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IntRoductIon

Endometriosis (EMs) is an estrogen‑dependent gynecological 
disorder characterized by ectopic endometrial tissue. It 
is frequently associated with pelvic pain and infertility. 
It affects 2–10% of reproductive age women.[1‑3] Its 
pathogenesis and physiopathology remain widely debated, 
but we know it is polygenic and multifactorial. The most 
widely accepted hypothesis is the retrograde menstruation 
theory. Endometrial tissue flows back into the pelvic and 
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Background: Endometriosis (EMs) is a common gynecological disorder characterized by endometrial‑like tissue outside the uterus. 
Hypoxia induces the expression of many important downstream genes to regulate the implantation, survival, and maintenance of ectopic 
endometriotic lesions. Transforming growth factor‑beta 1 (TGF‑β1) plays a major role in the etiology of EMs. We aimed to determine 
whether TGF‑β1 affects EMs development and progression and its related mechanisms in hypoxic conditions.
Methods: Endometrial tissue was obtained from women with or without EMs undergoing surgery from October, 2015 to October, 2016. 
Endometrial cells were cultured and then exposed to hypoxia and TGF‑β1 or TGF‑β1 inhibitors. The messenger RNA (mRNA) and protein 
expression levels of TGF‑β1, vascular endothelial growth factor (VEGF), and hypoxia‑inducible factor‑1α (HIF‑1α) were measured. A 
Dual‑Luciferase Reporter  Assay was used to examine the effect of TGF‑β1 and hypoxia on a VEGF promoter construct. Student’s t‑test 
was performed for comparison among groups (one‑sided or two‑sided) and a value of P < 0.05 was considered statistically significant.
Results: TGF‑β1, VEGF, HIF‑1α mRNA, and protein expression were significantly higher in EMs tissue than that in normal endometrial 
tissue (t = 2.16, P = 0.042). EMs primary cultured cells exposed to hypoxia expressed 43.8% higher VEGF mRNA and protein (t = 6.84, 
P = 0.023). VEGF mRNA levels increased 12.5% in response to TGF‑β, whereas the combined treatment of hypoxia/TGF‑β1 resulted 
in a much higher production (87.5% increases) of VEGF. The luciferase activity of the VEGF promoter construct was increased in the 
presence of either TGF‑β1 (2.6‑fold, t = 6.08, P = 0.032) or hypoxia (11.2‑fold, t = 32.70, P < 0.001), whereas the simultaneous presence 
of both stimuli resulted in a significant cooperative effect (18.5‑fold, t = 33.50, P < 0.001).
Conclusions: The data support the hypothesis that TGF‑β1 is involved in the pathogenesis of EMs through regulating VEGF expression. 
An additive effect of TGF‑β1 and hypoxia is taking place at the transcriptional level.
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implants through adhesion, invasion, angiogenesis, and 
proliferation.[4,5]

The local microenvironment must play modulatory roles 
in the pathogenesis of EMs. Hypoxia, as one of the most 
important local factors, is related to angiogenesis and is also a 
basic requirement for lesion formation.[6,7] Hypoxia activates 
signaling through hypoxia‑inducible factor (HIF)‑1α, 
which is a transcriptional complex with a crucial role in 
oxygen‑regulated gene expression and it is upregulated by 
growth factors, cytokines, oncogenes, and hormones under 
hypoxic conditions.[8] HIF‑1α helps cells survive hypoxic 
environments and is highly expressed in many tumors. It is 
a critical regulator of angiogenesis during tumor growth. 
Angiogenesis is regulated by numerous genes, but vascular 
endothelial growth factor (VEGF) is the most important 
one. A major hypoxia‑responsive element was identified as a 
28‑base pair sequence located 900‑base pairs upstream from 
the catabolite activator protein site of the VEGF promoter 
region. Deletion of this element significantly inhibits hypoxic 
induction of VEGF transcription.

Transforming growth factor‑beta 1 (TGF‑β1), as an essential 
growth factor, is responsible for regulating cell proliferation, 
differentiation, angiogenesis, and immune responses.[9‑11] 
TGF‑β binding to the TGF‑β Type II receptor (TβRII) 
activates the TGF‑β signaling pathway and promotes 
dimerization with and activation of the TGF‑β Type I 
receptor (TβRI). TβRI combines with TβRII and forms a 
TβRI‑ligand‑TβRII trimer that contains a phosphorylated 
kinase domain and combines with phosphorylated SMAD. 
It regulates target gene functions by binding to SMAD 
binding elements in the promoters of target genes.[12,13] In 
tumor tissue, TGF‑β1 acts as activator of the SMAD2/3 
pathway that inhibits cell apoptosis[14,15] and it activates the 
matrix metalloproteinases (MMPs) family that increases 
cell migration.[16,17]

The increasing evidences indicate that TGF‑β1 expression is 
high in EMs lesions.[18‑20] Many mechanisms must contribute 
to the development of EMs and TGF‑β1 was hypothesized 
to play a key role in endometriotic lesion formation.[21,22] 
However, its role under hypoxic conditions is not clear. 
To investigate whether the hypoxia and TGF‑β signaling 
pathways have additive effects on EMs through regulating 
the expression of VEGF, we analyzed the expression 
of TGF‑β1, VEGF, and HIF‑1α by quantitative reverse 
transcription polymerase chain reaction (RT‑PCR) and 
western blotting in endometriotic tissues and in primary 
cultures of endometrial tissues incubated with TGF‑β1 
or the TGF‑β1 signal pathway inhibitor galunisertib 
under normoxic or hypoxic (1% oxygen) atmospheres. 
A VEGF promoter construct containing the 5′‑flanking 
region (−1200/+1) was transfected into cells and then 
the cells were treated with TGF‑β1 or galunisertib under 
normoxic or hypoxic conditions. The reporter activities 
were measured to assess whether any collaborative effect 
was taking place at the transcriptional level.

Methods

Source of endometrial tissue
The study protocol was approved by the Ethical Review 
Board of investigation for humans of the  Chinese People’s 
Liberation Army 202 Hospital (No: 202H2015KPJ004). 
Tissues were collected after written informed consent was 
obtained. The endometrial tissues were obtained from 
40 women with EMs who had not received hormone therapy 
or GnRH‑α agonist treatment for at least half a year. The 
samples used as the normal controls were obtained from 
40 women free of EMs who underwent hysterectomy due to 
other diseases. The fresh samples were immediately frozen 
at −80°C for future research.

Primary culture of endometrial tissue and in vitro 
hypoxia model establishment
The endometrial tissue samples used for the primary 
culture were removed and transported immediately to the 
laboratory. They were chopped to a size of 1 mm3 and washed 
with PBS three times. After the cells were fully digested 
with trypsin/EDTA (TBD Science, Tianjin, China) in a 
humidified atmosphere of 5% CO2 at 37°C, the cells were 
pelleted by centrifugation for 5 min, vigorously resuspended 
in RPMI 1640 (Gibco; Shanghai, China) supplemented 
with 10% fetal bovine serum (TBD Science, Tianjin, 
China) and 100 U/ml penicillin (Gibco, Shanghai, China) 
and 100 μg/ml streptomycin (Gibco, Shanghai, China), 
plated, and allowed to settle for up to 3 days. All the cells 
were identified to be epithelial cells and interstitial cells 
using immunofluorescence. The endometrial cells were 
exposed to 1% O2 hypoxia in the presence or absence of 
10 ng/ml TGF‑β1 recombinant protein (Peprotech, NJ, 
USA) or 10 μmol/L of the TGF‑β1 signal pathway inhibitor 
galunisertib (LY2157299) (Selleck Chemicals, Houston, 
USA). Hypoxic conditions were maintained using a modular 
incubator chamber (Hinasama, Tokyo, Japan) with 5% CO2 
and 1% O2 balanced with N2 gas. Data from cells cultured 
in 21% O2 were used as normal controls.

Quantitative reverse transcription polymerase chain 
reaction analysis
Total RNA was extracted from cells and endometrial 
tissues by Trizol Reagent (TakaRa, Dalian, China). The 
isolated total RNA (1 μg) was reverse transcribed into 
complementary DNA with the one‑step Prime Script 
RT Reagent Kit (TaKaRa; Dalian, China) following the 
manufacturer’s protocol, and real‑time (RT) quantitative 
PCR was performed in an ABI Prism 7500 Sequence 
Detection System (Applied Biosystems, Foster City, USA) 
by a SYBR green‑based RT‑PCR assay. The primers were: 
sense 5′‑GCAAGTTCAACGGCACAG‑3′ and antisense 
5′‑GCCAGTAGACTCCACGACATA‑3′ for the internal 
control GAPDH; sense 5′CCCACTGATACGCCTGAG‑3′ and 
antisense 5′‑TGAAGCGAAAGCCCTGTA‑3′ for TGF‑β1; 
sense 5′‑ATCCATGTGTGACCATGAGGAAATG‑3′ and 
antisense 5′TCGGCTAGTTAGGGTACACTTC‑3′ for 
HIF‑1α; sense 5′‑TGCATTCACATTGTGCTGCTGTAG‑3′ 
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and antisense 5′‑GCAGATTATGCGGATCAAACC‑3′ for 
VEGF. The 25 μl reaction mixtures contained 10 mmol 
Tris‑HCl (pH 8.3), 50 mmol/L KCl, 1.5 mmol/L MgCl2, 
200 μmol/L dNTPs, 1.25 U Taq polymerase, 40 ng template 
cDNA, and 150 mol/L primers (400 nmol/L of each). All 
PCR reagents were purchased from TaKaRa Biotech (Dalian, 
China). The reaction conditions were 95°C for 10 min 
followed by 40 cycles at 95°C for 15 s, 60°C for 50 s, 
and 72°C for 30 s. Cycle threshold values (Ct) were analyzed 
using SDS version 1.4 software (Applied Biosystems, CA, 
USA.) and relative quantification of gene expression was 
determined using the comparative Ct method (ABI PRISM 
7500, SDS User Bulletin; Applied Biosystems, CA, USA.). 
Each sample was analyzed three times to obtain an average 
Ct value.

Western blot analysis
Cell and tissue protein samples were collected using 
radioimmunoprecipitation buffer (Beyotime, Shanghai, 
China) and then mixed with SDS sample buffer 
(62.5 mmol/L Tris‑HCL pH 6.8, 10% glycerol, 1% SDS, 0.1% 
2‑mercaptoethanol, 1 mmol/L phenylmethylsulfonyl fluoride) 
and heated for 15 min at 65°C. The lysates were loaded 
onto polyacrylamide gels, subjected to electrophoresis, and 
transferred to a polyvinylidene difluoride membrane. The 
membranes were incubated in blocking buffer (5% skim milk/
TBS‑Tween) for 30 min at room temperature and incubated 
with a 1:100 dilution of the primary antibody (Santa 
Cruz, CA, USA) in blocking buffer overnight at 4°C. The 
membranes were incubated with the appropriate secondary 
antibody (Beverly, MA, USA) in blocking buffer for 1 h 
at room temperature. After washing, the membrane was 
subjected to ECL hypersensitive reagents. β‑actin was used 
as the internal reference. The protein bands on the membrane 
were scanned and analyzed with a molecular biological image 
analysis system to determine the protein levels.

pGL3‑vascular endothelial growth factor construction 
and Dual‑Luciferase Reporter Assay
A luciferase reporter plasmid lacking a eukaryotic promoter 
and enhancer, pGL3‑Basic (Promega, Wisconsin, USA) 
was used. A PCR fragment comprising −1200 to +1 of 
the VEGF gene was generated from human genomic 
DNA. For reporter construction, the PCR product was 
cloned into the pMD18‑T vector and subcloned into the 
unique Kpn I/Mlu I sites of the pGL3‑Basic vector. The 
construct was confirmed by sequencing to ensure no coding 
frame shift in the luciferase gene. Mid Pre Plasmid kits 
(Qiagen, Germany) were used as plasmids for transient 
transfection. The endometrial carcinoma cell line Ishikawa 
was seeded and grown to 80–90% confluence in 24‑well 
plates. They were transfected by Lipofectamine 2000 
(Invitrogen, USA) according to the manufacturer’s protocol 
with 1 μg of the reporter construct. Cotransfection of 
0.01 μg pRL‑TK (Promega, USA), a plasmid encoding for 
renillaluciferase, was performed to normalize transfection 
efficiencies. After culturing for 24 h, cells were placed in the 
1% O2 hypoxia environment in the presence or absence of 

10 ng/ml TGF‑β1 recombinant protein or 10 μmol/L TGF‑β1 
galunisertib and incubated for another 24 h. Cells were then 
harvested and luciferase activities were measured using the 
Dual‑Luciferase Reporter Assay system (Promega, USA) on 
a Lumat LB9507 luminometer (Bethold Technologies, Bad 
Wildbad, Germany).

Statistical analysis
All results are expressed as mean ± standard error (SE) of 
three independent experiments. All statistical results were 
generated using SPSS software version 17.0 (IBM, Chicago, 
IL, USA). Student’s t‑test and paired t‑test were performed 
for comparison among the groups (one‑sided or two‑sided). 
Each experiment was repeated three times and a value of 
P < 0.05 was considered statistically significant.

Results

Expression of transforming growth factor‑beta 1, 
vascular endothelial growth factor, and hypoxia‑inducible 
factor‑1α in endometrial tissue
We examined the expression of TGF‑β1, VEGF, and 
HIF‑1α in EMs samples and normal control endometrial 
tissue samples using real‑time RT‑PCR and western‑blot 
assays. In agreement with previous studies’ results, we 
found a significant elevation of TGF‑β1, VEGF, and HIF‑1α 
messenger RNA (mRNA) and protein expression. TGF‑β1 
and HIF‑1α expression were positively correlated with 
VEGF expression [t = 2.16, P = 0.042, Figure 1].

Expression of transforming growth factor‑beta 1, 
vascular endothelial growth factor, and hypoxia‑inducible 
factor‑1α in primary culture of endometrial tissue with 
different stimuli
The primary cultures of endometrial tissue cells were 
incubated in hypoxic or normoxic conditions, with or 
without TGF‑β1 and TGF‑β1 signal pathway inhibitor 
galunisertib. Quantitative RT‑PCR and western blot assays 
were used to analyze the expression of TGF‑β1, VEGF, and 
HIF‑1α. Hypoxia enhanced the production of VEGF. The 
VEGF mRNA levels increased 43.8% in hypoxia compared 
with the untreated cells under normoxic conditions. VEGF 
mRNA levels also increased 12.5% in response to TGF‑β1. 
There was a much higher production (87.5% increases) of 
VEGF in the combined treatment group with hypoxia and 
TGF‑β1 [Figure 2]. VEGF mRNA levels were found to be 
almost unaffected by the TGF‑β1 signal pathway inhibitor 
alone but increased 41.2% with combined treatment of 
hypoxia/TGF‑β1 inhibitor. Hypoxia increased the expression 
of HIF‑1α significantly. HIF‑1α was induced by TGF‑β1 
at both the mRNA and protein level (t = 6.84, P = 0.023), 
and the expression of TGF‑β1 was also increased in 1% O2 
hypoxic conditions.

Reporter activity of vascular endothelial growth factor 
promoter construct
To identify whether this additive effect was taking place 
at the transcriptional level, we analyzed the activity of the 
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human VEGF promoter region. For this purpose, we used 
a reporter construct containing the 5′‑flanking region of 
the human VEGF gene promoter (−1200/+1) fused to the 
luciferase gene. This VEGF promoter construct contains 
the hypoxia‑response element (HRE) and other elements. 
As shown in Figure 3, transient transfection experiments 
demonstrated induction of VEGF promoter activity in the 
presence of either TGF‑β1 (2.6‑fold, t = 6.08, P = 0.032) 

or hypoxia (11.2‑fold, t = 32.70, P < 0.001), whereas both 
stimuli resulted in a significant cooperative effect (18.5‑fold, 
t = 33.50, P < 0.001). In the presence of the TGF‑β1 signal 
pathway, VEGF promoter activity was increased 1.15‑fold 
and 10.4‑fold in combination with hypoxia. These results 
suggest that the collaboration between TGF‑β and hypoxia 
occurs at the transcriptional level.

dIscussIon

EMs is a non‑malignant disease with the presence of 
ectopic endometrial tissue‑like chocolate cysts[23] and is 

Figure 3: Relative luciferase activities of the VEGF promoter construct 
with different stimuli. Induction of VEGF promoter activity was shown 
in either TGF‑β1 or hypoxia, whereas both stimuli resulted in a 
significant cooperative effect (n = 40). In the presence of the TGF‑β1 
signal pathway and circumstance of hypoxia, VEGF promoter activity 
was increased. These results suggest that the collaboration between 
TGF‑β1 and hypoxia occurs at the transcriptional level. *P < 0.05; 
†P < 0.01; ‡P < 0.001. VEGF: Vascular endothelial growth factor; 
TGF‑β1: Transforming growth factor‑beta 1.

Figure 2: Expression of TGF‑β1, VEGF and HIF‑1α in primary culture 
of endometrial cells with different stimuli (n = 40). (a) Relative mRNA 
expression of the three genes. The VEGF mRNA levels increased in 
hypoxia and response to TGF‑β1 compared with the untreated cells 
under normoxic conditions. There was a much higher production of 
VEGF in the combined treatment group with hypoxia and TGF‑β1; 
(b) Relative protein density of the three proteins. The VEGF expression 
levels increased in hypoxia and response to TGF‑β1 compared with the 
untreated cells under normoxic conditions. There was a much higher 
expression of VEGF in the combined treatment group with hypoxia and 
TGF‑β1. *P < 0.05; †P < 0.01. HIF‑1α: Hypoxia‑inducible factor‑1α 
VEGF: Vascular endothelial growth factor; TGF‑β1: Transforming growth 
factor‑beta 1; mRNA: Messenger RNA.

a

b

Figure 1: Expression of transforming growth factor‑beta 1 (TGF‑β1), vascular endothelial growth factor (VEGF) and hypoxia‑inducible factor‑1α 
(HIF‑1α) in endometrial tissues (n = 40). (a) Relative messenger RNA expression of the three genes; (b) Relative protein density of the three 
proteins. (c) Western blotting of the three proteins *P < 0.05. EMs: Endometriosis.

a b c
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associated with pelvic pain and infertility.[24] In recent 
studies, EMs could also affect obstetric outcomes.[25] 
However, the etiology of this disease is unclear. Recently, 
there has been increasing evidence that hypoxia plays an 
important role by inducing gene expression to regulate 
the implantation, survival, and maintenance of ectopic 
endometriotic lesions. Hypoxia pretreatment promoted 
the proliferation and angiogenesis of EMs in an animal 
study.[26] Hypoxia is a critical factor that potentiates the 
sensitivity of the COX-2 gene in ectopic endometriotic 
stromal cells. Since COX‑2 regulates some particular 
enzymes such as PGs that have been linked to the 
development of EMs,[27‑31] it could be assumed that hypoxia 
could affect EMs through inducing aberrant COX‑2 
expression. The level of leptin is elevated either in serum 
or peritoneal fluid from women with EMs.[32,33] Leptin 
could promote cell proliferation and angiogenesis in EMs 
lesions.[34] Interestingly, leptin is not expressed in normal 
endometrial stromal cells unless the cells are cultured in 
hypoxic conditions.[35,36] Taken together, hypoxia could 
induce EMs lesion formation.

Hypoxia, as a known master regulator of angiogenesis, 
can induce many angiogenic factors such as VEGF. 
The expression of VEGF protein and mRNA in ectopic 
endometrial tissue is significantly higher than that in 
normal endometrium.[37,38] Recently, a study demonstrated 
that suppression of VEGF expression and blockade of 
angiogenesis reduced the size of endometriotic lesions in 
a mouse model.[39] The study of Song et al.[40] showed that 
VEGF might be involved in the pathogenesis of EMs by 
regulating angiogenesis, and the expression of VEGF has a 
relationship with the severity of EMs.

HIF‑1α, a transcription factor that responds to hypoxic 
stress, is known to regulate VEGF expression and mediate 
cell adaption to the hypoxic environment.[41‑43] Many studies 
have shown that HIF‑1α expression in endometrial cancer 
and other malignant tumors is significantly increased.[34,44] 
A study by Lu et al.[26] showed elevated levels of HIF‑1α 
mRNA and protein in ectopic endometriotic lesions. In 
addition, several papers reported a role of HIF‑1α during 
the development of EMs.[38,45‑48]

The epithelial‑to‑mesenchymal transition (EMT) plays a 
key role in metastasis of many kinds of tumors such as 
colorectal cancer, bladder cancer, and breast cancer[49‑51] 
and EMT induced by HIF‑1α has been reported to play a 
role in the development of many tumor types.[52‑54] Hypoxia 
induces the EMT of endometrial cells, resulting in cellular 
characteristics changes, which may be a prerequisite for the 
establishment of endometriotic lesions.[55]

TGF‑β1 is a polypeptide growth factor that plays an 
important role in angiogenesis. It can induce VEGF 
expression. TGF‑β1 can promote cell migration by 
inhibiting the expression of cytokines that act to maintain 
the integrity of blood vessels, thus allowing for increased 
permeability,[56,57] favoring the migration of cells. TGF‑β1 

is also able to promote cell migration by up‑regulating 
the activity of MMPs.[58,59] Other researchers showed that 
TGF‑β1/SMAD2/3 signaling can stimulate human granulosa 
cell migration by up‑regulating connexin 43 expression[60] 
and regulate insulin gene transcription and pancreatic 
islet cell function through SMAD2/3 signaling,[61] and this 
pathway plays a critical role in renal fibrosis and chronic 
liver disease.[62] However, the effect of TGF‑β1/SMAD2/3 
signaling on EMs pathogenesis is unclear.

In agreement with previous reports, the data showed higher 
HIF‑1α and VEGF expression in endometrial cells under 
hypoxia through western blotting and RT‑PCR. We showed 
that the expression of TGF‑β1 was significantly higher than 
that in normal endometrial tissues. After hypoxic treatment 
of normal endometrial cells or the addition of TGF‑β1 
recombinant protein or TGF‑β1 specific inhibitor, compared 
with the control group, VEGF expression was increased and 
the highest level was present in the combined hypoxia and 
TGF‑β1 group.

We used endometrial cells in primary culture to detect the 
response of TGF‑β1 and HIF‑1α to VEGF, and we found 
that HIF‑1α could regulate VEGF expression directly. We 
also found that TGF‑β1 could regulate VEGF expression 
through the SMAD2/3 pathway, and interestingly, if we 
combined TGF‑β1 and hypoxia, the expression of VEGF 
was more than two times higher, suggesting that HIF‑1α 
and TGF‑β1 have a synergistic action in regulating VEGF 
expression. TGF‑β1 and hypoxia are acting independently 
of each other because TGF‑β1 inhibitors did not inhibit the 
induction of VEGF by hypoxia.

In this study, we found TGF‑β1 could not only affect 
VEGF expression but also HIF‑1α. TGF‑β1 and HIF‑1α 
are not acting as upstream and downstream proteins. We 
hypothesize that endometrial fragments reflux to the pelvis 
during menstruation and when exposed to hypoxic stress 
release large amounts of VEGF and settle in the peritoneal 
cavity. This, in turn, would induce local angiogenesis and 
aid revascularization of the endometrium at the ectopic 
site. Transient transfection experiments demonstrated the 
presence of either TGF‑β1 (2.6‑fold, t = 6.08, P = 0.032) 
or hypoxia (11.2‑fold) could induce VEGF promoter 
activity (t = 32.07, P < 0.001), whereas the simultaneous 
presence of both stimuli resulted in a significant cooperative 
effect (18.5‑fold, t = 33.50, P < 0.001). These results suggest 
that the additive and synergistic effect of TGF‑β1 and 
hypoxia on VEGF expression has a transcriptional basis.

This study is subject to some limitations. First, the sample size 
is small and the data might, therefore, not be representative. 
Second, the women with EMs who we selected chose to 
undergo surgery, which means patients with mild conditions 
were not included in the study. Accordingly, there might 
have been selection bias. The results demonstrated TGF‑β1 
and hypoxia can regulate VEGF transcription by targeting 
the promotor region of the VEGF gene independently with 
a synergistic action. Because an increased level of TGF‑β1 
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was found in a hypoxic environment and EMs lesions are 
also in a hypoxic environment, we focus on the effect of 
hypoxia and TGF‑β1 on VEGF expression in EMs.

In conclusion, the altered expression of VEGF observed 
in endometrial primary culture cells through regulating 
TGF‑β1 and HIF‑1α expression suggests both TGF‑β1 
and hypoxia affect ectopic endometrial cells by inducing 
angiogenesis. The results suggest hypoxia and TGF‑β1 
could promote EMs formation through synergistic action by 
regulating VEGF at the transcriptional level. These findings 
might explain angiogenesis progression allowing for lesion 
formation after endometrial tissue flows back into the pelvis.
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