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We propose a minimal model defining the relationship between glucose and insulin with the added influence of food intakes. The
constructed model consists of a system of 3 nonlinear ordinary differential equations (ODEs). The solutions of our model for both
normal and diabetic subjects are compared with a minimal model and a maximal model representing the same relationship. We
found that the outputs of our model are similar to those from the minimal and maximal models for both normal and diabetic
subjects; the R2 are 0.9997 and 0.9922, respectively, when compared with the minimal model, and are 0.9995 and 0.9940,
respectively, when compared with the maximal model. Moreover, the relative errors between solutions are at most 0.9035%
and as low as 1:488 × 10−2% on average when compared with the minimal model for normal subjects and at most 1.331% and
as low as 0.1159% on average for diabetic subjects. The discrepancy between our model and the maximal model are at most
1.590% and 5.453% for normal and diabetic subjects, respectively, with a relative error averaging 0.2138% and 0.9002% for
normal and diabetic subjects, respectively.

1. Introduction

Diabetes is a major health problem worldwide, with the num-
ber of people living with diabetes reaching 537 million (1 in 10
people) in 2021 and projected to rise to 783 million by 2045
[1]. Although diabetes is a chronic, not infectious, disease, dia-
betics are at an increased risk to develop a number of serious
health problems. Some data indicate that having had a
COVID-19 infection increases the risk of developing diabetes,
and as one study shows [2], people with diabetes are also more
likely to develop severe COVID-19 symptoms.

Diabetes is divided into 2 categories. People with type 1
diabetes produce very little to no insulin, while those with
type 2 diabetes do not efficiently use the insulin their body
produce. In either case, diabetes sufferers are likely to have
uncontrollably high blood glucose levels. Understanding

and being able to predict the effect their food intakes will
have on their blood sugar levels are important for managing
diabetics’ food intakes, forming healthy habits, and deter-
mining effective medical interventions. Prediction of glucose
level after a meal is particularly relevant since eating is a
daily activity. Modeling of glucose-insulin system for oral
glucose intake is complicated compared to intravenous
injection because it involves additional physiological pro-
cesses, including ingestion and absorption, which affect the
rate of glucose appearance in the blood. This rate varies
depending on the type of food and the individual’s unique
physiological responses to food.

Simulation models of glucose-insulin system with the
added influence of glucose-containing meals have been
widely developed and known to be useful for tracking vari-
ous aspects of healthy and diabetic people. The series of
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works [3, 4] give a detailed description of such models. The
model involves 6 systems of ODEs, 14 or more parameter
settings, and 9 additional constraints. The clinical data from
204 healthy subjects and 14 type 2 diabetics are used to
obtain the parameters of the model. In [5], a system made
of 27 ODEs is used to represent the glucose and insulin sub-
models with parameters obtained from minimizing the
errors between the model solution and clinical data for both
healthy and diabetic subjects. Recently, the glucose-insulin
model has been extensively improved with the combined
effect of such lifestyle factors as activities, stress, meals, and
medications [6]. Each submodel is given in systems of ODEs
with 120 estimated parameters taken from [5].

These complicated, or maximal, models have obvious
advantages as they can be verified by physiological events
in the human body. However, in order to utilize the model,
one has to obtain the parameters used in the model which
is impractical to acquire. Moreover, the more complicated
maximal models do not generally provide higher accuracy
in terms of glucose-insulin dynamic [7]. Another approach
to developing a simulation model for glucose-insulin
dynamic, called the minimal model, seeks to simplify the
model with the use of available data. By evaluating the
parameters in the constructed model using data collected
from studied subjects, the models can be said to represent
the glucose-insulin dynamic with effects of other inputs indi-
cated in the model. Some of the glucose-insulin minimal
models in the literature can be found in [8].

Continuous glucose monitoring (CGM) uses implanted
sensors to measure glucose level in the interstitial space peri-
odically. Data fromCGM are complex, and data interpretation
and consequently intervention design are subjective. While
models of glucose-insulin systems have been extensively stud-
ied, they are mostly based on data from oral glucose tolerance
test (OGTT) and often involve many compartments such as
the liver, muscle and adipose tissues, and gastrointestinal tract.
Detailed physiological-based models have also been developed
using data from OGTT coupled with data from radiolabeled
tracers in meals and injections [7]. The GCM data that are
more accessible and practical to collect are used to assess the
effectiveness of the model developed in [9]. In this work, the
minimal model is offered with a system of 4 ODEs. The behav-
iors of glucose concentration from the model are shown along
with glucose data taken from one healthy and one type 2 dia-
betic subject.

In this work, we propose a new minimal model with the
purpose to capture the glucose dynamic that is similar to the
results of the minimal and maximal models. The proposed
model contains only one equation for a food dynamic and
two equations for glucose-insulin dynamics, as presented in
the following section. The glucose dynamic behavior obtained
from fitting our model is compared to the outputs from the
existing models for both normal and diabetic subjects. Finally,
conclusions and discussions are presented in the last section.

2. Model Construction and Validation

2.1. Food Dynamics. This work presents a novel minimal
model for food dynamics. The digestion of food is modeled

using a single compartment dynamic. The amount of food
intake as a function of time is added into this compartment,
and from this compartment, the glucose is then absorbed
into the bloodstream. The food dynamics proposed here
can be written as

dQ
dt

= −βQ + ηD tð Þ
γ2 +Q2 , ð1Þ

where QðtÞ is the amount of glucose in the intestine, which is
readily absorbed into the bloodstream (mg);DðtÞ is the
amount of ingested glucose from food intake (mg); β, γ,
and η are parameters specific to the model to capture the
behaviors of the glucose in the intestine, which will later be
the input for the glucose-insulin dynamic model
(mg2 min−1, mg, and mg2 min−1).

Similar to other models, the rate of change of glucose
depends on the amount of glucose in the intestine and the
food ingested. However, the nonlinear glucose term is intro-
duced in the denominator. This term limits the maximum
rate of change of the glucose in the intestine. Compared to
the food model in [9], this new approach allows us to reduce
the dimension of the food model to one, and yet it can still
capture the behavior of the minimal model in [9] and a
much higher dimension model in [3, 4].

2.2. The Glucose-Insulin Dynamics. The G-I model for
glucose-insulin dynamics follows from [9, 10], since it is
simple, transparent, and has been widely used in literature.
Along with the influence of glucose intake, the model can
be described as

dG
dt

= R0 − EG0
+ SII

� �
G + kQQ, ð2Þ

dI
dt

= Imax
G2

α +G2 − kII, ð3Þ

Table 1: Parameters in the model found through our study.

Parameters
Minimal model Maximal model

Normal Diabetics Normal Diabetics

β 6:050 1:778 3:252 0:3353
γ 12:86 7:089 7:851 135:4
η 4:086 4:641 11:98 1:337
R0 2:1 2:5 1:812 1:046
EG0 1 × 10−3 2:5 × 10−3 1:943 × 10−2 2:212 × 10−8

SI 3:06 × 10−3 1:14 × 10−3 1:340 × 10−4 1:290 × 10−5

α 1 × 104 1 × 104 9193:4 2:903 × 105

Imax 0:28 0:93 3:117 × 10−2 24:31
kI 0:01 0:06 6:007 × 10−3 3:638 × 10−3

kQ 0:098 0:026 5:880 × 10−2 2:572 × 10−8
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where GðtÞ is the concentration of glucose in the blood
stream (mgdl−1); IðtÞ is the concentration of insulin in the
blood stream (μUml−1), where 1 μUml−1 = 6.00 pmolL−1

and 1 mol =5808 g, or 1 U =0.034848 mg; R0 is the initial
rate of glucose production (mgdl−1 min−1); EG0

is the initial
glucose effectiveness (min−1); SI is the total insulin sensitiv-
ity (mlμU−1 min−1); kQ is the intestinal absorption rate
(dl−1 min−1); Imax is the total maximal insulin secretion rate
in pancreatic β cells (μUml−1 min−1); G2/ðα +G2Þ is the Hill
function having half its maximum at G = α1/2; and kI is the
insulin clearance rate (min−1).

2.3. Model Comparison and Validation. Solutions from the
complete model offered in this study, given by Equations
(1)–(3), will be compared with those from both the minimal

model presented in [9] and the maximal model presented in
Equations 1, 3-5, 10-11, 13-19, and 23-27 from [3] along
with Equation 8 from [4]. The simplified version has two-
compartment dynamics. Food enters the stomach, qsto, and
passes through the “gut” which is a second compartment,
qgut.

dqsto
dt

= −kstoqsto,

dqgut
dt

= kstoqsto − kgutqgut:

ð4Þ

The variable qgutðtÞ is considered to be similar to our
variable QðtÞ:
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Figure 1: Glucose concentration comparisons between normal subjects found from the minimal model given in [9] and our proposed model
(R2 = 0:9997, maximal error 0.9035%, and average error 1:488 × 10−2%).
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Figure 2: Glucose concentration comparisons between diabetic subjects found from the minimal model given in [9] and our proposed
model with (R2 = 0:9922, maximal error 1.331%, and average error 0.1159%).
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Note that the maximal model used as a comparison ref-
erence will be given in the supplementary materials (avail-
able here) as it is rather complicated.

3. Results and Discussions

3.1. Model Analysis. The equilibrium points of the model are
as follows: (1) Q = βDðtÞ/α for DðtÞ = 0, we will have Q = 0;
(2) G is a positive real solution of the equation ðEG0

+ ðSI
Imax/kIÞÞG3 − R0G

2 + EG0
αG − R0α = 0; and (3) I = ImaxG

2/
kIðα +G2Þ. These equilibria will be used as initial values to
solve for the parameters.

3.2. Model Fitting. In this section, we determine the param-
eters in our model by minimizing the sum squared errors
between the solutions of our model and those in [9] and
[3, 4]. Even though fitting the model to the clinical data

would allow us to determine supposedly more clinical rele-
vant parameters, our intention in this study is to build a sim-
pler minimal model that is still able to represent the
behavior of the glucose concentration similarly to both pre-
viously published minimal and maximal models. Hence, to
show this comparability, the parameters that can best fit
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Figure 3: Glucose concentration comparisons between normal subjects found from the maximal model given in [4] together with [3] and
our proposed model with (R2 = 0:9995, maximal error 1.59%, and average error 0.2138%).

140

160

180

200

220

240

0 100 200 300 400 500 600 700 800 900

G
lu

co
se

 (m
g/

dl
)

Time (min)

Diabetic Subjects

Maximal model
Proposed model

Figure 4: Glucose concentration comparisons between diabetic subjects found from the maximal model given in [4] together with [3] and
our proposed model (R2 = 0:9940, maximal error 5.453%, and average error 0.9002%).

Table 2: Statistics of the proposed model compared with minimal
and maximal models.

Minimal model Maximal model
Normal Diabetics Normal Diabetics

R2 0:9997 0:9922 0:9995 0:9940
Average error (%) 1:488 × 10−2 0:1159 0:2138 0:9002
Maximum error (%) 0:9035 1:331 1:590 5:453
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the proposed model with those two types of model are
obtained by minimizing the errors between the solutions of
each pair of models. For the function DðtÞ, we use a step
function with the period of 15 minutes and the step values
taken from [9] and [3, 4].

Based on the results, we found that our model is compat-
ible with the model in [9], having the corresponding param-
eters provided in Table 1.

Comparisons between the plasma glucose concentration,
G, (in mg/dl) found from the minimal model in [9] and
from our proposed model for the normal and diabetic sub-
jects can be seen in Figures 1 and 2, respectively.

We then test the compatibility between our model and a
maximal model for glucose and insulin relationship. We
found the parameters, shown in columns 4-5 of Table 1, that
best fit our solutions and the solutions obtained from the
model in [3, 4], which are given in the supplementary mate-
rials. Comparisons of the solutions found from this maximal
model and from our proposed model for the normal and
diabetic subjects can be seen in Figures 3 and 4, respectively.

The statistics of our model show its good compatibility
with those two model categories (see Table 2) with all R2

greater than 0:99. Note that both maximum and average rela-
tive errors when compared with themaximal model are higher
than those with the minimal model. The solutions for normal
subject cases fit better than those for diabetic subjects.

4. Conclusions and Discussions

There are 2 categories of glucose-insulin dynamic models:
minimal models and maximal models. The model proposed
in this work is a minimal model describing the relationship
between glucose and insulin with the added influence of
food intake. We compare our solutions with the solutions
from each type of model for both normal and diabetic sub-
jects. We found that our model behaves similarly to both
the minimal and maximal models for normal subjects with
the R2 lying within 0.9922-0.9997. Moreover, the errors
between solutions are at most 5.453% when compared with
the maximal model on diabetic subjects and as low as
0.9035% when compared with the minimal model on nor-
mal subjects. Although the R2 for the diabetic subjects are
worse than that for normal subjects, values above 0.8 (in this
case, 0.9922) are considered compatible statistically. One
benefit of a minimal model is that the number of parameters
needed to solve it is a lot smaller than those required to solve
a maximal model. In this current work, the model is fitted
based on the outputs of other models. Future work includes
validation of our model to the clinical data. Our model with
food-intake influence can be useful for those who are inter-
ested in monitoring their food intakes or meals in order to
control their blood sugar levels.

Data Availability

There is no collected data in this study. All data are obtained
from simulation which can be found from parameters given
in the manuscript.
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