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Classical Swine Fever Virus (CSFV) is an ongoing threat to the pig industry due to the

high transmission and mortality rates associated with infection. Live attenuated vaccines

such as the CSFV C strain vaccine are capable of protecting against infection within 5

days of vaccination, but the molecular mechanisms through which this early protection

is mediated have yet to be established. In this study, we compared the response

of pigs vaccinated with the C strain to non-vaccinated pigs both challenged with a

pathogenic strain of CSFV. Analysis of transcriptomic data from the tonsils of these

animals during the early stages after vaccination and challenge reveals a set of regulated

genes that appear throughout the analysis. Many of these are linked to the ISG15 antiviral

pathway suggesting it may play a role in the rapid and early protection conferred by

C strain vaccination.
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INTRODUCTION

Classical Swine Fever (CSF) is a contagious, haemorrhagic and often fatal disease of suidae such
as pigs and wild boar, caused by the classical swine fever virus (CSFV). CSFV is an enveloped,
single-stranded RNA virus that belongs to the pestivirus genus of the Flaviviridae family (1). The
positive-sense RNA genome of ∼12.3 kb is translated as a single polyprotein that is then cleaved
by both host and native proteases to form 11 proteins, 4 of which are structural components of the
virion (2). Of these structural proteins 2 envelope glycoproteins, E1 and E2, are required for virus
entry into the cell through clathrin-dependent, receptor-mediated endocytosis (3). The primary site
of replication are the tonsils and oropharyngeal lymph nodes. From here, the virus is transported
through the lymphatic system to the primary lymph nodes, where further rounds of replication
occur until the virus eventually reaches all other organs in the body via the circulatory system (4).
Interferon signaling is a key component of how the innate immune system responds to challenge
with CSFV. High levels of interferon-α (IFN- α) are a characteristic feature of acute disease (5).
The levels of induction are associated with the virulence of the strain, with highly virulent strains
inducing the highest levels (6–8). Despite the classical functional role of IFNs during viral infection,
which is to induce the expression of a cohort of antiviral proteins, these high levels of IFN-α are
counterproductive. They do not limit virus replication, and lead to the development of disease-
associated immunopathology observed through severe lymphoid depletion, lymphocyte apoptosis
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and thrombocytopenia. This immune dysfunction presents
clinically as a viral haemorrhagic fever (5).

CSF is endemic to parts of South East Asia, Russia and
South America. Within Europe, stringent controls such as a
stamping out policy, movement restrictions and epidemiological
surveillance measures have been in place since 1990 to prevent
the spread of the disease, however, sporadic outbreaks have
occurred, for example in Lithuania and Latvia, and the recent
reoccurrence of CSF in Japan after 26 year absence highlights
that CSFV remains an epizootic threat (9, 10). CSF is amenable to
control by vaccination with a number of different live attenuated
vaccines available, the most widely used of which is the C strain
vaccine (9). However, the inability to distinguish serologically
between animals that have been vaccinated or are infected with
the virus (DIVA) means its use as an outbreak control tool
is limited in CSF-free countries (2). The C strain vaccine was
generated through serial passage in rabbits until it was no longer
pathogenic. It provides a rapid and complete protection of pigs
against infection and also prevents viral transmission within
5 days of vaccination (11, 12). The immunological signaling
cascades behind the early protection afforded by C strain are
poorly understood, but precede the adaptive response, where
IFNγ+ CD8+ cells precede the detection of a humoral, virus
neutralizing response (13–15). As the C strain vaccine has been
the most widely used vaccine for CSFV to date, deciphering
the precise innate immune signaling pathways underpinning
its effectiveness may help shape and optimize the current
generation of marker and subunit vaccines. To achieve a greater
insight into the host response to vaccination with C strain,
porcine microarrays were utilized to analyse the differences
in gene expression in tonsil tissue between pigs that were
vaccinated with C strain or given a mock inoculum. These
pigs were then subsequently challenged with a virulent strain
of CSFV five days post immunization, thus before an effective
adaptive response could be mounted. In this study we have
examined transcriptional changes in tonsils at early time points
to identify subsets of genes that may be integral to this rapid
protection and could support the induction of an early adaptive
immune response.

MATERIALS AND METHODS

Viruses
C strain CSFV (AC Riemser Schweinepestvakzine, Riemser
Arzneimittel AG, Riems, Germany) and the virulent CSFV
Brescia strain were propagated in PK15 cell monolayers. Both
mock virus and virus stocks were prepared, and titers were
determined, as described previously for this animal cohort (15).

Ethics Statement
All animal work was approved by the Animal and Plant Health
Agency (APHA) Animal Welfare and Ethical Review Board, and
all procedures were conducted in accordance with the Animals
(Scientific Procedures) Act 1986 (United Kingdom) under
project license permit PPL 70/6559. Each animal was euthanized
on predetermined days by stunning and exsanguination.

Animals
Eighteen Large White/Landrace crossbreed pigs of 9 weeks of
age were randomly assigned to one of two groups. On day 0 the
animals in group 1 (n = 9) were vaccinated with 2ml of C strain
vaccine into the brachiocephalous muscle (as recommended
by the manufacturer), and group 2 (n = 9) was intranasally
inoculated with tissue culture supernatant (mock). For intranasal
inoculations 1ml per nostril was administered using a mucosal
atomization device (MAD300; Wolf Tory Medical, USA). On
day 5 post vaccination (dpv), both groups were inoculated
intranasally with 105 TCID50 of CSFV Brescia strain. EDTA
anti-coagulated blood samples were collected in Vacutainers (BD
Biosciences), prior to and after challenge, from the external
jugular vein. Three animals from each group were euthanized
on dpv 5 (prior to challenge), dpv 8 and dpv10 and the tonsils
were collected.

Clinical, Hematological, and Virological
Methods
The animals were inspected by the APHA Animal Sciences
Unit staff twice daily (am and pm), and 10 parameters relevant
to an indication of CSF (temperature, liveliness, body shape
and tension, breathing, walking, skin, eye/conjunctiva, appetite,
and defecation) were examined and scored as 0 (normal), to 3
(severely altered; known CSF sign) (16). A total clinical score
for each animal was assigned twice daily, and their temperatures
were monitored by rectal thermometer readings once daily.
Peripheral blood leukocytes and CSFV RNA were monitored in
EDTA blood samples collected every 3 days using volumetric
flow cytometry and real-time reverse transcription-quantitative
RT-PCR (RRT-qPCR), respectively (16).

Gene Expression Microarray Analysis
At days 5, 8, and 10 post-vaccination animals were euthanized,
the tonsils removed, chopped into fine pieces and stored at
−80◦C in RNAlater (Sigma-Aldrich). RNA was extracted using
MagMax 96 microarray total RNA isolation kit which includes
a Turbo DNAse treatment to remove contaminating genomic
DNA. Elimination of genomic DNA was confirmed by q-PCR
detection of porcine β-actin gene with and without reverse
transcription. The Ovation PicoSL WTA System v2 kit (NuGEN,
Leek, The Netherlands) was used to amplify cDNA from 50 ng
total RNA. The MinElute Reaction Cleanup Kit (Qiagen) was
used to purify cDNA, and 1 µg was then labeled using a
one-color DNA labeling kit (NimbleGen, Madison, USA). For
each sample, 4 µg labeled cDNA was hybridized to a custom
NimbleGen 12 × 135K porcine array designed using the Sus
scrofa 10.2 genome build and incorporating a total of 19,351
genes, each represented on the array by a set of six different
probes (116,106 probes in total) (17). The microarray also
contained a large number (24,179) of random probes. Hybridized
arrays were scanned at 2µm resolution on a microarray
scanner (Agilent, Wokingham, UK). Microarray images were
processed using DEVA v1.2.1 software to obtain a pair report
containing the signal intensity values for each probe. To correct
for differences in the overall intensity levels between slides
robust multi-array (RMA) normalization was used. Data was
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then processed using GeneSpring GX using the manufacturer’s
guidelines. RMA normalized pair files were imported and
empirical Bayesian unpaired comparison (moderated t-test,
P < 0.05), combined with a Westfall and Young Permutation
to correct for multiple testing, was carried out to generate a list
of genes with significantly altered expression, between C strain
and mock inoculated pigs, of > 2-fold. The raw microarray
data (background-corrected signal) can be assessed at Gene
Expression Omnibus (GEO accession GSE111486).

Gene Ontology and Pathway Analysis
To aid in the analysis of the data, where possible human
ortholog of porcine genes were used for further analysis.
Gene Ontology analysis was performed using BiNGO within
Cytoscape 3.2 (18, 19). BiNGO analysis was performed using
a hypergeometric test with a Benjamini Hochberg False
Discovery Rate correction and significance value of 0.05,
the ontology file used was GO_Biological_Process. PANTHER
Overrepresentation Analysis (release 20171205) was performed

FIGURE 1 | C Strain Vaccination and Subsequent Challenge. (A) Schematic outline of the vaccine/challenge study highlighting the key time points of vaccination and

challenge. Three animals per group were euthanized at day 5, 8, and 10 pv for sample acquisition (Blue arrows). (B) Mean clinical score data from both C strain

vaccinated and mock inoculated animals from before the study commenced until completion. (C) Rectal temperatures of animals throughout the course of the study.

(D) Peripheral blood leukocyte counts in EDTA blood samples throughout the study (E) CSFV RNA as detected in blood by reverse transcription-quantitative RT-PCR.

Black arrows indicate time of challenge. Error bars indicate SD.
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using the annotation Reactome version 58 (Release 20161207)
using a Binomial test with a Bonferroni Correction for multiple
comparison (20, 21). Network analysis was performed using
NetworkAnalyzer tool in Cytoscape, nodes and label sizes are
mapped based on betweenness centrality and isolated nodes
(degree= 0) removed (18).

RESULTS

Vaccination, Challenge and Clinical
Observations
Samples for transcriptomic analysis were generated from animals
vaccinated, or mock inoculated, 5 days prior to challenge with
virulent CSFV (15). Tonsil samples were collected prior to
challenge at 5 dpv and also at day 8 and day 10 pv [3 and
5 days post-challenge (dpc)] (Figure 1A). C strain vaccinated
animals were protected from the challenge with no clinical
signs or temperature increase detected. The mock inoculated
animals had early clinical signs of CSF (inappetence, lethargy
and reddening of conjunctiva) from 4 to 5 dpc and elevated
rectal temperatures (Figures 1B,C). CSFV RNA and leukopenia
was detected in blood samples from 8 dpv in the mock
inoculated animals but not in vaccinated animals (Figures 1D,E).
This level of protection corresponds with previous studies
in that complete protection from challenge with CSFV was
observed within 5 days of vaccination, thus before the onset
of an adaptive immune response, which then rapidly develops
after challenge (12).

TABLE 1 | Genes differentially regulated in C strain vaccinated pigs compared to

mock inoculated pigs at 5 days post vaccination.

Genes up LogFC Genes down LogFC

ifit2 2.553934 pg-2 −1.64178

pkia 2.373655 c6h19orf33 −1.64285

hgf 2.295012 zfp36 −1.66558

ano5 2.191831 bcas4 −1.67219

rsad2 2.176041 ssc-mir-135-1 −1.68395

adam7 2.075018 tmem141 −1.70127

rab27b 1.918744 ddt −1.71247

kiaa1107 1.892113 ndufa11 −1.7917

loc100520366 1.842525 loc100511639 −1.80764

tmem178a 1.816612 loc100626517 −1.80975

ifit1 1.807552 atox1 −1.81446

epb41l4b 1.796457 myadm −1.83981

c1h14orf37 1.785264 ccl14 −1.88256

tdrd1 1.777872 loc100521485 −1.89069

rpgrip1 1.77437 ssc-mir-125b-2 −1.92758

galntl5 1.714732 dusp15 −1.93288

ifi44 1.689456 tmem160 −1.94606

ttc39a 1.678465 dpm3 −1.95109

wdr35 1.673544 scgb3a1 −2.0114

pln 1.670908 ndufb11 −2.03292

Top 20 up/down regulated genes shown.

Intramuscular Vaccination Produces a
Robust Transcriptional Response in Tonsil
Cells of Naïve Pigs
At day 5 post-vaccination (prior to challenge), when vaccinated
pigs were compared to mock inoculated pigs, 448 genes
were differentially regulated; 255 genes were down-regulated
and 193 genes upregulated (Table 1, Supplementary Table 1).
Gene Ontology analysis (19) highlighted over representation of
gene categories associated with response to virus among the
upregulated genes as expected since the C strain vaccine is a
live, attenuated virus (Figure 2A). Among the downregulated
genes a number of different metabolic processes were over-
represented which could suggest an appropriation of cellular
processes and resources toward the production of antiviral
effectors (Figure 2B).

At day 8 pv, i.e., 3 dpc and thus when viral RNA was
detected in the unvaccinated animals (Figure 1E) 138 genes
were differentially regulated, with 118 genes significantly less
expressed in tonsils of C strain vaccinated pigs compared
to mock inoculated pigs (Table 2, Supplementary Table 2).
In terms of gene ontology over-representation, an inversion
occurred whereby pathways associated with response to virus
were now overrepresented in those pigs that were not vaccinated
(Supplementary Figure 1).

At 10 dpv, thus 5 dpc, 142 genes were differentially
regulated, with 127 of these genes expressed less in the
vaccinated animals compared to the mock inoculated group
(Table 3, Supplementary Table 3). Ontology analysis yielded
similar observations as was seen at day 8 with an over-
representation of pathways associated with a response to a
virus (Supplementary Figure 2) in pigs that were not vaccinated.
Notably, among the few genes that were up regulated in the
C strain vaccinated pigs was eomes, a gene that encodes a
transcriptional regulator known to play a role in CD8+ T cell
differentiation (22). This corresponds with previously published
data where CSFV specific CD8+ T cells were detected in the same
animal cohort described previously (15).

Specific Sub-sets of Genes Fluctuate in
Response to CSFV Regardless of Strain
Virulence
Analysis of all the significantly differentially expressed genes
at day 5, 8 and 10 post-vaccination revealed a cohort of
genes that were differentially expressed at all of the time
points. This suggested that these genes were integral to the
response to both the C strain vaccine and the virulent CSFV
strain Brescia. These genes were significantly upregulated in
C strain vaccinated pigs at 5 dpv (Figure 3A). However, by
day 8 and day 10 the expression of these genes in vaccinated
animals had partially alleviated suggesting they were no longer
induced. Remarkably, this same subset of genes was instead
induced significantly in the mock inoculated animals at 8 days
(Figure 3B) and 10 days (Figure 3C) post-vaccination (3 and 5
days post-challenge) (Figure 3D). The expression of these genes
corresponds with exposure to either strain of the virus and
could potentially play a key role in enabling vaccinated pigs to
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FIGURE 2 | Overrepresented Gene Ontologies in tonsils 5 days after vaccination. (A) Gene ontologies overrepresented in the subset of genes upregulated in C strain

vaccinated pigs at 5 days post vaccination. (B) Gene ontologies overrepresented in the subset of genes downregulated in C strain vaccinated pigs at 5 days post

vaccination. Hypergeometric Test used to determine significance (p < 0.05). Level of significance indicated by yellow to orange coloring.

overcome challenge. Indeed, among this cohort are a number
of genes coding for antiviral effectors, such as IFIT1, IFIT2,
IFIT3, IFIT5 which encode proteins that directly interact with
viral RNA preventing the initiation of translation (23–28). As
well as MX1 and MX2, proteins that can directly prevent viral
ribonucleoprotein complex formation (29–35). The increase in
expression of the genes encoding these antiviral effectors, as
well as other proteins involved in the innate immune response,
such as RSAD2 (Viperin), DDX60 and DHX58, at the time of
challenge may play a role in the early protection offered by C
strain vaccination.

The ISG15 Pathway Is Activated in
Response to C Strain Vaccination
The proteins encoded by the subset of genes differentially
expressed across all three time points were subjected to an
interaction analysis using Cytoscape and pathways from the
InnateDB database. This network analysis revealed that many of
the proteins within this cohort are capable of directly interacting
with at least one other protein in the cohort and also highlighted

ISG15 as the best connected node within the network (Figure 4).
This is likely to be expected given the nature of ISG15, which
functions in a pathway similar to the ubiquitination pathway, in
that ISG15 is conjugated to a range of host and non-host proteins
modifying their function in a process known as ISGylation
(36). Indeed among our common cohort of genes differently
expressed at all time points were a number of known ISG15
conjugation targets such as IFIT1-3, IFIT5, DHX58, MX1 (37),
as well as other components of the ISG15 pathway including
key enzymes HERC5 and USP18, which are directly involved
in the ISGylation conjugation and deconjuguation process,
respectively (38).

Gene overrepresentation analysis using the Reactome
Database identified the Interferon signaling pathway and
also identified the ISG15 pathway as being significantly
overrepresented across all time points (p < 4.04E-09,
Supplementary Table 4), albeit in different groups at each
time point. It was overrepresented in C strain vaccinated
pigs at 5 dpv (p < 5.99E-03, Supplementary Table 5),
but in mock inoculated pigs at day 8 (p < 1.83E-07,
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TABLE 2 | Genes differentially regulated in C-Strain vaccinated pigs compared to

mock vaccinated pigs, 8 days post vaccination (3 days post challenge) with CSFV.

Genes up LogFC Genes down LogFC

npg1 2.47 sprr1a −2.65

pgrmc2 1.97 krt78 −2.68

lyzl4 1.83 lgals7 −2.71

tex14 1.76 oasl −2.73

pg-2 1.69 krt78 −2.74

lrg1 1.58 gsta1 −2.86

loc102158214 1.54 cnfn −2.88

pcd1b 1.50 sprp −2.89

loc102157463 1.45 loc100516001 −2.91

npg4 1.39 cnfn −2.92

loc100739707 1.29 ifit2 −3.18

loc100522081 1.26 csta −3.32

pcd1e 1.25 olfm4 −3.37

slc7a8 1.18 sprr1a −3.43

loc100514211 1.17 spink5 −3.56

znf449 1.11 tprg1 −3.63

c1h9orf116 1.06 csta −3.80

kcnip1 1.02 krt23 −3.86

pr39 1.01 pheroc −4.05

tenm3 1.00 cldn17 −4.19

Top 20 Up/Down regulated genes shown.

Supplementary Table 6) and 10 dpv (p < 6.97E-06,
Supplementary Table 7).

The early induction of the ISG15 pathway may play a role
in the early protection afforded by the C strain vaccination as
it ensures that an innate immune response that is producing
numerous antiviral effectors (IFIT1, IFIT2, IFIT3, IFIT5, MX1
and MX2) is elevated during this early window.

DISCUSSION

Since its introduction in the early 1960’s the C strain vaccine,
has proven remarkably effective and is still the most used
vaccine to control CSFV in endemic settings for example in
SE Asia (39). It has been shown to stimulate an adaptive
cell mediated immune response within 8–10 dpv as previously
demonstrated in this animal cohort (15). However, vaccinated
pigs are protected already 5 dpv, with partial protection observed
even earlier (11, 12). Understanding the molecular mechanisms
underpinning this early immunity may aid in the development
of more effective, rapid vaccines and in the optimization of
vaccines that are currently available. In this study we used a
transcriptomic approach to identify a subset of genes that are
regulated after both vaccination and challenge and that are linked
to a distinct antiviral pathway that is up-regulated during this
early protective window.

Type I and III IFNs are known to play a key role in generating
a robust host immune response to viral infection. The observed
expression of interferon stimulated genes (ISG) with vaccination
or challenge had been expected since it is known that CSFV is

TABLE 3 | Genes differentially regulated in C-Strain vaccinated pigs compared to

mock vaccinated pigs, 10 days post vaccination (5 days post challenge with

CSFV).

Genes up LogFC Genes down LogFC

eomes 3.35 loc100157995 −2.98

dapl1 2.94 ifi44 −3.14

il21 2.83 ifit5 −3.19

gzmk 2.74 cd101 −3.20

rgs5 2.74 loc100511472 −3.24

loc100516016 2.65 rsad2 −3.29

apitd1 2.57 oas1 −3.40

loc100512025 2.40 loc100518694 −3.46

pcdh15 2.34 loc100525838 −3.51

loc100153678 2.26 dhx58 −3.62

abca8 2.24 irg1 −3.77

loc100523628 2.12 loc100511550 −3.98

loc100521080 1.98 ube2l6 −4.15

cacnb4 1.90 fcgr1a −4.15

loc100512149 1.81 loc100512690 −4.23

usp18 −4.28

cxcl11 −4.55

oasl −4.78

slpi −4.90

ifit2 −5.72

Top 20 Up/Down regulated genes shown.

a strong inducer of type I IFNs, with the main cellular source
identified as plasmacytoid dendritic cells (5). C strain localizes
specifically in the tonsils which are also the initial site of virus
replication during natural CSFV infections, thus the presence
of ISGs should be expected first and foremost to be detected
locally—but as the infection spreads induction may, in particular,
be reflected in other lymphoid tissue (40–42). The interaction
of type I IFN with CSFV has been extensively studied, not
least as CSFV also exhibits ways to suppress type I IFN (43).
While the interferon responses to viral infections are well studied
and comprise of over 300 ISGs (44) the precise mechanisms
through which these signaling cascades mediate the numerous
antiviral responses are yet to be fully elucidated, particularly
in the case of CSFV. We focussed here on a set of genes
that was significantly regulated across both studied conditions
(vaccination and challenge) and was significantly regulated at all
time points studied.

Expression of the ISG15 gene has previously been shown
to be induced in response to virulent strains of CSFV in vitro
(45, 46). However, this is the first study to demonstrate induction
of the ISG15 pathway in response to vaccination with C strain
in vivo and specifically that this induction occurs in the tonsil, the
primary site of CSFV replication. Further studies can now target
genes both up- and down-stream of ISG15 to elucidate in more
detail (and possibly with improved sensitivity), which pathways
are regulated in response to C strain vaccination. It is noteworthy
that ISG15 is not only upregulated through the action of type I
IFN, but also IFN-λ and has been shown to be induced via PU.1 a
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FIGURE 3 | Differential expression of a cohort of genes as identified at each time point. (A) Expression of a cohort of 14 genes at day 5 post vaccination, comparing

the C Strain vaccinated animals to those that received the mock inoculation. (B) Expression of a cohort of 14 genes at day 8 post vaccination (3 dpc) comparing the C

Strain vaccinated animals to those that received the mock inoculation. (C) Expression of a cohort of 14 genes at day 10 post vaccination (5 dpc), comparing the C

Strain vaccinated animals to those that received the mock inoculation. (D) Heat map showing the gene expression changes as they occurred over the course of the

study. Expression values are from 3 pigs per condition per time point. Significance was determined using a moderated t-test p < 0.05 considered as significant.

gene expressed in various myeloid cells, including DC (47, 48).
Importantly, the ISG15 pathway was up-regulated in C strain
vaccinated animals during the window in which a protective
immune response exists and the adaptive immunity develops.
Although the C strain vaccine was given intramuscularly it is
well-established that CSFV has a tropism for tonsil tissue which
is the primary site of replication of CSFV (4). The elevation of the
ISG15 pathway in this specific tissue is ideally placed to prevent
challenge by the most likely natural route of infection.

ISG15 plays a central role in mediating IFN-induced host
antiviral responses. ISG15 is a 15 kDa protein that is covalently
attached to its target proteins via the action of a group of 3
enzymes (UBE1L, UBCH8, and HERC5), which are also induced
in response to type I IFN. This pathway is similar to that
of ubiquitination, however unlike ubiquitination, conjugation

of ISG15 to host target proteins does not prime them for
degradation but instead stabilizes or activates them. Over 150
host ISG15 conjugation targets have been identified thus far
(37) Among this cohort of ISGylation targets are some anti-
viral proteins whose mRNA has been identified as differentially
regulated through our analysis such as IFIT1, IFIT2, IFIT3, IFIT5
MX1, and MX2. These proteins target a number of different
aspects of the viral replication cycle such as RNA translation and
virion assembly (24–26, 29, 30, 32). Some of the proteins such
as MX1, have direct antiviral activity against CSFV (33, 34), other
proteins are known to be active against other Flaviviruses, such as
IFIT2 which restricts growth of West Nile virus (26). Moreover,
the free unconjugated form of the ISG15 has antiviral activity
and can protect mice against another RNA (Toga-) virus, the
Chikungunya virus infection (49).
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FIGURE 4 | Network analysis of Co-expressed Genes. Network assembled from a cohort of 14 genes significantly differentially regulated at each time point. Network

based on interactions defined in the InnateDB. Nodes and label sizes are mapped based on betweenness centrality. Network assembled using Cytoscape 3.2.

Conjugation of ISG15 to viral proteins results in their loss
of function and the evolutionary importance of this pathway
in controlling viral infection is demonstrated by the emerging
number of viral proteins that have evolved to disrupt this
pathway. For example, the NS1 protein of influenza A and B
viruses inhibits ISG15 conjugation (36, 50–52) and NSP2 of
porcine reproductive and respiratory syndrome virus, another
important pig pathogen, inactivates ISG15 (53).

Further to those proteins directly linked with the ISG15
pathway, we also saw the upregulation of a number of other
ISGs. These included IFI44 which is known to have antiviral
activity although the precise mechanism of action remains to
be characterized (54) and RSAD2 (Viperin) which inhibits many
DNA and RNA viruses, including CSFV through interaction with
the E2 structural protein (55). Importantly, RSAD2 has also been

implicated in DC maturation and CD4T cell activation (56, 57)
and may thus be one of the genes that links the innate and
adaptive immune system. One porcine gene LOC100157244 was
differentially regulated that has not previously been characterized
but is predicted to be an ATP-dependent RNA helicase similar to
DDX60. This protein may be a novel component of the pig host’s
immune response to viral infection and future work needs to
focus on characterizing this gene, as well as establishing if some of
the other genes upregulated that have not yet been directly related
to the ISG15 pathway could represent as yet uncharacterised
ISG15 conjugation targets.

The role of IFN I in CSFV infection has been discussed (5) and
it is proposed that the type I IFNs contribute to the pathology of
haemorrhagic fever. However, it is well-known that IFN I induce
anti-viral effects in cells that have been treated before infection,
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FIGURE 5 | Head Start Immunity Model. Upon vaccination with C strain, the induction of interferon results in induction of ISGs, including the ISG15 antiviral pathway

resulting in the induction and activation via ISGylation of a wide variety of antiviral effectors. These antiviral effectors accumulate over the 5 days post vaccination,

priming the host in an antiviral state and, for example via induction of RSAD2, instigating the adaptive immune response. If during this window a virulent strain of CSFV

attempts to infect the host, the multitude of antiviral effectors are already present within the cell and can immediately prevent the replication of the virus and ultimately

assist in preventing the establishment of infection. Without prior vaccination, replication of a virulent strain of CFSV is allowed as although the antiviral effectors of IFN

and ISG15 pathways are induced by the virulent virus these cannot keep pace with the replication rate of virulent strains of CSFV and thus are not able to sufficiently

control viral replication before adaptive responses can be activated, leading to the onset of clinical disease.

so that ISGs can be induced, and that a single dose IFN I does
not induce a long lasting anti-CSFV effect (58). In light of our
analysis, we propose a model whereby C strain vaccination is
activating a signaling cascade that is giving vaccinated pigs a
head start during which a wide range of innate antiviral effectors
are produced, which serve to contain viral replication, should
exposure to a virulent strain of CSFV take place prior to the
onset of adaptive responses. This is possibly achieved through a
number of small changes in several pathways, centering around
ISG15, rather than the accumulation of single effector molecules.
In naïve hosts, a virulent strain of CSFV will replicate faster, as
the innate response cannot produce enough antiviral effectors
in time to contain the infection (Figure 5). Future experiments
will focus on further exploring the ISG15 pathway temporal
dynamics and verifying if the increased transcription of these
antiviral effectors is associated with changes in the proteome of
the cells. While many of the proteins described have been shown
to have direct antiviral activity against CSFV, this response is
not necessarily specific to CSFV, but since C strain targets the
tonsil, which is also the primary site of CFSV replication, it is
particularly effective at protecting against CSFV. Should further
analysis corroborate these findings the sustained induction of
ISG15 may be a crucial step for successful vaccines. However,
the up-regulation of the ISG15 pathway in unvaccinated pigs
after CSFV Brescia challenge is most likely associated with the

failed attempt of the immune system to induce an antiviral
response after infection, contributing to clinical disease including
leukopenia (5, 36).
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