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Abstract
The salinity effect on anammox bacteria has been widely reported; however, rare studies describe the microbial dynamics of
anammox-based process response to the introduction of real seawater at mainstream conditions. In this study, an anammox
process at mainstream conditions without pre-enriching anammox bacteria was shifted to the feeds of a synthetic wastewater with
a portion of seawater mixture. It achieved over 0.180 kg-N/(m3 day) of nitrogen removal rate with an additional seawater
proportion of 20% in the influent. The bacterial biodiversity was significantly increased with the increase of seawater proportions.
High relative abundance of anammox bacteria (34.24–39.92%) related toCa. Brocadiawas enriched and acclimated to the saline
environment. However, the introduction of seawater caused the enrichment of nitrite-oxidizing Ca. Nitrospira, which was
responsible for the deterioration of nitrogen removal efficiency. Possible adaptation metabolisms in anammox bacteria and other
nitrogen transforming bacteria are discussed. These results highlight the importance of microbial diversity for anammox process
under the saline environments of 20% and 40% seawater composition.
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Introduction

Anaerobic ammonium-oxidizing (anammox)-based processes
have attracted increasing attention due to its advantages: less
oxygen requirement, no carbon addition, and less sludge pro-
duction (Du et al. 2015; Lackner et al. 2014; Ma et al. 2017;
Siegrist et al. 2008). Anammox process was successfully ap-
plied for high-strength wastewater treatment (Ma et al. 2016),
and in recent, an increasing of studies supported its feasibility
for mainstream (Agrawal et al. 2018; Laureni et al. 2016).
However, with the development of coastal cities, the produc-
tion of saline wastewater is increased. One of such causes is
seawater intrusion into coastal freshwater aquifers. The over-
extraction of groundwater resources is one of the important
reasons (Li et al. 2017). Meanwhile, seawater was directly
used in coastal cities due to the shortage of freshwater. For

example, seawater was used to flush toilets in Hong Kong
(Leung et al. 2012). Both of these two contributors will result
in an introduction of seawater in mainstreamwastewater (Bear
et al. 1999; Li et al. 2017), increasing the complexity for
biological wastewater treatment. Specially, the introduction
of seawater results in an additional challenge for the main-
stream anammox processes.

Previous studies explored the salinity effect on anammox
bacteria through adding NaCl (Chen et al. 2014; Jin et al.
2011; Li et al. 2018; Kartal et al. 2006; Xing et al. 2015;
Zhang et al. 2018). Kartal et al. (2006) reported that the dom-
inant anammox bacteria shifted from Ca. Brocadia to Ca.
Kuenenia with the increasing of salinity concentration.
Previous studies also showed that Ca. Kuenenia could adapt
to a higher salinity of 15–30 g/L NaCl/KCL; however, a sa-
linity over 4 g/L has a great impact on Ca. Brocadia (Ali et al.
2020). It is likely that Ca. Kuenenia could endure a higher
salinity overCa. Brocadia. Apart from anammox bacteria, the
microbial community structure was significantly affected by
wastewater constituents (Gonzalez-Martinez et al. 2015; Liu
et al. 2018). The evolution of microbial structure also provides
a comprehensive understanding on the nitrogen transforma-
tion of anammox-based processes, and thus further influences
nitrogen removal optimization (Vlaeminck et al. 2012).
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Recently, the microbial interaction in the anammox-based sys-
tems was investigated by Speth et al. (2016) and Lawson et al.
(2017), indicating that microbial community is correlated to
reactor performance. Obviously, the complexity in real seawa-
ter composition, such as sulfate and organics, is much more
than synthetic wastewaters with only NaCl addition. For ex-
ample, heterotrophic denitrifiers could benefit from the addi-
tional carbon source and might enhance the nitrogen removal
efficiency through denitrification (Lotti et al. 2015). Sulfate
might be metabolized by anammox bacteria or denitrifiers as
electron acceptors, affecting the microbial community in re-
turn (Yang et al. 2009). Additionally, ammonium oxidizing
bacteria (AOB) and nitrite oxidizing bacteria (NOB) widely
detected in anammox-based systems (Pereira et al. 2017)
might be affected by the introduction of real seawater as well.
Although the effects of real seawater on anammox process for
nitrogen-rich wastewater treatment had been reported (Qi
et al. 2018), limited reports describe under saline low nitrogen
loading conditions, especially for the evolution of microbial
dynamics with different proportions of seawater feed.

Therefore, this study characterized the microbial evolution
in anammox process for low-strength wastewater with differ-
ent proportion of real seawater. A continuous flow anammox
reactor was set up at room temperature without a pre-
enriching high abundance of anammox bacteria.
Investigation was made for the reactor performance and each
corresponding microbial structure at different seawater pro-
portions, with special attention on the anammox bacteria,
AOB, and NOB. Their potential adaptation metabolisms to-
wards seawater-based wastewater in Anammox bacteria and
other nitrogen transforming bacteria were addressed.

Material and methods

Reactor set-up, inoculum, and operation strategy

A lab-scale anammox continuous stirred-tank reactor (CSTR)
with an effective volume of 1.0 L was set up and operated at
room temperature (Fig. 1). Magnetic stirring with 50 rpm was
used for mixing in the reactor. Biomass was intercepted
through the inclined plate installed in the sedimentation area.
The reactor was inoculated with dried powdered sludge taken
from a full-scale simultaneous partial nitrification, anammox,
and denitrification (SNAD) reactor in Taiwan (Taiwan, China)
(Wang et al. 2010). The dried powdered sludge was soaked in
the buffer solution for activation before inoculum in the reac-
tor. The buffer was made with NH4Cl, NaNO2, KHCO3,
KH2PO4, and K2HPO4. The initial mixed liquor suspended
solids (MLSS) in the CSTR was about 7600 mg/L.

The reactor was fed with a synthetic wastewater (with-
out pre-removing dissolved oxygen) containing NH4Cl,
NaNO2, KH2PO4, MgSO4·7H2O, and 1 mL/L of trace

element solution as described by van de Graaf et al.
(1996), and different proportions of real seawater. Real
seawater was collected from the Hong Kong Victoria
Harbour without any pre-treatment process, which the
salinity was 3.1~3.3% at the point of collection. The
characteristics of collected seawater displayed as follows:
2.12~3.31 g SO4

2− L−1, 0~1.8 mg BOD5 L−1, and
6.3~14.2 mg COD L−1. The influent concentration of
ammonium and nitrite was configured as needed. The
influent pH was adjusted to 8.0 without further
adjustment.

Analytical methods

The collected influent and effluent samples were filtered
(0.45 μm) before analyze. The influent and effluent qual-
ity parameters of NO3

−-N, NO2
−-N, NH4

+-N were mea-
sured according to standard methods (APHA 2005), and
pH was measured using a pH meter (Shanghai Leici,
China).

Sludge sampling, DNA extraction, and 16S rRNA
sequencing

The microbial sampling times were selected according to
the initial and/or the steady-state performance at the
stages of the introduced seawater of 0% (day 51 and
106 as AS1 and AS2, respectively), 20% (day 207 and
330 as AS3 and AS4, respectively), and 40% (day 408 as
AS5). Biomass samples were obtained from the reactor
by centrifugation (5 min, 10,000×g, 4 °C). DNA extrac-
tion was performed using FastDNA SPIN Kit for Soil
(MP Biomedicals, Solon, OH) according to the manufac-
turer’s instruction, and the quality and concentrations
were measured using NanoDrop® ND-1000 (NanoDrop
Technologies, Wilmington, DE). The inoculated sludge
had no anammox activity and the DNA concentration
extracted from inoculated sludge was undetected.

DNA extracts were amplified by polymerase chain reaction
(PCR) in the V3-V4 region of the 16S rRNA gene using
primers 341F: ACTCCTACGGGAGGCAGCAG and 806R:
GGACTACHVGGGTWTCTAAT, and were sequenced using
the Illumina MiSeq platform (BGI, Shenzhen). The raw reads
were processed using the MOTHUR software to remove chi-
meric and low-quality sequences (Schloss et al. 2009). The
obtained high-quality sequences with an average length of
430 bp were clustered into operational taxonomic units
(OTUs) with 97% similarity cutoff and assigned to the
SILVA reference database. Raw 16S rRNA data obtained in
this study had been deposited into NCBI Sequence Read
Archive database with the access ion number of
PRJNA491507.
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Results

Reactor performance

Figure 2 shows the overall nitrogen removal performance
of the CSTR. The CSTR operation was divided into three
stages based on the seawater proportions of 0%, 20%,
and 40% in the influent (Table 1). The total nitrogen
removal efficiency (TNRE) reached around 73% at the
first period, accounting for a nitrogen removal rate
(NRR) of 0.130 kg-N/(m3 day) with a nitrogen loading
rate (NLR) of 0.184 kg-N/(m3 day). The NH4

+-N and
NO2

−-N removal efficiencies reached 72.60% and
95.96%, respectively. During this period, ammonium
and nitrite were removed with an average NO2

−-N/
NH4

+-N ratio of 1.55 similar to the anammox stoichio-
metric value of 1.32 (Fig. 2). This is different from other
anammox systems inoculated with aerobic activated
sludge, nitrification sludge, or anaerobic sludge, where
ammonium concentration increased in the effluent, prob-
ably due to the decay of heterotrophic bacteria (Wang
et al. 2009).

In the following stage (Day106 to 330), the influent waste-
water contained 20% of seawater, resulting in a salinity con-
centration of 0.7%. As a result, the NRR dropped from 0.130
to 0.038 kg-N/(m3 day) sharply, representing for the TNRE
from 70.85 to 20.69%, similar to the results obtained by Xing
et al. (2017); however, there was almost no negative effect on
the NH4

+-N and NO2
−-N removal efficiencies. Interestingly,

the increased effluent nitrate was the main reason for the de-
crease of TNRE. On day 118, HRT was further reduced to

7.8 h, resulting in an increase of NLR from 0.180 kg-N/
(m3 day) to 0.214 kg-N/(m3 day), even though the reactor
performance was not affected and over 80% of TNRE was
achieved on day 254, representing for the NRR of around
0.180 kg-N/(m3 day). It showed that both of NH4

+-N and
NO2

−-N were almost removed with the effluent NO3
−-N of

10.60 mg/L produced. Though this operational adjustment
further into the HRTof 6.0 h resulted in the TNRE decreasing
from 81.27 to 70.74%, little impact on the NRRwas observed.

In the third stage (day 331 to 404), the seawater proportion
was adjusted to 40%, resulting in the influent saline level of
1.5%. Similar to the former stage, the TNRE dropped from
70.74 to 24.86%, representing for the NRR from 0.178 to
0.062 kg-N/(m3 day), at the point of the increase of seawater
proportion. Both of the NH4

+-N and NO2
−-N removal effi-

ciencies decreased, corresponding to the decrease of NRR
from 0.178 kg-N/(m3 day) to 0.062 kg-N/(m3 day).
Moreover, the addition of seawater proportion yielded more
negative impact on the NO2

−-N removal efficiency (from
95.04 to 64.12%) compared with that on the NH4

+-N removal
efficiency (from 98.08 to 85.05%). However, the effluent
NO3

−-N increased from 16.25 to 31.24 mg/L. The reactor
reached at steady state on day 384 with a TNRE of 48.36%,
accounting for 0.122 kg-N/(m3 day) of NRR. It was notewor-
thy that both of the NH4

+-N and NO2
−-N removal efficiencies

reached more than 98%, and nitrate was the most dominant
residual nitrogen species (up to 23.09 mg/L). Furthermore, a
shorter HRT (3.6 h) was applied. Interestingly, the TNRE was
improved to 60.03% at the end of the study. This achieved
0.245 kg-N/(m3 day) of NRR with the effluent NO3

−-N of
23.09 mg/L.

Fig. 1 The CSTR in this study
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Fig. 2 The overall performance
of nitrogen removal in the CSTR
during the entire operation. a
Variation of nitrogen compounds.
b Variation of nitrogen removal
efficiency. TNRE, total nitrogen
removal efficiency; NLR,
nitrogen loading rate; NRR,
nitrogen removal rate. The orange
arrows indicate the biomass
sample collection

Table 1 The different operational stages throughout this study

Stage Seawater
proportion (%)

Time (d) Influent NH4
+-N

concentration (mg/L)
Influent NO2

−-N
concentration (mg/L)

Hydraulic retention
time (h)

Nitrogen loading rate (kg-N/
(m3 day))

1 0 1–51 32.20 ± 1.04 41.78 ± 1.01 12 0.151

52–106 32.47 ± 0.90 39.57 ± 0.94 9.6 0.184

2 20 107–120 32.05 ± 0.94 39.16 ± 0.89 9.6 0.181

121–267 32.31 ± 1.62 36.98 ± 1.82 7.8 0.218

268–330 30.25 ± 0.38 31.05 ± 0.48 6.0 0.249

3 40 331–387 30.29 ± 0.54 30.82 ± 0.42 6.0 0.248

388–408 30.15 ± 0.26 30.85 ± 0.23 3.6 0.413
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The overall shifts of microbial community

Microbial community diversity

In this study, 16S rRNA sequencing was performed for the
microbial community in the CSTR over to the operational
period (5 samples). The sequencing depth of all samples
was more than 43,898 reads, representing over 2545 OTU
clusters (Table 2). The diversity of the microbial commu-
nity in response to the shift of seawater proportions was
evaluated, and the results were summarized in Table 2.
During the first stage, the microbial diversity decreased
significantly even at an HRT as short as 7.8 h applied.
Similar phenomena were obtained during the second stage
that the microbial diversity decreased when the HRT was
reduced to 6.0 h. This result suggested that the microbial
diversity decreased with the operational time under the
same seawater proportion. Additionally, note that the mi-
crobial diversity increased significantly after 20% of sea-
water was added to the influent. Furthermore, the microbial
diversity increased when the influent of the CSTR
contained 40% of seawater, while the effect on the increas-
ing of microbial diversity was insignificant compared with
feeding 20% seawater influent. It should be noted that com-
paring with sample AS1, the microbial diversity of AS2,
AS3, AS4, and AS5 were much less, though the various
seawater proportion feed was fed. Furthermore, the differ-
ences of microbial community structures over time and,
with respect to different seawater proportions, were ana-
lyzed via principal components analysis (PCA) method
(Fig. 3). Significant differences on microbial community
structures among AS3, AS4, and AS5 were observed com-
paring with AS1 and AS2, while the microbial community
structures of AS1 and AS2 were similar. The significant
difference between AS3 and AS4 mainly caused by the
enrichment of anammox bacteria since its relative abun-
dance increased from 17.31 to 40.83% (Fig. 4b). The com-
munity structures of AS4 and AS5 were obviously different
though the relative abundance of anammox bacteria is sim-
ilar (Fig. 4b). Collectively, these observations indicate that
the additional seawater proportion plays an important role
on the diversity and structure of the microbial community.

Microbial community structure

The taxonomic results showed that the microbial community
belonged to Planctomycetes, Proteobacteria, Bacteroidetes,
Acidobacteria, Chloroflexi, Firmicutes, and Nitrospirae on phy-
lum level, accounting for over 82.51% of total microbes in all
samples. The relative abundance of Planctomycetes increased to
40.84% on day 330 in the CSTR though the seawater proportion
increase from 0 to 20% (Fig. 4a). Nonetheless, its relative abun-
dance decreased slightly (35.44%), when the seawater proportion
was increased to 40%. Bacteroidetes was enriched in the fresh-
water feed, accounting for 43.20% of total microbial community
on day 106; however, different from Planctomycetes, its relative
abundance decreased significantlywhen seawaterwas introduced.
The relative abundance of Chloroflexi increased from 2.70 to
11.60% with the freshwater and seawater addition feed. A nega-
tive impact of the seawater addition in the feed on Proteobacteria
was observed since its relative abundance decreased from24.29 to
10.73%. Likewise, with the seawater addition in the feed, the

Fig. 3 Principal components analysis (PCA) of the microbial community
using dominant OTU clusters (relative abundance > 1%)

Table 2 Diversity of microbial communities in different samples

Sample Total number of sequences OTUs InvSimpson Shannon Chao Ace Coverage

AS1 90,609 4407 19.21 4.22 9394.61 22,008.61 0.96

AS2 99,517 3225 5.76 3.17 5838.02 12,097.02 0.97

AS3 86,969 2642 10.50 3.36 5601.31 12,088.63 0.98

AS4 75,834 3499 5.07 3.15 9897.05 24,674.50 0.96

AS5 43,898 2545 6.97 3.47 8816.28 20,324.74 0.96
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Fig. 4 Relative abundance of major microbial community at the phylum
(a) and genus (b) level by 16S rRNA sequencing. c The relationship
between the reactor performance (NO3

−-N concentration and NRR) and

the dominant species (anammox, AOB, and NOB). AS1, day 51; AS2,
day 106; AS3, day 207; AS4, day 330; AS5, day 408
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relative abundance of Acidobacteria also decreased from 7.49 to
4.90%. Furthermore,Firmicuteswas reduced over time; however,
Nitrospirae became one of the dominantmicrobes, accounting for
a relative abundance of 12.79%. These results suggested that the
introduction of seawater proportion affected the microbial com-
munities in the anammox-based CSTR.

At the genus level, significant abundance differences had been
observed. For example, fromAS1 to AS5, the relative abundance
of Ca. Brocadia, Nitrospira, Nitrosomonas, and Denitratisoma
became the dominant genus. Conversely, Niabella, Bacillus, and
Comamonas were under detected limit. Specially, among all of
anammox bacteria, Ca. Brocadia increased from 0.22 to 35.00%
with increasing seawater proportions, and it became the most
dominant genus at the end of the study (Fig. 4b). Notably, Ca.
Brocadia accounted for over 99% of Planctomycetes in all sam-
ples. AOB affiliated with Nitrosomonas genus (3.29%) was
enriched in AS5. Interestingly, although the relative abundance
of Nitrosomonas decreased to 0.25% when the CSTR was fed
with the freshwater feed, it increased along with increasing pro-
portions of seawater. It should be noted that NOB affiliated with
Nitrospira genus enrichedwith a relative abundance of 12.79% in
AS5 when the seawater proportion was shifted to 40%.
Additionally, marine nitrite oxidizer identified toNitrospina genus
was detected in AS5, accounting for a relative abundance of
0.56%. The accumulated NOB due to the additional seawater
resulted was reflective of high nitrate formation in the effluent
(Fig. 4c). In addition to nitrifying and anammox bacteria,
Denitratisoma (1.55%) was fostered in the CSTR at the end of
the study. Moreover, no obvious differences in the relative abun-
dance of Denitratisoma between AS2 and AS3, even between
AS4 and AS5, though the seawater proportion was increased.

Anammox and nitrifying bacteria

Three OTU clusters, five OTU clusters, and four OTU clusters
for anammox bacteria, AOB, and NOB with relative abun-
dance over 0.1% were selected, respectively, and further
aligned with reference to construct neighbor-joining phyloge-
netic trees (Fig. 5). In the present study, the dominant
anammox genera were not changed with the increase of sea-
water proportion up to 40%. Ca. Brocadia and Ca. Kuenenia
were the only two anammox bacteria detected, which were
consistent with the finding from Kuenen (2008). However,
their relative abundance had distinctly varied due to the feed
shift of seawater proportion. Taxonomic results revealed that
the biodiversity of anammox bacteria was reduced significant-
ly, because the dominant anammox bacteria (OTU00001)
closed to Ca. Brocadia (98%) were enriched (from 0.17 to
34.24%), accounting for over 99% of all anammox bacteria
in AS 2–5 (Fig. 4a). Another two anammox clusters
(OTU00072 and OTU00182) identified as Ca. Kuenenia
(99%) and Ca. Brocadia (98%) were also observed, respec-
tively. Different from the genus Ca. Brocadia, the relative

abundance of anammox cluster OTU00072, similar to Ca.
Kuenenia, decreased with the increasing portioned of seawa-
ter, which agrees with the finding by Wu et al. (2019).
Additionally, it should be pointed out that no Ca. Scalindua
with better adaptation in marine environment was detected.

Different from anammox bacteria, the biodiversity of AOB
and NOB increased obviously along the increase of seawater
proportions. The shift of seawater proportions affects not only
AOB and NOB but also their relative abundance. The phylo-
genetic composition of AOB and NOB was also investigated
(Fig. 5b and c). In total, five OTU clusters affiliated to
Nitrosomonas and Nitrosococcus were detected in AS5; how-
ever, only two clusters affiliated to Nitrosomonas were ob-
served in AS1. Indeed, the AOB populations were almost
dominated by the same cluster (OTU00016), except in AS3
(Fig. 5b). There was almost no shift of the dominant AOB
during the low strength wastewater treatment with different
seawater proportions up to 40%. Previous studies revealed
that several AOBs, such as Nitrosomonas europaea, could
outcompete others from the selective environment due to their
rapidly growth rate (Ahn et al. 2008; Reino et al. 2016).The
phylogenetic analysis reveals that AOB affiliated with genus
Nitrosococcus appeared when the CTSR was altered to the
saline environment, accounting for 0.8% of total reads in
AS5. These detected genus Nitrosococcus might belong to
marine AOB since some of them were obligate halophilic
and found in the marine environment (Ahn et al. 2008).

Similar situation as AOB had also been observed for NOB,
whose OTU clusters increased from two to four. Two clusters
(OTU00007 and OTU00053) affiliated with Nitrospira and
Nirolance genera were detected in all sludge samples, respec-
tively (Fig. 5c). Two unique clusters related to genus
Nitrospira and Nitrospina were only observed in AS5, sug-
gesting the biodiversity of NOB increased suddenly when the
seawater proportion was raised to 40%. Phylogenetic analysis
revealed that cluster OTU00007, similar to Nitrospira
(100%), turned into the most dominant NOB (12.33% of total
reads) with the increase of seawater proportion. Note that
among genus Nitrospira, a few of species, such as
Nitrospira marina, are capable of inhabiting in marine envi-
ronments with its best growth under mixotrophic conditions
(Watson et al. 1986). Similar to Nitrospira marina, the
Nitrospina genus was exclusively found in marine conditions
(Ngugi et al. 2016). These results reveal that marine NOB
might be accumulated in anammox-based process due to the
induction of seawater.

Discussion

The anammox activity was affected by the introduction of
seawater obviously since the NRR dropped when the seawater
feed (20% seawater portion) was introduced (Fig. 2b).
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However, the TNRE recovered back to 80% under a low saline
condition (20% seawater addition feed), indicating the
anammox activity could recover through domestication. For
the long-term operation, Ca. Brocadia genus could adapt to
the salinity environment with 40% of seawater, as was also
revealed by Dapena-Mora et al. (2007) and Kartal et al.
(2006). The reactor performance responses to the salinity shock
could be divided into the sensitive, interim stable, and recovery
stage (Ma et al. 2012). In this study, the recovery period of the
salinity shock at 20% saline seawater addition feed (the system
performance back to 80% of TNRE) is around 150 days when
the seawater proportion was shifted to 20%. The recovery time
was longer than the results from Ma et al. (2012). The relative
abundance of anammox bacteria and each corresponding saline
adaptivity may affect the recovery time, since each anammox
bacterium responses differently both in the salinity shock period
followed by the adaptation one (Tang et al. 2011; Wu et al.
2019). While the seawater addition feed (20%) was first intro-
duced, the relative abundance of anammox bacteria was only
4.91% with no acclimation to saline condition previously,
resulting in its weak response to salinity. Unlike the first stage
of salinity shock, the respondence time was shortened at the
seawater addition feed from 20 to 40%, probably due to the
relative high abundance of anammox bacteria (40.52%) already
in the CSTR (Fig. 2). This might be associated to its long-term
adaptivity. As for NOB, the effluent nitrate correspondingly in-
creased with the salinity shock, indicating that NOB was more
adaptable to the salinity shock compared with anammox bacte-
ria no matter that its relative abundance was less than anammox
bacteria. Accordingly, with the high production of nitrate,
TNRE was reduced along with the increase of seawater propor-
tion (Fig. 2b). However, 80% of TNRE was achieved in the
anammox CSTR with the low strength seawater-based waste-
water (20% of seawater portion) from enriching and domesticat-
ing freshwater anammox bacteria synchronously. This supports
a broad application of anammox-based processes in dealingwith
seawater-intruded sewage, saline sewage, and seafood process-
ing wastewaters that generally consist about 20% of seawater
(Leung et al. 2012).

An interesting observation is that the introduction of seawa-
ter induced the succession of heterotrophs during the start-up
in the low-strength seawater anammox-based system.
Certainly, we observed that seawater had a positive impaction
on the relative abundance of Chloroflexi, albeit different from
Gonzalez-Silva et al. (2017), in which the relative abundance
of Chloroflexi decreased in anammox consortia when NaCl
was added. Generally, the phyla of Chloroflexi has been found

to be interacted with anammox bacteria through organic mat-
ters exchange such as extracellular polymeric substances (EPS)
or Vitamin B12 in various reactors (Lawson et al. 2017).
Distinguishably, in this present CSTR system, the additional
seawater introduces not only sodium but also sulfate, organic
matters etc. These might be influential in the metabolism of
Chloroflexi. For instance, Chloroflexi possibly benefits from
the introduced organic matters and ions for its energy source
and proton/sodium gradient of ATP formation in seawater,
respectively. Moreover, the presence of sulfate is the potential
electron acceptor for denitrification mediated by Chloroflexi.
Similar to Chloroflexi, the presence of Acidobacteria, utilizing
various organic matters (e.g., degrade xylan, chitin, cellulose,
and hemicellulose), has also been reported in various
anammox systems (Gonzalez-Martinez et al. 2015; Pereira
et al. 2017; Costa et al. 2014) but an adverse effect on salinity
(Zheng et al. 2017), suggesting its overlooked role in
anammox consortia.Bacteroidetes is one of the common phyla
in anammox systems, possibly interacting with other microor-
ganisms by various organic matters (Costa et al. 2014). In this
study, the relative abundance of Bacteroidetes decreased sig-
nificantly due to the introduction of seawater, which contrasts
with the finding by the addition of NaCl as the saline source
(Gonzalez-Silva et al. 2017). The salinity may not play a key
element for Bacteroidetes, due to its high resistance to salt. It is
possible that Bacteroidetes cannot compete for substrates with
Chloroflexi under such environments.

In the present CSTR, two anammox genera (Ca. Brocadia
and Ca. Kuenenia) were enriched during the freshwater treat-
ment period. Previous studies revealed that Ca. Kueneniawas
the dominant anammox bacteria treating saline wastewater
(Gonzalez-Silva et al. 2017; Kartal et al. 2006) but was not
sustainable with the increase of seawater proportion in this
study. Conversely, high relative abundance (34.24%) of
anammox bacteria (OTU 00001) close to Ca. Brocadia was
enriched (Fig. 5a) and dominated the whole process, which
was different from the findings of the dominance of Ca.
Brocadia fulgida or Ca. Kuenenia stuttgartiensis through
adding NaCl as salinity by Gonzalez-Silva et al. (2017).
Based on a previosus kinetic study (Zhang et al. 2017), one
hypothesis is a higher growth rate of Ca. Brocadia sp. over
Ca. Kuenenia stuttgartiensis, suggesting that the former has a
higher substrate affinity over the latter under the limited sub-
strate supply (low-strength wastewater). Additionally, Ca.
Brocadiawas proposed favorable in floc; Ca. Kuenenia likely
intended to present in biofilm or granular (Guo et al. 2016),
thereby outcompeting through a synergetic association with
Chloroflexi and others. As aforementioned, the high relative
abundance of Ca. Brocadia (OTU 00001) over Ca. Kuenenia
was obtained during the freshwater treatment period.
Recently, de Almeida et al. (2016) proposed that Ca.
Kuenenia stuttgartiensis utilized the sodium-motive force
(smf) for ATP formation. Specifically, the additional seawater

�Fig. 5 Neighbor-joining phylogenetic trees of major OTU sequences
(relative abundance > 0.1%) related anammox (a), AOB (b), and NOB
(c) in the CSTR. The color dots represent relative abundance < 1%. The
pie charts represent the relative abundances of relevant OTU sequences.
The trees based on Jukes-Cantor distance was constructed usingMega 7.0
with a bootstrap value of 1000
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would drive the enzyme-encoding sodium pumping NADH:
quinone oxidoreductase (sodium-NQR) and Na+-ATPases to
transport sodium ion into cell for smf generation, rather than
proton motive force (Paparoditis et al. 2014). Next, the
enzyme-encoding Na+-translocating (RNF) is activated by
the smf and pump Na+ out with reduction of ferredoxin for
carbon metabolism (de Almeida et al. 2016). Whether the
dominant Ca. Brocadia could apply the smf is an intriguing
question deserving for further exploration.

We observed that the relative abundance and biodiversity of
nitrifying bacteria (AOB and NOB) increased with the increase
of seawater proportion. Taking the reactor performance and tax-
onomic results together, the relative abundance of dominant
NOB (OTU0007) affiliated to Ca. Nitrospira increased along
with the increase of seawater proportion. It is possible that the
dominant NOB could be tolerant to the salinity (Wang et al.
2017), but the opposite point of views was also reported else-
where (Bassin et al. 2011; Cui et al. 2009; Hunik et al. 1993;
Pronk et al. 2014; Vredenbregt et al. 1997). One is that the simple
organic carbons contained in the real seawater may serve as
electron donors for the metabolic flexibility of NOB, such as
Ca. Nitrospira defluvii (Daims et al. 2016). Simultaneously,
some NOB had been speculated to be non-obligate aerobic
speices (Füssel et al. 2012). A previous study reported that
N. moscoviensis using O2 as the electron acceptor could reduce
nitrate reversely with formate as an electron donor, and further to
re-oxide the produced nitrite back to nitrate (Koch et al. 2015).
Another possibility is that sodium ion in seawater may also in-
duce sodium-ATPase for energy harvest as is similar to Ca.
Kuenenia stuttgartiensis. However, the increase of seawater pro-
portion in this study resulted in the dominance of NOB and the
accumulation of nitrate.

In conclusion, the mainstream seawater-based feed was
introduced to the anammox CSTR in this study. The bacterial
diversity and structure in the CSTRwere significantly affected
by the feed proportion of the real seawater. High relative abun-
dance of anammox bacteria (34.24–39.92%) related to Ca.
Brocadia (98%) was enriched. The introduction of seawater,
especially for 40% seawater protion, caused the appearance of
marine nitrifiers, which aggravated the deterioration of reactor
performance. It also suggests the effect on the microbial com-
munity in anammox process by using the real seawater is
different from that only using NaCl, providing a guidance
for practical engineering applications.
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