is known that when the medium is supplemented
with glucose under conditions with light, the PCC 6803 strain can use
glucose as an additional carbon source (Yoshikawa et al., 2013). A pre-
vious study demonstrated that the dataset was effective in constructing
predictable kinetic models of PCC 6803 (Nishiguchi et al., 2019).

Ensemble of 100,000 models reproducing the auto condition (no
allosteric regulation, distinct random parameter sets) was produced
using the method 2 (Fig. 1D). The method 2 was used because the sur-
vival rate of the numerical integration using the mixo data was too low to
gather enough number of models.

Allosteric inhibitions were tested for 84 combinations of the 14 top-
ranked inhibitor metabolites and the six top-ranked enzymes. As a con-
trol, the procedure was performed without the addition of allosteric in-
hibition. The survival rates after three trials were 8, 10, and 12 among
100,000 models, with median RSSs of 438, 478, and 623, respectively
(Table 2). The low survival rate (approximately 0.01%) was due to large
fluctuations in enzyme abundance between [E]mixo and [E]auto. Since the
median RSS values were unstable for small numbers of models, the
number of surviving models was employed for scoring.
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Computer simulation results are shown in Table 2 (all results in
Supplementary Table 8). The total calculation time was approximately 12
days. Results showed that the top 7 candidates from the previous section
using the EtOH dataset, were also ranked within the top 10. For example,
the survival rate increased to 59/100,000 after the allosteric inhibition of
Pyk protein by aKG was added to all models in the ensemble (Rank 7,
median RSS ¼ 516 (data not shown)). The survival rate was 65/100,000
for the case of the allosteric inhibition of Prk protein by isocitrate (Rank
5, median RSS ¼ 402). These results suggested that certain allosteric
inhibitions could contribute to the stability of the kinetic metabolic
model of PCC 6803.
4.6. Enzyme assay of predicted allosteric regulations

Two computer simulation results were compared to find plausible
allosteric inhibitions (Table 2). The results showed that only three
regulated enzymes (Pyk, Prk, and Gpm) and five inhibitor metabolites
(aKG, isocitrate, AcCoA, citrate, Pyr) were included in the list. Among
them, the inhibition of Pyk by aKG, isocitrate, AcCoA, citrate, and Pyr is
listed in Table 2. Indeed, the inhibition of Pyk by aKG and citrate was
previously reported in the biochemical characterization of Pyk from
Synechococcus PCC 6301 (Knowles et al., 2001). In this report, malate,
FBP, and ATP were also found to inhibit Pyk from Synechococcus PCC
6301. The rankings of Pyk inhibition by malate FBP, and ATP, in the
systematic survey, were 56, 40, and 42 out of 1056 cases, respectively
(Supplementary Table 7). Although a detailed investigation of PCC 6803
enzymes is still needed, the computer simulation could address known



Table 2
Systematic search of allosteric inhibition using trans-omics data by Simulation I and Simulation II.

Rank Enzyme Inhibitor Number of survived model Median Residual Sum of Square Experimental assessment

Simulation I (using Ensemble of 10,000 models)
1 Pyk aKG 6897 951 24% inhibition by 5 mM (Knowles et al., 2001)
2 Pyk isocitrate 6964 955 No
3 Prk aKG 6962 956 No
4 Pyk citrate 7009 958 41% inhibition by 5 mM (Knowles et al., 2001)
5 Prk isocitrate 6980 959 Ki ¼ 1.45 mM (This study)
6 Prk citrate 7047 961 No
7 Pyk AcCoA 7940 979 No
8 Gpm aKG 7390 982 No inhibition at 1.0 mM (This study)
9 Prk AcCoA 7318 983 No
10 Gpm isocitrate 7473 983 No
Control No allosteric inhibition 10,000 1054 No
Simulation II (using Ensemble of 100,000 models)
1 Prk Pyr 277 Nd No
2 Pyk Pyr 74 Nd No
3 Prk AcCoA 73 Nd No
4 Pyk AcCoA 70 Nd No
5 Prk isocitrate 65 402 Ki ¼ 1.45 mM (This study)
6 Prk citrate 60 Nd No
7 Pyk aKG 59 516 24% inhibition by 5 mM (Knowles et al., 2001)
8 Pyk isocitrate 55 Nd No
9 Pyk citrate 54 Nd 41% inhibition by 5 mM (Knowles et al., 2001)
10 Prk aKG 53 Nd No
Control No allosteric inhibition 8–11 Nd Control
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allosteric inhibitions of Pyk (Knowles et al., 2001).
On the other hand, as far as we have investigated, allosteric in-

hibitions for Prk and Gpm in Table 1 have not been reported in cyano-
bacteria. Since the inhibition of Prk by isocitrate ranked 5th the results of
Simulation I and II, respectively, this combination was selected as a
candidate for the biochemical assay. Moreover, we selected an inhibition
of aKG to Gpm as an additional candidate since it has been reported that
the modification of Gpm expression level could affect the carbon flow
level from 3 PG to Pyr (Oliver and Atsumi, 2015).

The predicted allosteric regulations were tested by in vitro enzyme
assays using recombinant Prk and Gpm proteins. Open reading frames of
prk and gpm genes were cloned from the PCC 6803 genome and then used
for the construction of E. coli expressing the recombinant proteins
(Supplementary Fig. 2). Enzyme assay using the purified recombinant
Prk showed that KM for Ru5P was 0.48 mM. This value was similar to that
of Prk from Synechococcus PCC 7942 (0.27 mM, Supplementary Fig. 3)
(Wadano et al., 1998). Furthermore, the KM value of Gpm for 3 PG was
0.23 mM. The result implied that the reaction rate of Prk could be sen-
sitive to Ru5P concentration because the measured concentration of
Ru5P in PCC 6803 under photoautotrophic conditions (0.005 mM) was
far below the KM value. In contrast, the intracellular 3 PG concentration
(2.7 mM) was much larger than the KM value, indicating that the reaction
rate of Gpm was likely to be insensitive to the substrate concentration.

Next, the effects of isocitrate on Prk activity was tested by the enzyme
assay. The concentrations of isocitrate were set at similar levels to their
intracellular concentrations under photoautotrophic conditions. The re-
sults showed that isocitrate inhibited the reaction rate of Prk by
approximately 50% (Fig. 4a). The enzyme assay also showed that no
inhibition was observed for Gpm upon addition of aKG. The Dixon plot
analysis revealed that inhibition by isocitrate occurred in a noncompet-
itive manner and the inhibition constant (Ki) was deduced to be 1.45 �
0.13 mM (Fig. 4b). Since the Ki value was similar to the intracellular
concentration of isocitrate (1.4 mM), Prk was allosterically inhibited by
isocitrate under photoautotrophic conditions (Fig. 4c).

5. Discussion

This study examined the application of a computer simulation of
metabolism for the systematic search of allosteric regulation in photo-
synthetic bacteria. The trans-omics data-driven ensemble kinetic model
was employed for the simulation of allosteric regulations in PCC 6803
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(Figs. 1 and 2 and Table 1). The computer simulation successfully iden-
tified several candidates contributing to the reproducibility and stability
of the kinetic model of PCC 6803 metabolism (Table 2). One of the
candidates (inhibition of Pyr by citrate) was in agreement with literature
reported allosteric regulation (Knowles et al., 2001). Moreover, the in-
hibition of Prk by isocitrate was confirmed as a novel allosteric regulator
in cyanobacteria by enzyme assay using the recombinant protein (Fig. 4).
These results support that the computer simulation-based method is
effective for the systematic search of allosteric regulation. This study
demonstrated that in addition to the short time series data of metabolite
concentration after perturbation (Christodoulou et al., 2018), datasets
obtained from two distinct stationary states were also available for sys-
tematic searching using protein abundance data. However, the ensemble
modeling approach was conducted by sparse sampling from a large
parameter space. Although the ensembles of models as large as possible
were used in this study, computer simulations using more calculations
are preferable for more a detailed investigation of the metabolic systems.

The list shown in Table 2 did not address some known allosteric
regulation in cyanobacteria. For instance, biochemical characterization
reported that 6 PG inhibited Prk (116th in the systematic survey, Sup-
plementary Table 7), RuBP inhibited RuBisCo (537th) in Synechococcus
elongatus PCC 7942, and malate inhibited phosphoenolpyruvate carbox-
ylase in Synechocystis sp. PCC 6803 (688th), respectively (Lee et al., 1991;
Spreitzer and Salvucci, 2002; Takeya et al., 2017; Wadano et al., 1998).
The probable reason for this is that the allosteric regulations were not
working in the simulated condition of PCC 6803 because the computer
simulation method depended on the dataset used for the systematic
searching. It was expected that other allosteric regulations would be
found by the computer simulation method by using other trans-omics
datasets obtained from distinct metabolic states.

This study experimentally identified isocitrate as a novel allosteric
inhibitor of Prk in cyanobacteria (Fig. 4), although a more detailed
biochemical characterization needs to be included in future studies. The
metabolic data also suggested that allosteric inhibition occurred under
photoautotrophic conditions. It has been reported that cyanobacteria
store excess carbons as organic acids in the TCA cycle (Maruyama et al.,
2019; Osanai et al., 2014). The result of this study suggested that the
possible role of allosteric inhibition was the down-regulation of the
carbon fixation pathway under excess carbon conditions (Fig. 4c). Prk
was recently identified as an important target for the metabolic engi-
neering of cyanobacteria. The overexpression of Prk protein was



Fig. 4. Enzyme assay of phosphoribulokinase (Prk) and phosphoglycerate mutase (Gpm) from Synechocystis sp. PCC 6803. (a) Inhibition of Prk by the
addition of 1.7 mM isocitrate, and inhibition of Gpm by the addition of 1.0 mM α-ketoglutarate. *p < 0.05 (two-sided t-test, n ¼ 3). (b) Dixon-plot for inhibition of Prk
by isocitrate. All data are presented as mean � SD (n ¼ 3). (c) Allosteric inhibition identified in this study.
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demonstrated to improve the production of bioalcohols significantly but
slightly (Kanno et al., 2017; Nishiguchi et al., 2019). The results of this
study suggest that further identification of allosteric control and their
release would be effective in metabolic engineering of cyanobacteria.
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