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Abstract
Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is
considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of
evidence indicate that spinal microglia play a crucial role in neuronal excitability and the
pathogenesis of neuropathic pain, but the mechanisms underlying neuron-microglia
communications in the dorsal horn remain to be fully elucidated. A recent study has demonstrated
that platelet-derived growth factor (PDGF) expressed in dorsal horn neurons contributes to
neuropathic pain after nerve injury, yet how PDGF produces pain hypersensitivity remains
unknown. Here we report an involvement of spinal microglia in PDGF-induced tactile allodynia. A
single intrathecal delivery of PDGF B-chain homodimer (PDGF-BB) to naive rats produced a robust
and long-lasting decrease in paw withdrawal threshold in a dose-dependent manner. Following
PDGF administration, the immunofluorescence for phosphorylated PDGF β-receptor (p-PDGFRβ),
an activated form, was markedly increased in the spinal dorsal horn. Interestingly, almost all p-
PDGFRβ-positive cells were double-labeled with an antibody for the microglia marker OX-42, but
not with antibodies for other markers of neurons, astrocytes and oligodendrocytes. PDGF-
stimulated microglia in vivo transformed into a modest activated state in terms of their cell number
and morphology. Furthermore, PDGF-BB-induced tactile allodynia was prevented by a daily
intrathecal administration of minocycline, which is known to inhibit microglia activation. Moreover,
in rats with an injury to the fifth lumbar spinal nerve (an animal model of neuropathic pain), the
immunofluorescence for p-PDGFRβ was markedly enhanced exclusively in microglia in the
ipsilateral dorsal horn. Together, our findings suggest that spinal microglia critically contribute to
PDGF-induced tactile allodynia, and it is also assumed that microglial PDGF signaling may have a
role in the pathogenesis of neuropathic pain.

Findings
Peripheral nerve damage leads to a persistent neuropathic
pain state in which innocuous stimuli elicit pain behavior

(tactile allodynia) [1-3]. Neuropathic pain might involve
aberrant excitability of the nervous system, notably at the
levels of the primary sensory ganglia and the dorsal horn
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of the spinal cord [4-8]. There is a rapidly growing body of
evidence indicating that peripheral nerve damage acti-
vates glial cells in the dorsal horn and results in changing
expression and activity of various molecules [9,10].
Importantly, pharmacological, molecular and genetic
manipulations of the function or expression of glial mol-
ecules have been shown to substantially influence nerve
injury-induced pain behaviors and hyperexcitability of
the dorsal horn pain pathway [11-15]. Therefore, signal-
ing between neurons and glia might critically contribute
to the pathologically enhanced pain processing in the dor-
sal horn that underlies neuropathic pain. However, the
mechanisms underlying neuropathic pain caused by neu-
ron-glia communications in the dorsal horn remain to be
fully elucidated.

Platelet-derived growth factors (PDGFs) and their recep-
tors (PDGFRs) have served as prototypes for growth factor
and receptor tyrosine kinase (RTK) function. The biologi-
cally active form of PDGF is a disulfide-bonded dimer of
A-, B-, C-, or D-polypeptide chains. The PDGF isoforms
(PDGF-AA, -AB, -BB, -CC, or -DD) bind two structurally
related RTKs (PDGFRα and β). PDGF-AA, -BB, -AB, and -
CC bind to PDGFRα, whereas PDGF-BB and -DD bind to
PDGFRβ [16-20]. Ligand binding induces receptor dimer-
ization and autophosphorylation, subsequently initiates
downstream signaling, and causes cellular responses such
as proliferation, differentiation, survival, migration,
chemotaxis, and gene expression [21,22].

Although PDGF signaling is commonly known to have
essential roles during development [23], there is limited
evidence for its role in the mature CNS. A recent study has
shown that PDGF is expressed in dorsal horn neurons in
adult mice, and that intrathecal administration of either a
selective inhibitor of PDGFR phosphorylation or an anti-
body trapping endogenous PDGF suppresses thermal
hyperalgesia and tactile allodynia after peripheral nerve
injury [24]. Thus, PDGF released from dorsal horn neu-
rons is implicated in neuropathic pain. However, how
PDGF produces pain hypersensitivity remains unknown.

To investigate this, we first examined whether the intrath-
ecal delivery of PDGF produces tactile allodynia in adult
naive rats. We used the PDGF-BB isoform in all experi-
ments in this study because PDGF-B chain expression is
induced after peripheral nerve injury [25], neurons
throughout the CNS contain the PDGF-B chain [26], and
the PDGF-B chain activates both PDGFRα and PDGFRβ
[21,23]. We found that a single intrathecal administration
of PDGF-BB (0.1, 1 and 10 pmol) produced marked and
long-lasting tactile allodynia: the paw withdrawal thresh-
old in response to mechanical stimulation applied to the
hindpaw progressively decreased over the first 3 days,
reaching the lowest in the threshold on day 3, and this

decrease persisted at least for 14 days after PDGF-BB
administration (P < 0.001) (Figure 1). The PDGF-BB-
induced tactile allodynia was dose dependent (Figure 1).
In addition, we also tested the effect of AG17, a selective
inhibitor for PDGFR phosphorylation, on PDGF-BB-
induced allodynia. Consistent with the previous results in
mice [24], intrathecal pretreatment with AG17 (100
nmol) significantly attenuated the decrease in the paw
withdrawal threshold 7 days after PDGF administration
(PDGF-BB + vehicle group, 1.71 ± 0.41, n = 4; PDGF-BB +
AG17 group, 9.43 ± 1.13, n = 4; P < 0.001).

To identify the cell types on which intrathecally delivered
PDGF-BB acts, we performed immunohistochemical
experiments using an anti-phospho-Tyr1021 PDGFRβ
antibody (p-PDGFRβ) that recognizes activated receptors
[27]. The immunofluorescence for p-PDGFRβ in the dor-
sal horns of vehicle-treated rats remained at low levels,
but was markedly increased 30 min after intrathecal
PDGF-BB (10 pmol) administration (P < 0.001) (Figure
2A, B). By double-staining with cell type-specific markers,
we found that almost all p-PDGFRβ-positive cells were
double-labeled with OX-42 (a marker of microglia), but
not with GFAP (an astrocyte marker), CC1 (an oli-
godendrocyte marker), MAP2 or NeuN (neuronal mark-
ers) (Figure 2C). These results indicate that activation of
PDGFRβ evoked by intrathecally delivered PDGF-BB
occurs specifically in microglia. Consistently, both PDG-
FRα and PDGFRβ mRNAs were detected in primary cul-
tured microglia and in the spinal cord as well as positive

A single intrathecal PDGF-BB administration produces tactile allodyniaFigure 1
A single intrathecal PDGF-BB administration pro-
duces tactile allodynia. The paw withdrawal thresholds in 
response to mechanical stimuli were measured in rats 
intrathecally administered vehicle (n = 5) or PDGF-BB (0.1, 1 
and 10 pmol, n = 5) just before administration (day 0) and 1, 
2, 3, 5, 7, 10, and 14 days after administration. Data repre-
sent the means ± SEM of the thresholds. ***P < 0.001, **P < 
0.01, *P < 0.05 vs vehicle group by repeated measures two-
way ANOVA with Bonferroni post-hoc tests.
Page 2 of 9
(page number not for citation purposes)



Molecular Pain 2009, 5:23 http://www.molecularpain.com/content/5/1/23

Page 3 of 9
(page number not for citation purposes)

PDGF-BB phosphorylates its receptors in spinalmicrogliaFigure 2
PDGF-BB phosphorylates its receptors in spinalmicroglia. (A) The immunoreactivity of phosphorylated PDGFRβ pro-
tein was detected by a specific antibody for p-PDGFRβ 30 min after intrathecal administration of vehicle or PDGF-BB (10 
pmol) in the L5 spinal dorsal horn. Scale bar, 200 μm. (B) The intensity of p-PDGFRβ immunofluorescence was quantified in 
the dorsal horn region of vehicle treated rats and PDGF-BB treated rats. Data represent the means ± SEM of the immunofluo-
rescence intensity (n = 5). ***P < 0.001 vs vehicle by Student's t-test. (C) Double immunofluorescence labeling of the dorsal 
horn 30 min after intrathecal PDGF-BB administration with p-PDGFRβ (green) and cell markers (red); OX-42, a microglia 
marker; GFAP, an astrocytes marker; CC1, an oligodendrocytes marker; NeuN and MAP2, neurons markers. Scale bars, 20 
μm. (D) PDGFRα (116 bp) and PDGFRβ (145 bp) mRNA expression in primary microglia by RT-PCR analysis. Spinal cord, cer-
ebral cortex, and spleen are positive controls. (E) Triple immunofluorescence labeling of p-PDGFRβ (green) with OX-42 (red) 
and DAPI (blue), a nuclear marker, in primary microglia treated with PBS as a control or PDGF-BB (50 ng/ml) for 10 min. Scale 
bar, 20 μm.
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control tissues (cerebral cortex and spleen) (Figure 2D).
Furthermore, applying PDGF-BB (50 ng/ml) to primary
cultured microglial cells enhanced the immunofluores-
cence for p-PDGFRβ (Figure 2E).

Because the half life of PDGF in vivo is extremely short
[28], it is predicted that PDGF-induced long-lasting tactile
allodynia might be due to plastic changes in the spinal
cord, especially in microglia. To investigate the status of
microglia in the dorsal horn after PDGF stimulation, we
performed immunohistochemical analysis using the
microglia marker Iba1. After PDGF-BB (10 pmol) admin-
istration, the number of Iba1-positive cells in the dorsal
horn was significantly increased on day 3 and day 7 com-
pared with vehicle-treated controls (P < 0.01) (Figure 3A,
B). Iba1-positive microglia in the dorsal horns of PDGF-
BB-administered rats also showed an increase in Iba1
labeling and a tendency toward a hypertrophied mor-
phology (Figure 3C). We also observed an increase in the
level of expression of the proinflammatory cytokine inter-
leukin-1β (IL-1β) (P < 0.05) (Figure 3D). Because these
changes are consistent with the criteria for activated
microglia in vivo, it is suggested that spinal microglia are
activated by PDGF-BB.

To examine whether microglia are involved in PDGF-BB-
induced tactile allodynia, we tested the effect of minocy-
cline, which inhibits microglia activation [29,30], on the
decrease in the paw withdrawal threshold after PDGF-BB
administration. Daily intrathecal administration of mino-
cycline (100 μg) from one day before PDGF-BB (10 pmol)
administration significantly suppressed the decrease in
paw withdrawal threshold (P < 0.05, day 3; P < 0.01, other
testing days) (Figure 3E). This finding suggests that spinal
microglia are involved in PDGF-BB-induced tactile allody-
nia. The mechanisms underlying the anti-allodynic effect
of minocycline remains unclear, but we found that mino-
cycline did not inhibit PDGF-induced PDGFRβ phospho-
rylation in the dorsal horn (Figure 3F), indicating that
minocycline does not directly interrupt the PDGF binding
to the PDGFRβ and PDGFRβ dimerization and autophos-
phorylation. Thus, it is conceivable that minocycline may
produce its anti-allodynic effect through inhibiting the
downstream consequences of PDGFRβ phosphorylation
in microglia including p38 mitogen-activated protein
kinase that is an important signaling molecule in tactile
allodynia [11,15] and is also known as one of targets of
minocycline [31,32].

Purinergic receptors expressed in microglia (P2X4, P2X7
and P2Y12) are implicated in neuropathic pain
[12,13,33,34]. Thus, we examined the role of these recep-
tors in PDGF-BB-induced allodynia. After intrathecal
PDGF-BB (10 pmol) administration, the level of mRNA
expression of P2X4 receptor in the spinal cord was signifi-

cantly increased on day 3 (P < 0.05) (Figure 4A). By con-
trast, the mRNA levels of P2X7 and P2Y12 receptors were
not changed. Furthermore, intrathecally administered
TNP-ATP (30 nmol), an antagonist of P2X receptor sub-
types P2X1–4 receptors, produced a significant attenuation
of the decreased paw withdrawal threshold on day 7 after
PDGF-BB (10 pmol) administration (P < 0.05) (Figure
4B). Considering that the anti-allodynic effect of TNP-ATP
was weak, these results suggest that P2X4 receptors in the
spinal cord are involved, at least in part, in the PDGF-BB-
induced tactile allodynia.

Activation of PDGFRs in the spinal cord is implicated in
tactile allodynia after peripheral nerve injury [24]. Thus,
we determined the type of cells in which PDGFRβ activa-
tion occurs under a neuropathic pain condition. In con-
trast to the contralateral dorsal horn, where p-PDGFRβ
immunofluorescence was low, we observed strong p-
PDGFRβ immunofluorescence in the dorsal horn ipsilat-
eral to the nerve injury; the level of p-PDGFRβ immun-
ofluorescence in individual cells in this region was also
much higher than that in individual cells in the dorsal
horn contralateral to the nerve injury (P < 0.01) (Figure
5A, B). Furthermore, almost all p-PDGFRβ-positive cells
were also labeled for the microglia marker OX-42 (Figure
5C). These results indicate that PDGFRβ activation in the
dorsal horn occurs exclusively in microglia after nerve
injury. How PDGFR activity is enhanced remains unclear,
but we examined the time course for changes in the
expression levels of PDGFR mRNAs after nerve injury and
found no significant change during the period from 1 day
to 14 days post-nerve injury (Figure 5D). It is thus possi-
ble that the enhanced PDGFR activity might be due to an
increase in the level of endogenous PDGF within the dor-
sal horn after nerve injury, as suggested by a previous
study [24]. Consistently, low levels of PDGFRβ phospho-
rylation in the dorsal horns of normal rats (Figure 2A) and
in the contralateral dorsal horns of nerve-injured rats (Fig-
ure 5A) were observed. In the adult spinal cord, PDGF has
been shown to be expressed in dorsal horn neurons [24].
It is thus assumed that PDGF might be a candidate for sig-
naling molecules between neurons and microglia, thereby
producing tactile allodynia, although further investiga-
tions are needed to determine the pattern and change in
the expression of endogenous PDGFRβ ligands in the dor-
sal horn after nerve injury.

PDGFRs in the CNS have been previously reported to be
expressed in O-2A progenitor cells, oligodendrocytes, and
neurons [35-38]. In the present study, by showing that
acute PDGF stimulation in vivo in adult rats induced PDG-
FRβ phosphorylation specifically in microglia, in addition
to our results in in vitro experiments using cultured micro-
glia, we provide the first evidence that microglia are the
predominant cell type expressing functional PDGFRβs in
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the spinal cord. We further revealed that spinal microglia
may mediate tactile allodynia caused by intrathecal
administration of PDGF. Recently, Narita et al. [24] have
shown that inhibiting PDGFR phosphorylation results in
suppression of tactile allodynia after peripheral nerve
injury, implying a crucial role for PDGF signaling in neu-
ropathic pain. Notably, following peripheral nerve injury,
a marked enhancement of PDGFRβ phosphorylation in
dorsal horn microglia also occurred in a cell type-specific
manner, indicating that spinal microglia may be crucial
for PDGFR-mediated tactile allodynia under neuropathic
pain conditions. It remains unknown how PDGF-stimu-
lated microglia modulate pain processing in the dorsal
horn, but we found an increase in the expression of IL-1β
mRNA in the dorsal horn after PDGF administration. IL-
1β enhances C-fiber-evoked responses in wide-dynamic-
range dorsal horn neurons [39], enhances NMDA recep-
tor-mediated Ca2+ responses [40], and decreases GABAA
receptor-mediated currents [41]. A recent study has also
demonstrated a powerful role for this cytokine in excita-
tory and inhibitory synaptic transmission and an effect of
this cytokine on neuronal activity in superficial dorsal
horn neurons [42,43].

Therefore, IL-1β may be a candidate intermediary mole-
cule between PDGF-stimulated microglia and dorsal horn
neurons that contributes to central hypersensitization.
Further investigation using microglia-specific IL-1β-
knockout mice will clarify this issue.

Methods
Animals
Male Wistar rats (250–280 g, Japan SLC) were used. Rats
were housed at a constant temperature of 23 ± 1°C with a
12 h light-dark cycle (light on 8:00 to 20:00) and fed food
and water ad libitum. All of the animals used in the present
study were obtained, housed, cared for, and used in
accordance with the guidelines of Kyushu University.

Microglia culture
Rat primary cultured microglia was prepared according to
the method described previously [44]. In brief, the mixed
glial culture was prepared from neonatal Wistar rats and
maintained for 9–15 days in DMEM with 10% FBS.
Microglia were obtained as floating cells over the mixed
glial culture. The floating cells were collected by gentle
shaking and transferred to culture dishes for each experi-
ment.

Drug administration
Under 2% isoflurane anesthesia, rats were implanted with
a 32 gauge intrathecal catheter (ReCathCo, Allison Park,
PA, USA) in the lumbar enlargement (close to L4-5 seg-
ments) for intrathecal drug administration. The catheter
placement was verified by the observation of hindlimb

Microglial activation is involved in PDGF-BB-induced tactile allodyniaFigure 3
Microglial activation is involved in PDGF-BB-induced 
tactile allodynia. (A) The L5 spinal cord segments from 
PDGF-BB-administered rats at day 3 and 7 were subjected to 
immunohistochemistry using an anti-Iba1 antibody. Scale bar, 
200 μm. (B) The number of Iba1-positive cells was counted in 
the dorsal horn. Data are means ± SEM of the cell number 
(day 3, n = 4; day 7, n = 3). **P < 0.01 vs vehicle by Student's 
t-test. (C) The magnified images of Iba1 staining at day 3. 
Scale bar, 20 μm. (D) Total RNA extracted from the L5 spi-
nal dorsal horn 3 days after PDGF administration was sub-
jected to quantitative analysis of interleukin-1β (IL-1β) 
mRNA expression by real-time RT-PCR. Data are means ± 
SEM of the fold change over vehicle control (n = 3). *P < 0.05 
vs vehicle by Student's t-test. (E) The paw withdrawal thresh-
olds of PDGF-BB (10 pmol)-administered rats were meas-
ured in a combined administration group with minocycline 
(100 μg, n = 4) or vehicle (PBS, n = 4). Minocycline or vehicle 
was intrathecally administered daily from one day before 
PDGF-BB administration. Data are means ± SEM of the 
thresholds. ***P < 0.001, **P < 0.01 vs before PDGF-BB 
administration; ##P < 0.01, #P < 0.05 vs PDGF 10 pmol + 
vehicle group by Student's t-test. (F) Immunofluorescence for 
p-PDGFRβ in the L5 spinal dorsal horn 30 min after PDGF-
BB (10 pmol) administration in minocycline- or vehicle-pre-
administered rats. Minocycline or vehicle was intrathecally 
administered one day and 30 min before PDGF-BB adminis-
tration. Scale bar, 200 μm.
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paralysis induced by intrathecal administration of lido-
caine (2%, 5 μl). Rats that failed to cause paralysis were
excluded from the experiments. A recombinant human
platelet-derived growth factor, PDGF-BB (0.1, 1 and 10
pmol/10 μl PBS; Millipore Bioscience Research Reagents,
Temecula, California, USA), or PBS (10 μl, as a vehicle
control) was intrathecally administered in naive rats. AG
17 [100 nmol/10 μl PBS containing dimethylsulfoxide
(6%: final concentration); Calbiochem] or PBS contain-
ing 6% dimethylsulfoxide (10 μl, as a vehicle control) was
intrathecally administered 30 min before PDGF-BB (10
pmol/10 μl PBS) administration. Minocycline (100 μg/10
μl PBS; Sigma) or PBS (10 μl, as a vehicle control) was
intrathecally administered once a day from 1 day before
PDGF-BB (10 pmol/10 μl PBS) administration. 2',3'-O-
(2,4,6-trinitrophenyl)adenosine 5'-triphosphate, TNP-
ATP (30 nmol/10 μl PBS; Sigma), or PBS (10 μl, as a vehi-

cle control) was intrathecally administered on day 7 after
PDGF-BB (10 pmol/10 μl PBS) administration.

Neuropathic pain model and Behavioral tests
The left L5 spinal nerve of rats was tightly ligated with 5-0
silk suture and cut just distal to the ligature under 2% iso-

ATP receptors relation to PDGF-BB-induced allodyniaFigure 4
ATP receptors relation to PDGF-BB-induced allody-
nia. (A) Total RNA extracted from the L5 spinal cord on day 
3 after PDGF-BB (10 pmol) administration was subjected to 
quantitative analysis of P2X4, P2X7, and P2Y12 receptors 
mRNA expression by real-time RT-PCR. Data are means ± 
SEM of the fold change over vehicle control (n = 5). *P < 0.01 
vs vehicle by Student's t-test. (B) The paw withdrawal thresh-
olds before (pre) and 7 days (day7) after intrathecal PDGF-
BB (10 pmol) administration (n = 8). Then TNP-ATP (30 
nmol) and vehicle (PBS) was intrathecally administered on 
day 7 and the changes in the paw withdrawal thresholds 
were measured (n = 4). Data are means ± SEM of the thresh-
olds. ###P < 0.001 vs pre, *P < 0.05 vs vehicle group by Stu-
dent's t-test.

Immunofluorescence of phosphorylated PDGF β-receptors and expression of PDGF receptor mRNAs in rats after nerve injuryFigure 5
Immunofluorescence of phosphorylated PDGF β-
receptors and expression of PDGF receptor mRNAs 
in rats after nerve injury. (A) The immunoreactivity for p-
PDGFRβ was detected in the L5 spinal dorsal horn 4 days 
after nerve injury. Scale bar, 200 μm. (B) The intensity of p-
PDGFRβ immunofluorescence was quantified in the dorsal 
horn region of contralateral side (contra) and ipsilateral side 
(ipsi) of nerve injured rats. Data represent the means ± SEM 
of the immunofluorescence intensity (n = 3). **P < 0.01 vs 
contra by Student's t-test. (C) Double immunofluorescence 
labeling of p-PDGFRβ (green) with OX-42 (red), a microglia 
marker. Scale bars, 20 μm. (D) Total RNA extracted from 
the L5 spinal cords of naive rats and peripheral nerve injured 
rats was subjected to quantitative analysis of PDGFR mRNA 
expression by real-time RT-PCR. Data are means ± SEM of 
the percentage over the naive value (ipsilateral side/contral-
ateral side, n = 5).
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flurane anesthesia [12,45]. To assess the level of tactile
allodynia, rats were placed individually in a wire mesh
cage and habituated for 30–60 min to allow acclimatiza-
tion to the new environment. From below the mesh floor,
calibrated von Frey filaments (0.4–15 g; North Coast
Medical, Morgan Hill, California, USA) were applied to
the mid-plantar surface of the hindpaw. The 50% paw
withdrawal threshold was determined using the up-down
method [46].

Immunohistochemistry
The rats used in the experiments were deeply anesthetized
with pentobarbital (100 mg/kg, i.p.) and perfused tran-
scardially with ice-cold PBS, followed by ice-cold 4%
paraformaldehyde in PBS. The L5 segments of the lumber
spinal cord were removed, post-fixed in the same fixative
for 4 h at 4°C, and placed in 30% sucrose solution for 24
h at 4°C. Transverse spinal cord sections (30 μm) were
sliced by a Leica CM 1850 cryostat and incubated in a
blocking solution (3% normal goat serum) for 2 h at
room temperature, and then incubated for 48 h at 4°C
with the primary antibodies against phospho-PDGF β-
receptor (rabbit polyclonal anti-phospho-Tyr1021 of
PDGFRβ, 1:2000, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), or cell markers; microglia, OX-42 (mouse mon-
oclonal anti-OX-42, 1:1000, Serotec, Oxford, UK) and
ionized calcium-binding adapter molecule-1 (Iba1) (rab-
bit polyclonal anti-Iba1, 1:2000, Wako, Osaka, Japan);
astrocytes, glial fibrillary acidic protein (GFAP) (mouse
monoclonal anti-GFAP, 1:2000, Millipore Bioscience
Research Reagents); oligodendrocytes, CC-1 (mouse
monoclonal anti-APC, 1:500, Millipore Bioscience
Research Reagents); neurons, neuronal nuclei (NeuN)
(mouse monoclonal anti-NeuN, 1:200, Millipore Bio-
science Research Reagents) and microtubule-associated
protein-2 (MAP2) (mouse monoclonal anti-MAP2, 1:500,
Millipore Bioscience Research Reagents). The sections
were then washed and incubated for 3 h at room temper-
ature with the fluorescent conjugated secondary antibod-
ies (goat anti-rabbit IgG-conjugated Alexa Fluor 488 or
goat anti-mouse IgG-conjugated Alexa Fluor 546, 1:1000,
Invitrogen, Carlsbad, CA, USA). The sections were
mounted with Vectashield (Vector Laboratories, Burlin-
game, CA, USA). Fluorescent images were obtained with a
confocal microscope (LSM 5 Pascal; Carl Zeiss, Jena, Ger-
many) and analyzed with Zeiss LSM Image Brower (Carl
Zeiss). For quantitative assessment of the immunofluores-
cence staining, the spinal dorsal horn regions were out-
lined and the immunofluorescence intensity of the p-
PDGFRβ was determined as the average pixel intensity
within the field.

Immunocytochemistry
Primary microglial cells were seeded on aminopropyltri-
ethoxysilane-coated glass (Matsunami, Osaka, Japan) at 5

× 104 cells/well and incubated for 1 h. After the culture
media were replaced with serum-free media, cells were
incubated for 2 h and subsequently treated with PBS as a
control or 50 ng/ml PDGF-BB for 10 min [47], and then
fixed in 3.7% formaldehyde in PBS for 30 min at 25°C.
The cells were permeabilized and blocked by incubating
them with blocking solution (3% normal goat serum and
0.3% Triton X-100 in PBS) for 15 min at 25°C, and then
incubated overnight at 4°C with the primary antibodies
against phospho-PDGF β-receptor (1:400) and OX-42
(1:1000). After washing, the cells were incubated for 1 h
with appropriate fluorescent-conjugated secondary anti-
bodies (goat anti-rabbit IgG-conjugated Alexa Fluor 488
or goat anti-mouse IgG-conjugated Alexa Fluor 546,
1:1000) and coverslipped in Vectashield containing 4',6-
diamidino-2-phenylindole (DAPI) (Vector Laboratories,
Burlingame, CA, USA). Fluorescent images were obtained
and analyzed as mentioned above.

Real-Time Quantitative RT-PCR
The rats used in the experiments were deeply anesthetized
with pentobarbital (100 mg/kg, i.p.) and perfused transcar-
dially with ice-cold PBS. The L5 segments of lumber spinal
cord were removed immediately and were subjected to
total RNA extraction using Trisure (Bioline, Danwon-Gu,
South Korea) according to the protocol of the manufacturer
and purified with RNeasy mini plus kit (Qiagen, Valencia,
CA, USA). The amount of total RNA was quantified by
measuring OD260 using a Nanodrop spectrophotometer
(Nanodrop, Wilmington, DE, USA). For reverse transcrip-
tion with random 6-mer primers, 100 ng of total RNA was
transferred to the reaction with Prime Script reverse tran-
scriptase (Takara, Kyoto, Japan). Quantitative PCR was per-
formed with Premix Ex Taq (Takara) using a 7500 real-time
PCR system (Applied Biosystems, Foster City, CA, USA)
according to protocol of the manufacturer, and the data
were analyzed by 7500 System SDS Software 1.3.1 (Applied
Biosystems) using the standard curve method. Expression
levels were normalized to the values for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). The TaqMan probes
and primers for interleukin-1β (IL-1β) (Taqman probe, 5'-
FAM-TTCTCCACCTCAATGGACAGAACATAAGCCA-
TAMRA-3'; forward primer, AAATGCCTCGTGCTGTCTGA;
reverse primer, GT CGTTGCTTGTCTCTCCTTGTAC), P2X4
receptor (P2X4R) (Taqman probe, 5'-FAM-AGGAG-
GAAAACTCCCTCTTCAT CATGACCA-TAMRA-3'; forward
primer, TGGCGGACTATGTGATTCCA; reverse primer,
GGTTCACGGTGACGATCATG), P2X7 receptor (P2X7R)
(Taqman probe, 5'-FA M-AAAGCCTTCGGCGT-
GCGTTTTGA-TAMRA-3'; forward primer, CAT-
GGAAAAGCGGACATTGA; reverse primer,
CCAGTGCCAAAAACCAGGAT), P2Y12 receptor (P2Y12R)
(Taqman probe, 5'-FAM-CACCAGACCATTTAAAACTTC-
CAGCCCC-TAMRA-3'; forward primer, TAACCATTGAC-
CGATACCTGAAGA; reverse primer, TTCGCACCCAAAAG
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ATTGC), PDGF receptor α-subtype (PDGFRα) (Taqman
probe, 5'-FAM-ATATTCTCCCTTGGTGGCACACCCTACC-
TAMRA-3'; forward primer, ACGTCTGGTCTTATGGCGT-
TCT; reverse primer, CATCCTGTATCCGCTCTTGATCT),
and PDGFRβ (Taqman probe, 5'-FAM-AACGACTCAC-
CAGTGCTCAGCTACACAGAC-TAMRA-3'; forward primer,
GTCCCATCTGCCCCTGAAA; reverse primer, GGTCTCG-
GTGAACACAGTTCTTAG), as well as the probe and primer
for GAPDH, were obtained from Applied Biosystems.

Statistical Analysis
All data are presented as means ± SEM. The statistical anal-
yses of the results were evaluated by using the Student's t
test or two-way repeated measures ANOVA with Bonfer-
roni post tests.
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