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A B S T R A C T

Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection
and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has
demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms
for monkeypox (MP). Various models, such as CNN, DL, NLP, Naïve Bayes, GRA-TLA, HMD, ARIMA, SEL,
Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings
show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this
review will assist researchers in understanding the latest implementations of ML in MP and further progress in the
field to discover potent therapeutics.
1. Introduction

1.1. Monkeypox and machine learning (ML)

Human monkeypox (MP) is a zoonotic disease caused by monkeypox
virus (MPV) [1,2]. This Orthopoxvirus displays similarities to smallpox
[1,3]. In humans, MPV infections are acknowledged to be highly sig-
nificant after smallpox [4,5]. This virus, initially discovered in monkeys
in a Danish laboratory in 1958, has since been given the name of
monkeypox [6].

MP was first recorded in 1970 [7] and observed in a 9-month-old boy
with fever, followed by a centrifugal rash after two days [8]. Initially, this
disease was endemic to the Democratic Republic of the Congo and spread
throughout Africa, particularly in Central and West Africa. The first case
of MP outside Africa was reported in 2003 [6].

The genome of MPV, which belongs to the Poxviridae family, is
approximately �200 kb long and contains conserved regions at the
center that code for replication and machinery required for assembly [9].
The terminal ends of MPV contain genes that play a role in pathogenesis
and host-range determination [9]. They contain linear DNA [9]. Typi-
cally, MPV is characterized by a pleomorphic, enveloped virus with a
dumbbell-shaped core and lateral bodies [10].

MPV has two clades: the West Africa and Congo Basin [11–14]. The
fatality rate associated with the Congo Basin strain is 10%, while that of
West Africa strain is about 1% [15]. The West Africa strains are generally
less pathogenic [9] due to the presence of open reading frames containing
23

ier B.V. on behalf of Shanghai Jia
/).
fragmentations and deletions that promote reduced virulence [10]. In
infected individuals, MPV typically manifests as a maculopapular rash on
the soles and palms, accompanied by fever and swollen lymph nodes [5,
12]. The rash progresses through stages, evolving from macules and
papules to vesicles and pustules, eventually forming scabs and undergoing
desquamation [16,17].

The spread and transmission of the disease may occur through contact
with skin lesions, respiratory droplets, and bodily fluids. It might also
spread because of fomite contamination [18]. The animal hosts for MP
are monkeys, rats, pigs, prairie dogs [19], squirrels [19], hedgehogs,
primates, and mice; therefore, MP can be transmitted from animals to
humans [18]. The transmission has also been observed in humans [20].
To alleviate MP, it is essential to curb disease transmission [21].

Artificial intelligence (AI) is a fascinating and interesting approach
among current analytical tools [22]. ML and AI have been increasingly
recognized for their ability to diagnose diseases [23]. Machine
learning-based disease diagnosis (MLBDD) is gaining importance
because of its advantages, such as low economic burden and less time
consumption. The MLBDD comprises data obtained from X-rays, MRI
and patient information [23].

The ML process generally consists of supervised [24] and unsuper-
vised [25] models, depending on the presence or absence of the label to
be predicted. The most commonly employed supervised learning
methods are the naïve Bayes, support vector machine, and decision trees
[26]. Principal component analysis and k-means clustering are
commonly employed in unsupervised learning [26].
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1.2. Artificial intelligence and machine learning

ML and AI assist healthcare professionals in finding rapid solutions
[27]. AI is an approach to representing the intelligent behaviour of
humans.ML is a subset of AI that enables studying algorithms for executing
particular tasks [28,29]. AI can facilitate various patient-
care processes and provide intelligent health systems [30]. Researchers can
use a large amount of data obtained from hospitals to apply AI to under-
stand certain medical conditions, such as the prediction of disease stage,
hospital stay, diagnosis, and death prediction [31,32]. The term “artificial
intelligence”was first coined in 1956 [33]. AI andML play significant roles
in healthcare [34]. They are essential for accurately predicting diseases
[35–37] and are used in decision-making [38–40]. Precision medicine is
one of the most widely used applications [27]. Several algorithms have
successfully identified malignant tumors in the field of cancer, thereby
directing researchers further [27]. In addition, various other applications
include drug discovery and development [41], transcription of medical
documents, enhancement of patient-physician communication, and
remote treatment of patients [33]. Another report described the use and
development of AI and global tendencies of heart diseases and stroke,
identified research gaps, and recommended future guidelines and di-
rections [32]. Samuel defined ML as the capacity of computers to learn
without programming [26]. ML approaches involve supervised and un-
supervised learning algorithms and reinforcement learning.

1.3. Supervised learning

In supervised learning methods, data contain labels or classes. These
data can be divided into training and test datasets [26,28,42–44]. The
algorithm was trained using the training dataset and was applied to the
test dataset for classification or prediction (Fig. 1A) [26,28]. These types
of prediction are referred to as classification models [42,44].
Conversely, when the output has a continuous value, it is called the
supervised regression model [44]. Here, a few common supervised
learning methods are discussed, such as random forest (RF), decision
tree, support vector machine (SVM), naïve Bayes, linear regression, and
logistic regression [42].

1.3.1. Random forest
In 2001, Breiman suggested a highly successful algorithm called the

RF [45,46]. Predictions were made by merging numerous decision trees
and averaging their results [45,47]. Because many randomly generated
decision trees are employed to build the final model (Fig. 1B), this is
Fig. 1. Methods of supervised learning. A) Workflow of supe
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called RF [42]. This is a beneficial method when the variables are
greater than the observations [45]. It is non-parametric, competent, and
easy to interpret. It can accurately predict the outcomes when used with
different data types [48].

1.3.2. Decision tree
This can be adapted for classification and regression methods to build

a model to predict target values using the basic decision rules available
from the data features (scikit-learn). This is similar to a graph that re-
cords outcome based on choices [26]. A decision tree typically contains a
root, internal nodes, branches, and leaves (Fig. 2A) [53]. The attribute is
checked in the internal node, and the result is passed on to a branch [42,
44]. The root node, which is also referred to as the decision node, con-
tains choices that are further divided. Internal or chance nodes corre-
spond to a particular chance obtainable in the tree at a given point. The
parent node is linked to the top edge of the node, and the bottom edge is
joined to the child or leaf node. Braches are possible results arising from
roots and internal roots [54]. The end outcome was labelled at the leaf
node. Correspondingly, the paths in a decision tree are governed by
specific rules [42].

1.3.3. Support vector machine
It is a widely used ML algorithm suitable for complex data classifi-

cation [55] and imbalanced data of small to medium size [47]. The SVM
approach provides superior classification accuracy [56]. A hyperplane
dividing the data into two classes in an n-dimensional vector space was
plotted [47]. This division was enlarged by expanding the margins on
both sides of the hyperplane [42]. The area bound to the hyperplane with
the maximum possible margin was used in this investigation (Fig. 2B)
[42]. SVM approaches can be employed for linear or non-linear classi-
fication [26,47]. Non-linear classification was executed using a kernel
trick, and the inputs were mapped to high-dimensional feature spaces
[26]. Before starting the SVM method, it was essential to correctly label
the input data [56].

1.3.4. Naïve Bayes
This is an easy-to-build algorithm that depends on Bayes’ theorem

[26,57]. When the data to be analyzed have numerous data points and
features, naïve Bayes swiftly trains the data and builds a model to obtain
the prediction (Fig. 3A) [57]. Typically, the naïve Bayes method assumes
that the existence of a specific feature in a class is unrelated to another
feature [26]. The naïve Bayes method produces good results for simple
predictions [42].
rvised learning approach. B) Depiction of random forest.



Fig. 2. Different supervised learning models A) Decision tree approach. B) Support vector machine method.
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1.3.5. Linear regression
In 1894, Galton first proposed the idea of linear regression. This

method helps assess the correlation between predictors [49]. Corre-
spondingly, the target variable is identified by plotting the straight line
called the “least squares regression line’. This best-fit line is plotted be-
tween the features or independent variables and the target or dependent
variables [42]. The dependent variables are plotted on y, and the inde-
pendent variables are plotted on X. The independent variables are also
called input variables, observations, data points, features, attributes, di-
mensions, or observed data (Fig. 3B). The regression model aims to
predict a continuous target variable. The objective of the classification
approach is to predict the labels. The model is trained using the training
dataset and employed to predict the unlabeled test dataset [44]. If one
independent variable must be analysed for prediction, it is called a simple
linear regression. If more than one is involved, it is known as multiple
linear regression [50–52].
Fig. 3. Various supervised learning models. A) Naïve B
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1.3.6. Logistic regression
Logistic regression makes predictions by fitting data to a logistic

function [44]. This is a typical classification method [58,59]. The logistic
regression model infers that the result variable Y is categorical and is
established on the probabilities connected to Y, which adapts the value 1
for positive or success and 0 for negative or failure [42,60]. This depends
on the association between the dependent variables or target and the
independent input variables or features [42]. Here, an ‘S’- shaped logistic
function (sigmoid function) predicts between 0 and 1 [61,62]. The
threshold value indicates the probability that the model could be sepa-
rated into classes (Fig. 3C) [42,63].

1.4. Reinforcement learning

The algorithm learns from an environment responsive to trial and
error [44]. The learning algorithm is directed by the feedback provided
ayes. B) Linear regression. C) Logistic regression.



Fig. 4. Neural network approaches. A) Artificial neural network (ANN). B) Deep neural network (DNN).
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by the environment [44]. There are four elements in reinforcement
learning: policy, reward, value, and model [64]. The policy function re-
fers to mapping possible states to the actions to be performed. Typically,
this is the performance of a learning agent over a particular period. The
reward function describes the goal to be solved (the problem) in rein-
forcement learning. This is feedback obtained from the environment.
These rewards are scalar or integer variables [65]. Unpleasant events are
referred to as punishments [66]. The value function explains the existing
mapping of probable states. It describes what is good, as it predicts re-
wards [64,65]. The model is a demonstration of a learning environment
that is employed for learning [65].

1.5. Artificial neural networks (ANNs)

ANNs are motivated by mechanisms in the human brain. ANNs can
adapt to variations in the input, producing the best output without
remodeling the output conditions. ANNs have extremely interconnected
components referred to as neurons. These neurons execute functions such
as input collection from neurons or an exterior source and produce an
output [67]. The neurons in an ANN are nodes [68]. Neural networks can
adapt to changing input; therefore, the network generates the best
possible results without redesigning the output criteria [26]. Generally,
an ANN has three layers: the input layer to accept the input, the hidden
layer known as the black box [68], where the input is processed; and the
output layer to convey the output result (Fig. 4A) [26].

If many nodes are present inside the hidden layer, it is referred to as a
deep neural network (DNN) (Fig. 4B). Classically, convolutional neural
networks (CNNs) belong to the DNN class and are appropriate for
exploring highly complex data [42]. One promising aspect of a CNN is
Fig. 5. Unsupervised learning m
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that it automatically identifies important features without human inter-
vention [69].

1.6. Unsupervised learning

Unsupervised algorithms (also called clustering algorithms) use un-
labeled data. The results (new data to be analyzed) can be obtained in
clusters or groups based on their similarity to the given data [42]. Here,
the algorithm tries to match in the form of patterns [28]. The most
common unsupervised ML algorithms are K-Means clustering and prin-
cipal component analysis (PCA) [26,42].

1.6.1. K-Means clustering
This is a simple yet powerful approach for understanding data

without labels. Here, the input data were categorised into clusters.
Typically, a cluster refers to an assembly of points in the given data
accumulated together owing to specific similarities. In this method, the
‘k’ centres (Fig. 5) are to be defined for every cluster and are to be placed
at varied positions and distances from each other to obtain vivid results.
Subsequently, each point in a given data set is connected to the closest
centre [26]. This algorithm was described in detail by Hartigan [70].

1.6.2. Principal component analysis
PCA is a statistical method that facilitates dimensionality reduction

[71]. The features required to build a model can be reduced because this
approach can emphasise the influence of different features of a given
dataset via the principal components [42]. In 1901, Karl Pearson first
proposed this method [72–74]. The primary aim of this approach is to
identify the condensed features that depict the original data in reduced
odel, K-means clustering.
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subspace dimensions with less information loss. PCA models are useful
for large amounts of data with multiple variables, big data with various
observations for a given variable, and highly correlated data. The
reduced size offers several benefits, including less space for storage,
elimination of collinearity, two-dimensional (2D) or three-dimensional
(3D) visualisation, and reduction of noise [72].

1.7. Applications of AI/ML in MP

1.7.1. Diagnosis/prediction
Sitaula et al. used publicly available data to detect MPV by adapting

pre-trained deep learning methods. To accomplish this, 13 different pre-
trained deep learning models were compared. Universal custom layers
were added after fine-tuning. The results were examined regarding pre-
cision, recall, F1-score, and accuracy. The best model was selected, and
majority voting over the probabilistic outputs was used to improve the
overall performance. According to the evaluated findings, the ensemble
approach performed best with a precision of 85.44%, recall of 85.47%, F1-
score of 85.40%, and accuracy of 87.13% [75].

An MP classification method was developed from images of skin le-
sions. Classification can be performed using a Deep Pre-trained Network
and Mobile Application. For this purpose, publicly available datasets and
a deep transfer learning approach were used, and MATLAB was used for
training and testing. The network with the highest accuracy was trained
and created and using the TensorFlow software. This model was used in
mobile devices after being transformed into the TensorFlow Lite model.
The test results showed that the system can accurately classify images
with an accuracy of 91.11% [76].

Abdelhamid et al. used publicly available images to classify MP. This
was performed using transfer learning and the Al-Biruni Earth Radius
optimization algorithm with a publicly available dataset. The obtained
average accuracy of classification was 98.8% [77].

Ozsahin et al. used publicly retrievable data (images) for the classifi-
cation and detection of MP and chickenpox lesions by adapting a deep
learning framework [78]. A 2D CNN with four convolutional layers was
used; three max-pooling layers were added after the second, third, and
fourth convolutional layers. The CNN test accuracy was observed to be
99.60%and aweighted average precision recall scorewas observed to be as
99.00% [78].

A study reported the development of an MP model for diagnosis
with Generalization and Regularization-based Transfer Learning ap-
proaches (GRA-TLA). This model can be used for classification which
includes binary and multiclass classifications, and was evaluated on
10 CNN models conducted in three individual studies. The findings
have shown that, in studies one and two, the model could differentiate
between the individuals with MP and without MP accuracy, ranging
from 77% to 88% when executed with Extreme Inception (Xception).
In the third study, the Residual Network (ResNet)-101 outperformed
multiclass classification, with an accuracy score between 84% and
99% [79]. Because of the limited data availability during the exper-
iment, the authors pooled the data with images of patients’ with MP
[79].

A recent study reported using Particle Swarm Optimization (PSO) to
select digital images to predict MP and its corresponding prevention. The
images were collected from the International Skin Imaging Collaboration
(ISIC), and the PSO model was compared with pre-trained deep learning
models such as VGG16 ResNet50, InceptionV3, and Ensemble for MPV
identification. The results obtained by the PSOMPX model were signifi-
cantly superior, with an accuracy of 90.01% [80].

In one study, various deep CNN models were used with different
multiple machine learning classifiers on skin images to predict MP
diagnosis. Three CNN models, GoogleNet, Vgg16Net, and AlexNet, were
utilized with naïve Bayes, K-Nearest Neighbors (KNN), Decision Tree,
Random Forest, SVM classifiers. The results have shown that the
Vgg16Net features and naïve Bayes classification model have given the
best results, with an accuracy of 91.11% [81].
5

Ali et al. initially developed a dataset of skin lesions called the
‘Monkeypox Skin Lesion Dataset (MSLD)’. This dataset contained images
of chickenpox, measles, and monkeypox. Different pre-trained deep
learning models were used to classify MP, followed by the additional
development of a model which is an ensemble of the three. ResNet50
obtained the best overall accuracy of 82.96 (�4.57) % [82].

Another image-based classification of MP was conducted using in-
tegrated deep transfer-learning-based methods and a convolutional
block attention module (CBAM). The aim was to deduce significant parts
of the features to execute the image-based classification of MP. Here,
five deep learning models, namely, Xception, VGG19, EfficientNetB3,
DenseNet121, and MobileNetV2, were used together with integrated
channel and spatial attention mechanisms. The results showed that
Xception-CBAM-Dense layers had better results, with an accuracy of
83.89% [83].

One study reported using data-mining and AI methods to detect MP at
an early stage. This approach is called Human Monkeypox Detection
(HMD) and has a Selection Phase (SP) and a Detection Phase (DP) as the
major phases. The SP attempts to select the best features, from which the
DP can detect MP precisely and swiftly. The accuracy, precision, and
recall values equal 98.48%, 91.1% and 88.91%, respectively for HMD
approach [84].

A newmethod that could predict MP cases was developed by Eid et al.
and was established on a Long Short-Term Memory (LSTM) deep
network. The Al-Biruni Earth Radius (BER) optimization algorithm was
used to fine-tune the hyper-parameters. A publicly accessible dataset was
used for this investigation. The proposed model demonstrated a greater
value when subjected to the evaluation criteria, including a Mean Bias
Error of 0.06 [85].

MP was detected using a CNN on publicly available open-source
image data. Correspondingly, the images were preprocessed, and 6 in-
vestigations were conducted using MiniGoggleNe with varied epoch
numbers. The best model had 50 epochs and demonstrated an accuracy
of 0.9708 [86].

The detection of MP was also examined using a CNN with a Transfer
Learning approach [87]. In the CNN model, a function model for
learning was incorporated by modifying the transfer-learning model and
the hyperparameters. Among the various custom models used, the
hybrid MobileNetV3-s model demonstrated an accuracy of 0.96. The
image data were obtained from open sources and assembled as positive
and negative [87].

In a previous study, a deep-learning approach was used to analyze
photos of skin lesions from a public dataset. Five pre-trained deep neural
networks, including AlexNet, SqueezeNet, GoogLeNet, ResNet-18, and
Places365-GoogLeNet, were utilised to find the best model; among them,
ResNet18 showed a 99.49% accuracy rate [88].

The early detection of MPV was achieved using a deep convolutional
neural network (named MPXV-CNN) with images of skin lesions. A
dataset of different photographic images of skin diseases (n ¼ 139,198)
were curated from various sources. The test dataset showed a specificity
of 0.898 and sensitivity of 0.91 [89].

Different models have demonstrated a good accuracy from the above
studies, ranging from 84% to 99.49%when applied to different datasets.
Overall, the DL-ResNet18 method exhibits an accuracy of 99.49%.

1.7.2. Time-series forecast
One study predicted the transmission rate of the disease using Stacking

Ensemble Learning (SEL) and ML techniques. The data from all reported
MP cases were used in this study. The results showed that the SEL could be
helpful in predictingMPwith a rootmean square error (RMSE) of 33.1075,
MSE of 1096.1068, and mean absolute error of 22.4214 [90].

Researchers have conducted investigations to predict models and
outbreaks and visualize them using time-series data. They used a decision
tree, linear regression, random forest, AutoRegressive Integrated Moving
Average (ARIMA) and elasticNet. The results showed that the ARIMAwas
best, with an R2 of 0.9267 [91].
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A study was conducted to assess the global spread of MPV using ML
methods such as decision trees, ANN, RF, linear regression, CNNs and
elastic net regression. Furthermore, events over time was assessed by a
time-series motivated study adapting seasonal auto-regressive integrated
moving averages (SARIMA) and ARIMA. Here, we analyzed the global
spread of MP [92].

A report was published on the prediction of the MP occurrence by
using regression analysis and a comprehensive statistical approach. This
approach used a public dataset from Kaggle [93].

MP forecasting has also been studied using stochastic models. For this
investigation, the multilayer perceptron (MLP) model was compared with
the traditional method (the Box–Jenkins methodology, called the ARIMA
model). These methods were employed on the MP dataset that is available
worldwide and examined according tomean absolute error, mean absolute
percentage error, and root mean square error. The MP adapts the ARIMA
model (7, 1, 7) with the root mean square error of 150.78, while the MLP
demonstrated a root mean square error 54.40. The MLP uses a sigmoid
activation function with a single input and ten hidden neurons [94].
Table 1
Artificial intelligence/machine learning techniques on monkeypox.

Disease name Type Dataset

MonkeyPox Detection Publicly available data
Classification Publicly available skin

lesions images
Classification Publicly available images
Classification and detection Publicly retrievable images
Classification Patients images

Prediction and Diagnosis Images from ISIC
Classification Skin images
Classification MSLD
Classification MSLD
Detection Data mining
Prediction Publicly accessible dataset
Detection Publicly accessible images
Detection Image data open sources
Detection Image data open sources
Detection Image data curated from

different sources
Transmission rate All the reported data
Prediction, Outbreak
Forecasting, Visualization

–

Time Series Analysis –

Forecasting MP prognosis Public dataset
Forecast Our World in Data
Forecast Literature
Forecast CDC official website
Sentiment analysis Twitter posts
Sentiment analysis Twitter posts
Sentiment analysis Multilingual Twitter posts
Sentiment analysis Twitter posts

Fig. 6. General workflow for the detection
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One group investigated the future probability of MP by using ARIMA
and ANNs. The prediction showed that, for MP cases and deaths, ARIMA
(5,2,3) and ARIMA (0,2,1) were more effective [95].

A tool that forecasts the MP experiment with 5 models: LSTM,
ARIMA, stacking model, Prophet, and NeuralProphet on the data avail-
able from the CDC official website. The results demonstrated that the
NeuralProphet performance was better, with an R2 of 0.76 and RMSE of
49.27 with an accuracy of 95% [96].

1.7.3. Sentiment analysis
Sentiment analysis was performed using Twitter posts with unsu-

pervised ML methods [97]. Bidirectional Encoder Representations from
Transformers (BERT) were used. Subsequently, topic modelling was
conducted, particularly BERTopic and physical thematic exploration. The
results showed that 5 topics were grouped into 3 themes [97].

Sentimental analysis was conducted to understand people's approaches
to MP using natural language processing (NLP). Twitter posts have been
analyzed that were posted from June 1, 2022, to June 25, 2022. The
Method Reference

Deep learning [75]
Deep transfer learning approach [76]

Transfer Learning and the Al-Biruni Earth Radius [77]
CNN [78]
Generalization and Regularization-based Transfer Learning
approaches (GRA-TLA) for binary and multiclass classification

[79]

Particle Swarm Optimization [80]
Vgg16Net features, Naïve Bayes [81]
Deep Learning [82]
Xception-CBAM-Dense layers [83]
HMD [84]
LSTM-BER [85]
CNN [86]
Hybrid MobileNetV3-s [87]
DNN [88]
MPXV-CNN [89]

Stacking Ensemble Learning (SEL) [90]
ARIMA [91]

ARIMA and SARIMA [92]
Regression analysis and comprehensive statistical approach. [93]
MLP [94]
ARIMA [95]
NeuralProphet [96]
BERT [97]
NLP [98]
TextBlob annotation- Lemmatization-CountVectorizer -SVM [99]
Hybrid CNN-LSTM model [100]

of monkeypox using machine learning.
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analysis was executed in two parts: in Part 1, sentiment analysis was
conducted to understand the people's views, and in Part 2, Latent Dirichlet
Allocation (LDA) topicmodeling was conducted to capture the noteworthy
aspects during the discussion. The results showed that 48.16% of the
tweets displayed neutral sentiments, 28.82% showed positive sentiments,
and 23.01% demonstrated negative sentiments. Upon topic modelling
from negative sentiments tweets, concerns were about death, severity,
lesions, airborne MPV, and MP vaccines. [98].

Sentiment analysis was conducted on multilingual MP tweets with
TextBlob and VADER. Subsequently, 56 classifier models were used with
lemmatization and stemming approaches for vocabulary normalization,
and CountVectorizer and TF-IDF were employed for vectorization.
Learning algorithms, such as SVM, KNN, naïve Bayes, RF, XGBoost, Lo-
gistic Regression, and MLP, were used. The findings with TextBlob
annotation, Lemmatization, CountVectorizer, and SVM showcased an
excellent accuracy of 0.9348 [99].

Sentimental analysis was conducted on Twitter posts using hybrid
models, including LSTM and CNN. The hybrid CNN-LSTM model was
predicted with an accuracy of 83% [100]. Comprehensive applications of
AI/ML in MP are presented in Table 1 and Fig. 6.

These results will help researchers and healthcare professionals to
understand and diagose the disease with greater accuracy. Furthermore,
the sentimental analysis results demonstrated public opinion and views
on the disease. Most importantly, models that predict early disease
detection plays an important role in curbing its spread.

2. Limitations of the study

The primary limitation of the study is limited resources available for
the data to perform the training and test analyses. Most investigations
have been conducted using open-source images of skin lesions. In-
vestigations and analyses with other data, such as blood samples, gene
perturbations, and biomarkers, may further strengthen this study. A
comprehensive method can be developed to overcome and reduce errors
and false-positive results. Further studies should be conducted to
address strains with mutations to reduce the number of positive cases.

3. Conclusion

Recently, AI/ML has become popular in healthcare and disease
diagnosis. Rapid results were obtained with greater accuracy. The pre-
sent review focuses on various AI/ML approaches for understanding MP.
This review shows that the sentiment analysis is most widely used
method. Furthermore, a forecast of the MP disease was conducted.
Through these studies, we can prepare to counter this disease.
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