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Abstract
Background: Activation of caspase-9 in response to treatment with cytotoxic drugs is inhibited
in NSCLC cells, which may contribute to the clinical resistance to chemotherapy shown in this type
of tumor. The aim of the present study was to investigate the mechanism of caspase-9 inhibition,
with a focus on a possible role of TUCAN as caspase-9 inhibitor and a determinant of
chemosensitivity in NSCLC cells.

Methods: Caspase-9 processing and activation were investigated by Western blot and by
measuring the cleavage of the fluorogenic substrate LEHD-AFC. Proteins interaction assays, and
RNA interference in combination with cell viability and apoptosis assays were used to investigate
the involvement of TUCAN in inhibition of caspase-9 and chemosensitivity NSCLC.

Results: Analysis of the components of the caspase-9 activation pathway in a panel of NSCLC and
SCLC cells revealed no intrinsic defects. In fact, exogenously added cytochrome c and dATP
triggered procaspase-9 cleavage and activation in lung cancer cell lysates, suggesting the presence
of an inhibitor. The reported inhibitor of caspase-9, TUCAN, was exclusively expressed in NSCLC
cells. However, interactions between TUCAN and procaspase-9 could not be demonstrated by any
of the assays used. Furthermore, RNA interference-mediated down-regulation of TUCAN did not
restore cisplatin-induced caspase-9 activation or affect cisplatin sensitivity in NSCLC cells.

Conclusion: These results indicate that procaspase-9 is functional and can undergo activation and
full processing in lung cancer cell extracts in the presence of additional cytochrome c/dATP.
However, the inhibitory protein TUCAN does not play a role in inhibition of procaspase-9 and in
determining the sensitivity to cisplatin in NSCLC.

Background
Lung cancer is the major cancer killer and a health care
problem worldwide with an overall 5-year survival rate of
less than 15 %. Non-small cell lung cancer (NSCLC) rep-

resents 80% of all cases of lung cancer [1,2]. The corner-
stone therapy for NSCLC is surgery, but this is radical in
only about 30% of cases. Patients with a more advanced
stage and radically operated patients are candidates for
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systemic chemotherapy, which has however a low level of
efficiency.

Resistance to apoptosis in tumor cells can hamper the cur-
ative effect of chemotherapy, and several studies have
demonstrated apoptosis resistance in NSCLC [3]. At the
molecular level, the caspases are responsible for the execu-
tion of apoptosis [4,5], and the efficacy of caspase-activa-
tion in tumor cells in response to treatment will, at least
in part, determine the therapeutic effect [6]. Two main
caspase-dependent cell death pathways have been identi-
fied [7,8]. The intrinsic pathway is triggered upon disrup-
tion of the mitochondria, leading to the release of
cytochrome c into the cytosol where it induces apopto-
some formation and caspase-9 activation [9]. The extrinsic
pathway, on the other hand, is initiated via death recep-
tors on the cell membrane, such as tumor necrosis factor
receptors. After ligand-induced trimerization, the recep-
tors recruit the cytosolic death-domain-containing pro-
tein FADD (Fas-associated protein with death domain) to
form the death-inducing signalling complex (DISC),
which mediates the activation of procaspase-8 [8]. The
initiator caspases, activated in the apoptosome (caspase-
9) or DISC (caspase-8) can, in turn, cleave and activate the
executioner caspases-3, -6 and -7, causing irreversible
apoptosis.

The activation of caspases needs to be tightly regulated,
and members of the inhibitor of apoptosis protein (IAPs)
family are known to directly bind to and inhibit caspases
through their baculovirus-IAP-repeat domain (BIR) [10].
In addition to the BIR domain, certain IAPs contain a cas-
pase recruitment domain (CARD), which is also present
in other apoptosis-related proteins, such as TUCAN
(tumor-up-regulated CARD-containing antagonist of cas-
pase-nine), also called CARDINAL or CARD8 [11,13,14].
TUCAN was reported to be involved in inhibition of
apoptosis by interfering with Apaf-1 binding to procas-
pase-9 via its CARD domain [11]. Moreover, a novel isof-
rom of TUCAN has been recently reported to obstruct
apoptosis headed by both caspase-8 and caspase-9 [12].

We, and others, have provided evidence that a blockade of
the mitochondrial apoptotic pathway in NSCLC plays an
important role in drug resistance [15-17], but the precise
mechanism underlying this blockade is still unclear [18].
In this study, we have investigated a potential role of
TUCAN as a caspase-9 inhibitor in NSCLC. Our results
show that TUCAN is expressed at high level in NSCLC
cells when compared to small cell lung cancer (SCLC)
cells. However, no interaction between TUCAN and
(pro)caspase-9 was detected, and RNA interference-medi-
ated down-regulation of TUCAN did not restore cisplatin-
induced caspase-9 activation or affect cisplatin sensitivity.
We conclude that TUCAN is not responsible for inhibi-

tion of caspase-9 in NSCLC cells, and that its role in mod-
ulation of apoptosis is more complex than initially
proposed.

Methods
Cell culture and drug treatment
Human NSCLC NCI- H460, -A549 and -H322 and SCLC
NCI-GLC4, -N417 and -H187 cells were grown in RPMI
medium (Cambrex Bioscence, Verviers, Belgium).
NSCLC-SW1573 cells and the packaging cell line, PT 67,
were cultured in DMEM (Cambrex Bioscence, Verviers,
Belgium). Media were supplemented with 10% FCS, 100
units/ml penicillin, and 100 µg/ml streptomycin (Gibco
BRL, Invitrogen Corp., Scotland, UK). Cells were plated
24 h before treatment and, when applicable, treated with
cisplatin (Bristol-Myers Squibb, Woerden, Netherlands)
or with etoposide (Sigma- Aldrich, Saint Louis, MI) for 24
or 48 h. In the experiments an IC80 concentration of cis-
platin was used that represents a clinically relevant con-
centration.

Plasmids and cloning
The plasmids encoding a MYC-tagged cleavage-resistant
procaspase-9 mutant, TUCAN-flag, and Apaf-1 (1–570)
were described before [19-21]. pcDNA3-171-431 FLAG-
TUCAN, pcDNA3-341-431 FLAG-TUCAN and TUCAN-
YFP were generated by PCR-based cloning strategies using
TUCAN-flag as a template. The caspase-9 cDNA was
obtained by RT-PCR from RNA isolated from H460 cells,
and sequenced using an ABI 310 Capillary DNA
Sequencer/Genotyper (Applied Biosystems, Forest City,
CA). Sequence comparison was done using BLAST, and
the published sequence of procaspase-9, [GenBank:
XM_001584][22].

RNA interference
The pSUPER and pSUPERretro vectors were obtained
from R. Agami [23]. For the silencing of TUCAN three dif-
ferent 19-bp oligonucleotides were designed: 1) 5'-tcgt-
cagtttctggggcct-3; 2) 5'-tgtggatgttgagttgatt-3' and 3) 5'-
agcgacgccttgctaacaa -3'. Oligonucleotides were cloned
into Hind III/Bgl II- digested pSUPER. For stable transfec-
tion, the inserts from the pSUPER-TUCAN -1, -2, -3 vec-
tors were subcloned into the EcoRI/XhoI sites of
pSUPERretro, yielding pSUPERretro-TUCAN -1, -2, -3
constructs. Next, PT67 packaging cells were transiently
transfected using FuGene (Roche Diagnostic, Mannheim,
Germany) with the individual pSUPERretro plasmid to
produce retroviral particles. For stable transfection, H460
cells were grown for 3 days and daily exposed for 6 h to
fresh retroviral supernatant for optimal infection. Selec-
tion for stable transfectants was performed in medium
containing 1, 0–1,5 µg/ml of puromycin for 1-1,5 week.
As negative control, a pSUPERretro vector containing the
TUCAN-1 insert in reverse orientation was used.
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Real Time RT-PCR
Total RNA was extracted from stable transfected H460
cells using RNAzol and reverse transcribed into cDNA
prior to semi-quantitative RT-PCR analyses with a Light-
Cycler (Roche Diagnostics GmbH Mannheim, Germany).
The forward and reverse primers used for TUCAN were 5'-
gcctttgtgaaggagaaccaccgg-3' and 5'-ctccaccatgctccgcaaggc -
3', and for GAPDH 5'-accacagtccatgccatcac-3' and 5'-tccac-
caccctgttgctgta-3'. Relative mRNA expression was calcu-
lated as: (E-Cp target gene)/(E-Cp reference gene), in which E =
efficiency and Cp = crossing point. GAPDH was used as
internal standard and reference gene. The efficiency
(GAPDH, 1,77; TUCAN, 1,99) was calculated for all target
and control genes using a cDNA concentration range.

Apoptosis and caspase-9 activity assays
The extent of apoptosis was determined by flow cytome-
try, using either PI (Sigma) staining of hypodiploid DNA.
The percentage of specific apoptosis was calculated by
subtracting the percentage of spontaneous apoptosis of
the relevant controls from the total percentage of apopto-
sis. Caspase-9 activity was assayed in cellular extracts
using a caspase-9 activity kit (MBL Co., Nagoya, Japan)
according to manufacturer's instructions. Fluorescence
was detected using Spectra Fluor equipped with a 400-nm
excitation and a 505-nm emission filter (Tecan, Salzburg,
Austria). Fold-increase in the protease activity, as meas-
ured by LEHD-AFC cleavage, was determined by compar-
ing the levels of treated cells with untreated controls [15].

Western blotting
Western blotting was performed as described before [24].
The following primary antibodies were used: anti-caspase-
9 rabbit polyclonal (Cell Signaling Technology, Beverly,
MA), anti -TUCAN/CARDINAL rabbit polyclonal (kindly
provided by Dr. J.C. Reed, Burnham Institute, La Jolla,
California and Dr. S.J. Martin, The Smurfit Institute, Trin-
ity College, Ireland), anti-Apaf-1 mAb (R&D System, Min-
neapolis, MN) and anti-β-actin mAb (Sigma- Aldrich,
Saint Louis, MI). As secondary antibodies, horseradish
peroxidase (HRP)-conjugated goat anti-mouse or anti-
rabbit (Amersham, Braunschweig, Germany), were used.

Protein interaction and in vitro-translation assays
Immunoprecipitation was performed as described by Hill
et al. [25]. Confluent cell cultures were washed in ice-cold
PBS, harvested, and resuspended with lysis buffer, consist-
ing of 20 mM HEPES-KOH [pH 7.5], 10 mM KCl, 1.5 mM
MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol
(DTT), and 1× Protease Inhibitor Cocktail (PIC, Roche
Diagnostics GmbH, Mannheim, Germany), 250 µM
PMSF and 1 mM Na3VO4. After incubation on ice and
homogenization with 45 strokes with a Dounce homoge-
nizer, the extracts were centrifuged for 30 min at 4°C. The
protein concentrations were determined according to

Caspase-9 expression and processing in NSCLC and SCLC cell lineFigure 1
Caspase-9 expression and processing in NSCLC and 
SCLC cell line. A) Western blots showing the level of 
expression of procaspase-9 and Apaf-1 in a panel of NSCLC 
and SCLC cell lines. β-actin was used as control for protein 
loading. B) H460 and GLC4 cells were treated with IC80 
concentrations of cisplatin for 24 and 48 h or C) only for 48 
h and cellular extracts were generated. Extracts were incu-
bated for 45 min at 37°C in the presence (+) or absence (-) 
of exogenously added cytochrome c and dATP. Subse-
quently, caspase-9 was immunoprecipitated and visualized by 
western blotting or activation of caspase-9 was measured by 
the cleavage of the fluorogenic substrate LEHD-AFC, respec-
tively.
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Bradford (Bio-Rad, Veenendaal, The Netherlands). Apop-
tosome formation was induced by incubation with 50 µg/
ml cytochrome c (Sigma, Saint Louis, MI) and 1 mM dATP
(Roche Diagnostics GmbH, Mannheim, Germany) for 45
min at 37°C. Prior to immunoprecipitation; the extracts
were supplemented with 3- [(3-Cholamidopropyl)
dimethylammonio]-1-propanesul-fonate (CHAPS) and
NaCl. Extracts were incubated with anti-caspase-9 anti-
body (Upstate Biotechnology, Charlottesville, VA) over-
night at 4°C. Immunocomplexes were pulled down with
protein A/G sepharose beads (Santa Cruz, CA), and pro-
teins were detected by Western blotting. Immunoprecipi-
tation studies with in vitro translated radiolabeled
proteins (TNT system, Promega, Madison, WI) were per-
formed in lysis buffer, consisting 20 mM Tris [pH 8], 50
mM NaCl, 2 mM EDTA, 0,1%NP40, 1× Protease Inhibitor
Cocktail (PIC), 250 µM PMSF and 1 mM Na3Vo4. For pull-
down the caspase-9 (Upstate Cell Signaling Solutions,
Charlottesville, VA) or the M2 anti-FLAG (Sigma, Aldrich,
Saint Louis, MI) antibodies were used. Proteins were sep-
arated and visualized as described previously [26].

Statistical analysis
When applicable results were analyzed by the Student's t
test. All P values were considered significant when p ≤
0.05. Statistical analysis was performed using the SPSS
software program 9.0 (SPSS, Chicago, Ill).

Results
Analysis of components of the apoptosome and processing 
of caspase-9 induced by exogenous cytochrome c and 
dATP in lung cancer cells
Given our previous finding that procaspase-9 is inhibited
in NSCLC H460 cells [15], we started our investigation by
examining the expression levels of the main apoptosome

components Apaf-1 and caspase-9, in a broader panel of
lung cancer cell lines, including the NSCLC cell lines
H460, SW1573, A549 and H322, and the SCLC cell lines
GLC4, N417 and H187 by Western blotting. In all cell
lines, we observed a comparable level of caspase-9 and
Apaf-1 proteins (Fig. 1A), indicating that altered expres-
sion of these proteins is unlikely to account for the lack of
caspase-9 activation in NSCLC cells. In addition, we
sequenced the ORF of caspase-9 amplified from NCI-
H460 cells, which revealed no sequence alteration (not
shown).

Next, we examined the processing of caspase-9 in two rep-
resentative lung cancer cell lines, H460 (NSCLC) and
GLC4 (SCLC), after treatment for 24 and 48 h with IC80
concentrations of cisplatin. Extracts were split in two and
one half was supplemented with cytochrome c and dATP,
whereas the other half remained untreated. Subsequently,
the lysates were analysed for caspase-9 cleavage by immu-
noprecipitation using an anti-caspase-9 antibody and
Western blotting. In the absence of exogenously added
cytochrome c and dATP hardly any caspase-9 cleavage
products of 37 and 35 kDa were detected in H460 extracts
after 24 h cisplatin treatment; however, at 48 h post-treat-
ment some cleavage was apparent (Fig. 1B). In GLC4 cells,
we could observe cleavage of caspase-9 already after 24 h
treatment. Thus, cleavage of procaspase-9 appears to occur
faster in the SCLC cell line. Examination of caspase-9
activity by fluorescence-based assays showed a non-signif-
icant increase after cisplatin treatment in H460 (p = 0.06)
and GLC4 cells (p = 0.069). Importantly, we noticed that
addition of cytochrome c and dATP triggered a complete
processing of procaspase-9 and resulted in a 2-3-fold
increase in caspase-9 activity (Fig. 1B,C). Altogether, these
observations indicate that inhibition of caspase-9 activa-
tion in lung cancer cells is not caused by an intrinsic defect
in the apoptosome, and suggested to us the presence of
(a) inhibitory protein(s) that block(s) the activation of
capsase-9

TUCAN is highly expressed in NSCLC cells
As a possible candidate for caspase-9 inhibition we tested
the expression of the reported caspase-9 inhibitor of Apaf-
1-mediated caspase-9 activation, TUCAN [11], in the
panel of NSCLC and SCLC cells (Fig. 2). Interestingly, a
high expression level of TUCAN was observed in NSCLC
cells, whereas this protein was hardly detectable in SCLC.
Thus, we considered TUCAN as a promising candidate for
caspase-9 inhibition in NSCLC.

No evidence for TUCAN – procaspase-9 interaction
In order to further evaluate a potential role for TUCAN in
inhibiting caspase-9 activation in NSCLC cells, we first
tested the interaction between procaspase-9 and FLAG-
tagged TUCAN by immunoprecipitation assays using in

TUCAN expression in a panel of NSCLC and SCLC cellsFigure 2
TUCAN expression in a panel of NSCLC and SCLC 
cells. The expression of TUCAN was determined in the indi-
cated panel of cells by Western blotting. β-actin was used as 
control for protein loading.
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vitro translated 35S-methionine-labelled proteins. As
shown in Fig. 3A, pull-down experiments with either
TUCAN-flag or caspase-9 specific antibodies could not
demonstrate a direct interaction between these proteins.
The addition of cytochrome c and dATP prior to pull-
down did not alter the outcome of the experiment. As pos-
itive control, the interaction between in vitro-translated,
non-cleavable procaspase-9 and the amino-terminal
CARD-containing part of Apaf-1 (Apaf1 (1–570)) was
readily detectable under these conditions (Fig. 3B). To
exclude the possibility that the carboxyl-terminal CARD
domain of TUCAN was masked in some way by its amino-
terminal part we generated two deletion mutants, named
FLAG-TUCAN (171–431) and FLAG-TUCAN (341–431).
However, no interactions between these TUCAN deletion
mutants and procaspase-9 were detected, either in the
presence or absence of cytochrome c and dATP (data not
shown). These observations indicate that the CARD
domain of Apaf-1, but not the CARD domain of TUCAN

interacts with procaspase-9. These results are in line with
earlier observations by Bouchier-Hayes et al. [14] who
also could not demonstrate direct interactions between
caspase-9 and TUCAN.

To examine the possibility that cellular cofactors or post-
translational modifications of the proteins are required
for CARD-domain-mediated TUCAN/caspase-9 interac-
tions, we also studied interactions between endogenous
caspase-9 and TUCAN. As a positive control, we deter-
mined the interaction between endogenous procaspase-9
and Apaf-1. Consistent with the notion that the associa-
tion of Apaf-1 and procaspase-9 might be suppressed in
H460 cells, Apaf-1/caspase-9 interaction was detected
only in the presence of exogenously added cytochrome c
and dATP (Fig. 3C). Under the same conditions, we could
not detect an interaction between TUCAN and procas-
pase-9 neither in H460 cells nor in SW1573 cells (not
shown) that express higher levels of TUCAN (see Fig. 2).

TUCAN does not interact with procaspase-9 or Apaf-1Figure 3
TUCAN does not interact with procaspase-9 or Apaf-1. Immunoprecipitation of in vitro translated procaspase-9 (pro-
caspase-9 mut) mixed with a FLAG-tagged version of TUCAN (TUCAN-FLAG) (A), and procaspase-9 mixed with a truncated 
variant of Apaf-1 (Apaf-1 (1–570)) as positive control (B). Immunoprecipitation was performed with anti-caspase-9- or anti-Flag 
antibodies. The total of radiolabelled proteins in the in vitro-translation mixture prior to immunoprecipitation is also included 
(total). A low molecular weight band obtained in the total TUCAN mixture that did not react with the anti-Flag antibody is 
indicated with an asterisk. C) H460 cell extract was subjected to caspase-9 pull-down in the presence (+) or absence (-) of 
exogenously supplied cytochrome c and dATP followed by western blot detection of caspase-9 and TUCAN, or Apaf-1 as pos-
itive control. As a control, total cell extract (total) was included.
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Down-regulation of TUCAN has no effect on cisplatin-
induced apoptosis
The potential influence of TUCAN on procaspase-9 cleav-
age and chemotherapy sensitivity was also investigated
using an RNA interference approach. We designed three
different TUCAN specific RNA-interfering oligonucle-
otides that were cloned into the pSUPERretro vector (see
material and methods). After the generation of stably
transfected derivatives of H460, the silencing effect of
each construct was tested by semi quantitative RT-PCR.
The most effective TUCAN-silencing plasmid, pSUPER-
retro TUCAN3, resulted in an approximately 65% of tran-
script reduction (Fig. 4A; p = 0.000), and almost complete
downregulation at the protein level as shown in Figure 4B.
However, there was no significant increase in apoptosis
observed in cisplatin-exposed H460 cells with downregu-
lated TUCAN expression and parental H460 cells (p =

0.808) or H460 cells with the control vector (p = 0.77). As
an additional test also no significant differences in apop-
totic cell death was observed in this cell panel after treat-
ment with etoposide (p = 0.054; p = 0.768, respectively)
(Figure 4C). Furthermore, the silencing of TUCAN did not
show a significant change in cisplatin-induced caspase-9
activity as measured by fluorescence-based assays, neither
when compared to parental H460 cells (p = 0.808) nor
control vector containing ones (p = 1.00). Altogether, the
results of the immunoprecipitation and RNAi experi-
ments strongly suggest that TUCAN does not play a role as
caspase-9 inhibitor in NSCLC.

Discussion
In this study, we have investigated the potential role of
TUCAN as a determinant of caspase-9 inhibition and
resistance to chemotherapy in NSCLC cells.

Effect of TUCAN down-regulation on cisplatin sensitivity in H460 cellsFigure 4
Effect of TUCAN down-regulation on cisplatin sensitivity in H460 cells. A) Real time RT- PCR experiment and B) 
Western blot analysis showing the silencing of TUCAN expression in H460 cells stably transfected with pSUPERretro 
TUCAN3 (pSrpTUCAN3). As control, a construct containing the reverse orientation of the RNA interference sequence, pSU-
PERretroTUCAN-control (pSrp control), was used. The mean ± SD of three independent experiments is shown, * – non-spe-
cific band. C) Cisplatin- and etoposide-induced apoptosis in H460 cells and derived transfectants. The percentage of cells in the 
sub-G1 fraction was taken as the apoptotic population. The results are depicted as the means of three experiments; bars, 
SD.D) activation of caspase-9 was measured by the cleavage of the fluorogenic substrate LEHD-AFC in H460 cells and derived 
transfectants exposed to cisplatin.
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We demonstrated that inhibition of caspase-9 in lung can-
cer cells could not be attributed to abnormal expression of
Apaf-1 and procaspase-9 or to genetic alterations in the
procaspase-9 coding sequence analysed in NSCLC H460
cells. In fact, exogenous supplementation of cytochrome c
and dATP in cell extracts stimulated the cleavage and acti-
vation of procaspase-9 in lung cancer cells, suggesting a
presence of an inhibitor(s), whose effect may be over-
come by an excess of cytochrome c/dATP. Interestingly,
the cleavage of procaspase-9 in cell extract treated only
with cisplatin appeared earlier in GLC4 than in H460
cells, suggesting that the regulation of this pathway may
be different in particular lung cancer subtype. This is con-
sistent with previous data showing that γ-irradiation-
induced cleavage of procaspase-9 was delayed in NSCLC
cells, when compared with SCLC cells [28]. This previous
report also showed much more appreciable activation of
caspase-9 in lung cancer cells after treatment with γ-irradi-
ation than with the cytotoxic drug etoposide. Similarly, in
our study, we detected no significant increases in caspase-
9 activity in H460 and GLC4 cells after cisplatin treat-
ment. Since these observations suggest the presence of an
inhibitor of caspase-9 activity in lung cancer cells, and
based on the reported binding of TUCAN to procaspase-9
via their CARD motifs leading to caspase-9 inactivation
[11], a possible role of TUCAN in blocking caspase-9-
mediated apoptosis in lung cancer cells was explored. In
Western blotting experiments, a strong expression of
TUCAN was observed in a panel of NSCLC cell lines when
compared to SCLC cells. Next, we explored the role of
TUCAN in inhibition of procaspase-9 in NSCLC cells. In
co-immunoprecipitation experiments with both in vitro-
translated proteins and cell extracts, we could not obtain
evidence for TUCAN binding to (pro)caspase-9. In this
context, it should be noted that conflicting results have
been reported on this interaction, which may be related to
experimental and cell specific differences [11,14]. Under
our experimental conditions, TUCAN does not seem to
interact with caspase-9. In line with these results, down-
regulation of TUCAN by RNA interference did not restore
procaspase-9 processing, and did not influence cisplatin
sensitivity in NSCLC cells. Altogether, our results do not
support a role for TUCAN as inhibitor of caspase-9 in
NSCLC cells.

Although, TUCAN does not seem to act as a caspase-9
inhibitor, its differential expression in NSCLC versus
SCLC cells suggests that TUCAN may play a role in the
lung cancer biology, specifically in the NSCLC subtype. In
this regard to their role in apoptosis, several CARD-con-
taining proteins have been implicated in signalling path-
ways that modulate the NF-kappaB transcription factor,
which regulates cell survival and may serve as therapeutic
targets in cancer [29,30]. In the case of TUCAN, CARD-
dependent interactions have been reported not only with

caspase-9, but also with procaspase-1, and with the p53-
responsive gene DRAL [13,20]. Moreover, a CARD-inde-
pendent interaction of TUCAN with IKKγ (NEMO) has
been described, resulting in the inhibition of interleukin-
1 and TNF-induced NF-κB activation [14]. The function of
TUCAN and CARD proteins in general appears to be more
complex than initially assumed. Further studies are
required to unravel the role of TUCAN in tumor biology
as well as to elucidate the molecular basis of caspase-9
inhibition in lung cancer cells.

Conclusion
These results indicate that procaspase-9 is functional and
can undergo full processing in the presence of additional
cytochrome c/dATP. However, the inhibitory protein
TUCAN detectable only in NSCLC cells does not play a
role in inhibition of procaspase-9 and in the determining
of sensitivity to cisplatin.
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