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The development of new drugs is costly and time-consuming, with estimates of over

$US1 billion and 15 years for a product to reach the market. As understanding of

the molecular basis of disease improves, various approaches have been used to

target specific molecular interactions in the search for effective drugs. These include

high-throughput screening (HTS) for novel drug identification and computer-aided drug

design (CADD) to assess the properties of putative drugs before experimental work

begins. We have applied conventional HTS and CADD approaches to the problem of

identifying antiviral compounds to limit infection by Venezuelan equine encephalitis virus

(VEEV). Nuclear targeting of the VEEV capsid (CP) protein through interaction with the

host nuclear import machinery has been shown to be essential for viral pathogenicity, with

viruses incapable of this interaction being greatly attenuated. Our previous conventional

HTS and in silico structure-based drug design (SBDD) screens were successful in

identifying novel inhibitors of CP interaction with the host nuclear import machinery,

thus providing a unique opportunity to assess the relative value of the two screening

approaches directly. This focused review compares and contrasts the two screening

approaches, together with the properties of the inhibitors identified, as a case study for

parallel use of the two approaches to identify antivirals. The utility of SBDD screens,

especially when used in parallel with traditional HTS, in identifying agents of interest to

target the host–pathogen interface is highlighted.

Keywords: highthroughput screening, in silico screening, Venezuelan equine encephalitis virus (VEEV), antiviral

agents, computational modeling

INTRODUCTION

Identifying and developing new drugs is notoriously difficult and expensive. Estimates from 2003
put the out-of-pocket cost of developing a drug to market approval at $US403 million, including
the costs of abandoned compounds (DiMasi et al., 2003), with more recent estimations indicating
inflation in the costs to almost $US1.4 billion per approved new compound (DiMasi et al., 2016),
which is consistent with other studies (Morgan et al., 2011). Almost 95% of drugs entering human
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trials fail (Seyhan, 2019). Even in advanced phase three trials,
around 50% fail during clinical development, largely because
of problems of efficacy and safety (Hwang et al., 2016); despite
varying approaches to drug discovery, the dropout rate remains
exceedingly high.

Modern high-throughput screening (HTS) approaches are
able to screen large numbers of compounds (An and Tolliday,
2010; Du et al., 2016), but require extensive investment of time
and money. An important advance has been in the use of in silico
approaches to aid drug discovery, with computational methods
commonly used to filter the field of potential candidates to screen
based on physicochemical properties and to identify compounds
similar to active leads. Ultimately, however, experimental
assessment of putative drugs is still required to identify and
follow a lead. More recently, a new application of computational
biology–computer-aided drug design (CADD)—has emerged to
further improve the success rate of drug screening. It works as
a collaborative effort between structural biologists, biophysicists,
and computational scientists and is aimed at discovering new
chemical entities using in silico modeling. CADD can reduce
screening costs, help model details of drug–receptor interactions,
and accelerate drug discovery and development (Mpamhanga
et al., 2006; Dutta et al., 2010; Zhong and Zhou, 2014).

CADD methods can be broadly classified as either ligand-
or structure-based drug design (LBDD and SBDD, respectively),
depending on the availability of the target structure (Sliwoski
et al., 2014; Yu and MacKerell, 2017). SBDD is based on the
premise that knowledge of a receptor structure can help to
rationalize and optimize the design of an active drug against
it, since ligand–receptor interactions are mediated by their
complementarity. LBDD, on the other hand, can be used when
the three-dimensional structure of a ligand, but not that of the
target receptor, is known. This ligand can be used as a template
to develop a pharmacophore model to identify molecules that
possess all necessary structural and chemical features to bind to
the target’s active site (Singh and Surabhi, 2018).

This focused review compares and contrasts conventional
and in silico HTS approaches to identify agents targeting a
specific host–pathogen protein–protein interface as a case study.
It examines the nature of the compounds identified, highlighting
the utility of SBDD screens, especially in terms of the new
knowledge gained and in combination with traditional HTS.

VENEZUELAN EQUINE ENCEPHALITIS
VIRUS: A TARGET FOR ANTIVIRALS

Venezuelan equine encephalitis virus (VEEV) is a single-stranded
RNA virus of the genus Alphavirus (Weaver and Barrett, 2004;
Weaver et al., 2004). VEEV is a mosquito-borne virus that
normally infects small rodents. However, mutations can enable
infection of human and equine populations, notably leading to
outbreaks with tens of thousands of human cases (Quiroz et al.,
2009; Forrester et al., 2017). The high infectivity of VEEV and
the presence of circulating virus in animal reservoirs creates
a constant risk of a new outbreak (Weaver and Barrett, 2004;
Weaver et al., 2004). Treatment options are limited and there

is no vaccine approved for the general public (Sharma and
Knollmann-Ritschel, 2019), making the development of anti-
VEEV agents a high priority (Reichert et al., 2009; Chung et al.,
2014; Lundberg et al., 2016; Urakova et al., 2018; Carey et al.,
2019; DeBono et al., 2019).

Like other alphaviruses, one of the ways that VEEV evades
the host immune response is by inhibiting host cell transcription
(Fros and Pijlman, 2016). While the exact mechanism behind
this is still unclear, it is known to require interactions between
the VEEV capsid (CP) protein and members of the host
importin (Imp) superfamily of transporters, which mediate
signal-dependent trafficking into and out of the nucleus; this is
essential for many key cellular processes, including the innate
immune response to combat infection. VEEV CP interacts with
the IMP family members exportin 1/CRM1 and a heterodimer of
Impα and Impβ1 (Impα/β1) (Garmashova et al., 2007; Atasheva
et al., 2008, 2010a,b; Atasheva et al., 2015). Small molecule
inhibitors of either Impα/β1 (e.g., ivermectin) or CRM1 (e.g.,
leptomycin B) can reduce VEEV production in cell culture
(Lundberg et al., 2013, 2016), but have the potential to be toxic
since Impα/β1 and CRM1 are so critical to normal cell function.

Our HTS studies set out to identify novel small molecule
inhibitors that are specific for the Impα/β1–VEEVCP interaction
through conventional HTS using a library of >14,000 chemical
compounds (Thomas et al., 2018) in parallel with an in silico
screen of a library of 1.5 million compounds using molecular
docking approaches (Shechter et al., 2017) (Figure 1). Post
screening, binding inhibition of candidate compounds was
tested in an in vitro protein–protein binding assay using
recombinantly expressed CP, Impα, and Impβ1. While both
screening approaches identified novel compounds with half-
maximal effective concentration (EC50) values of around 10µM
for antiviral activity in cell culture, there were marked differences
between the properties of the lead compounds and the
information gained from the two screens.

RESULTS OF CONVENTIONAL
HIGH-THROUGHPUT SCREENING

The compounds screened were from the Queensland Compound
Library (QCL) Open Scaffolds Collection (OSC). The QCL
provides access to a collection of small molecules to academic
and not-for-profit organizations at reduced rates, providing an
excellent starting point for our screen (Simpson and Poulsen,
2014). We first used computational approaches to filter the
compounds for a variety of traits to identify more “ideal” drug
candidates, including compound size, ring structure, chirality,
and numbers of hydrogen bond donors and acceptors. This
reduced the approximately 34,000 compounds available in the
OSC to 19,408. Compounds whose structures were >90% similar
to others in the set were then also eliminated, leaving a total of
14,468 compounds for the HTS itself (Thomas et al., 2018). A
roboticized screening platform was used.

The HTS involved the parallel assessment of each of the
compounds for the ability to reduce signal in the AlphaScreen
system generated by:
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FIGURE 1 | Schematic representation of the steps in our conventional HTS

(left) and in silico screen (right) for inhibitors of the Impα/β1-CP interaction. The

number of compounds under consideration at each step is indicated in the

boxes. Green arrows indicate computational steps; blue arrows indicate

experimental steps. IC50, concentration resulting in half-maximal inhibition;

NLS, nuclear localization signal.

1) the Impα/β1–VEEV CP target interaction
2) interaction of Impα/β1 binding with another viral protein

(simian virus SV40 large tumor antigen; T-ag) (counter-screen
to identify agents targeting Impα/β1 specifically, rather than
the Impα/β1–VEEV CP interface)

3) a positive control reaction to identify/triage non-specific
agents interfering with the AlphaScreen chemistry.

By analyzing the results for each compound for (i)–(iii), we were
able to identify compounds capable of inhibiting the Impα/β1–
VEEV CP target interaction selectively.

Based on the initial screen, we selected another 352
compounds that structurally resemble the best hit compounds
from the HTS of the original library. These were also tested for
(i)–(iii) above, resulting in a total of 54 compounds with selective
activity (Figure 1, left). Eighteen of the most active compounds
were assessed in detail by IC50 analysis (all <50µM), with two
compounds shown to reduce VEEV replication in infected cells
(EC50 values of 11 and 27µM) with no detectable toxicity. A

third active compound was discarded because of toxicity. We
also confirmed that the compounds were able to inhibit Impα/β1-
dependent nuclear import of CP but not that of T-ag.

We were able to perform preliminary structure–activity
relationship (SAR) analysis on the most active compound, G281-
1564, as a member of a group of structurally similar compounds,
for toxicity and activity. A subsequent study examining VEEV
CP-induced cell cycle delay showed that G281-1564 was able
to inhibit the change in cell cycle progression, but also that it
induced some changes in the cell cycle on its own, likely because
of off-target effects (Lundberg et al., 2018).

RESULTS OF IN SILICO

HIGH-THROUGHPUT SCREENING

Our SBDD screen was based on the available crystal structure
of the VEEV CP bound to the binding pocket of mouse Impα2
lacking the autoinhibitory Impβ1 binding domain (Fan, 2012;
Shechter et al., 2017). The crystal structure was based on a 12-
amino-acid peptide containing the VEEVCP nuclear localization
signal (NLS) recognized by Impα. However, the classical Impα
binding NLS is only a short K–K/R–X–K/R sequence (Marfori
et al., 2012; Smith et al., 2018). Docking simulations of truncated
versions of the VEEV CP peptide to Impα identified the minimal
region required to model Impα binding as the core of the NLS
(KKPK; amino acids 6–9) using estimates of the free energy of
binding. Three-dimensional modeling of the core KKPK domain
aligned well with the conformation of the CP peptide in the
published crystal structure, while the non-core residues showed
significant variation in their orientation. Further computational
analysis confirmed these four residues as critical for Impα-CP
binding, as their omission resulted in significant increases in free
binding energies, theorized to correlate with decreasing binding
affinities (Shechter et al., 2017). In identifying the minimal NLS
sequence that would still bind strongly to Impα, we identified
the key ligand–receptor interactions in the Impα-CP binding
pocket that should be targeted by potential inhibitors. From
the modeling of the KKPK NLS and in silico alanine scanning
of residues located in the binding pocket, the key interacting
residues in the Impα binding pocket were identified. This was
then used as the basis to screen for inhibitors that can mimic the
same key interactions.

For the in silico screen, 1.5 million publicly available
compounds were curated and prepared using Ligprep
(Schrodinger, Portland, OR, USA) (Figure 1, right). Compounds
were then docked into the CP core NLS binding pocket on
Impα using semi-flexible docking (Salmaso and Moro, 2018),
and scored using the Glide (Schrodinger) empirical functions
(Friesner et al., 2004; Tubert-Brohman et al., 2013) (Figure 2),
based on the free energy of the binding process. The top 1%
scoring compounds were then assessed for occupancy of the
binding site, identification of spatial clashes, and alignment
with the CP NLS (Figure 2). From this, 2,672 promising hit
compounds were identified. As with the HTS, removal of
compounds that were structurally similar left 135 unique
compounds, of which 84 could be procured for testing using

Frontiers in Chemistry | www.frontiersin.org 3 December 2020 | Volume 8 | Article 573121

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Shechter et al. In Silico/HTS for VEEV

FIGURE 2 | SBDD molecule docking approach. Schematic representation of computational strategies used to screen compounds binding to Impα. Semi-flexible

docking provides a good compromise between accuracy and computational efficiency (Halperin et al., 2002). The empirical scoring function relies on the sum of

various quantifiable interactions (Huang et al., 2010), while quantum mechanical scores are based on exact modeling and so are computationally limiting (Cavasotto

and Aucar, 2020). Other approaches rely on approximations of potential energies (force field) (Brooijmans and Kuntz, 2003) or incorporating existing docking data (i.e.,

knowledge based, machine learning, and interaction fingerprints) (Mpamhanga et al., 2006; Khamis et al., 2015).

the AlphaScreen binding assays used in the HTS (Figure 1,
right). At 10µM, 23 out of the 84 compounds (27%) inhibited
Impα/β1-CP binding by >30%. These active compounds were
then counter-screened for their ability to inhibit Impα/β1–T-ag
binding. Although both CP and T-ag NLSs are believed to bind
the same binding pocket on Impα, 17 of the 23 compounds were
more than twice as active in inhibiting Impα/β1-CP binding as
they were in inhibiting Impα/β1–T-ag binding (Shechter et al.,
2017). The IC50 values of the most active compounds were
comparable to those found in the HTS, ranging from 5 to 40 µM.

Two of the top four compounds proved to be selective for the
Impα/β1-CP interaction, while the other two showed comparable
activity for the Impα/β1-CP and Impα/β1–T-ag binding. In
cell-based assays, the two selective compounds inhibited the
nuclear accumulation of CP but not T-ag. In infectious assays,
only one of the top four non-specific compounds was able
to reduce VEEV replication (EC50 of 10µM), although with
some toxicity (CC50, concentration yielding 50% cytotoxicity,
of 36 µM).

APPROACHES TO ENHANCE
STRUCTURE-BASED DRUG DESIGN

It should be noted that, based on the three-dimensional structure
of the target alone as a starting point, SBDD cannot be expected
to identify only selective, high-affinity compounds with favorable

pharmacokinetic and pharmacodynamic properties. Rather,
SBDD encompasses a range of different computational tools that
can be applied systematically in different ways; for example, to
provide insight into target–ligand interactions [e.g., by molecular
dynamics (MD)] or to complement/enhance conventional HTS
approaches through initial curation/filtering (e.g., to select active
moieties or remove promiscuous compounds) to focus the search
toward compoundsmore likely to bind the target itself.While our
in silico screen was performed with modest computing power,
additional approaches requiring more extensive resources can
also be employed. This includes the use of MD simulations to
account for protein flexibility, to provide detailed molecular-
/atomic-level information, and to identify potential cryptic
binding pockets (Nichols et al., 2011; Ferreira et al., 2015).
By incorporating how interactions between a compound and
the binding pocket can induce conformational changes in both
the compound and binding pocket, novel scaffolds may be
identified, and docking of previously identified compounds can
be refined (Alonso et al., 2006; Rastelli et al., 2009; Sabbadin et al.,
2014). Additionally, a secondary in silico screen incorporating
information from active/inactive inhibitors as a guide could be
performed to strengthen the binding hypothesis.

High computational power is required to screen
millions of compounds in the shortest possible time,
while considering/incorporating additional screening
parameters/additional structures of the same targets, with
the aim of enriching the sample set, toward achieving more
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TABLE 1 | Comparison of lead compounds identified through conventional or

in silico HTS.

HTS lead compound

G281-1564

In silico lead compound

1111684

Structure

EC50 (µM)a 10.8 9.9

IC50 (µM)b 25 5.2

CC50 (µM)c >100 36.4

Notes • Preliminary SAR

produced

• Unknown binding target

• Specifically inhibits

Impα-CP binding

• No SAR available

• Binding pose modeled

• Non-specifically inhibits

Impα binding

aConcentration at which there is 50% of maximal inhibition of viral replication during

infection of Vero cells.
bConcentration at which there is 50% of maximal inhibition of Impα/β1-CP binding in an

AlphaScreen assay.
cConcentration at which there is 50% of maximal toxicity in Vero cells.

SAR, structure–activity relationship.

biologically relevant “hits.” This is especially true now that
the incorporation of MD simulations has become a routine
part of most in silico screens. Although not usually available
for most researchers, sufficient computational power can be
achieved in various ways; for example, through consortia or
collaborations and through utilizing the collective “power” of
grid and distributed computing networks (Richards, 2002), or
cloud computing, to enable target- and ligand-based screening of
huge databases to be accomplished in the shortest possible time.

COMPARISON OF OUTCOMES FROM THE
HIGH-THROUGHPUT SCREENING
APPROACHES

Although the two approaches successfully identified compounds
that were able to inhibit the same target (Impα/β1-CP binding),
the results were appreciably different (Table 1 and Figure 3).
From the conventional HTS, two active compounds with
low toxicity were identified (Thomas et al., 2018), enabling
limited SAR analysis on the lead compound (selectivity index
c.10) based on the availability of related compounds for
experimental verification. However, since in silico docking into
the Impα binding pocket was unsuccessful, further study is
required to establish exactly how these compounds may interact
with/perturb the Impα/β1-CP interface.

By comparison, the in silico screen identified only one antiviral
compound, which possessed some toxicity (selectivity index
of c.4) (Shechter et al., 2017). The compound was also large
and overly flexible in structure to be easily manipulated for
SAR/medicinal chemistry optimization, making it of limited
usefulness as a candidate for drug development. However, as a
screen for inhibitors of Impα/β1-CP binding, it identified a small

list of putative hits, of which 27% were confirmed to be active
(a 75-fold enrichment of hits compared with our conventional
HTS). Importantly, the compounds that inhibited binding in
vitro provided valuable information on Impα/β1–NLS ligand
binding, with in silico modeling identifying key interactions
of the compounds with Impα, and in particular identifying
residues important for general ligand binding and those more
specific to CP interactions. A major outcome of the in silico
analysis was the demonstration that compounds targeting the
NLS binding pocket on Impα could be designed that were able
to inhibit specific ligands and not others, to reduce off-target
effects/potential toxicity. Clearly, specifically targeting the NLS-
binding pocket of Impα to generate antiviral compounds has
enormous potential for the future.

At face value, our conventional HTS provided more candidate
hit compounds with demonstrable antiviral activity than the in
silico screen; that there was no limit on the domain targeted
(unlike the in silico screen) enabled a greater range of compounds
to be identified. However, this is also consistent with the greater
potential for identified compounds to possess off-target effects
(see Lundberg et al., 2018), which is, of course, an important
consideration for future drug development. The ability of HTS
to identify compounds with unexpected mechanisms cannot be
replicated in silico at present, meaning that HTSwill likely remain
a key approach in drug discovery. As indicated, an advantage of
the in silico screen is the information provided on the binding of
compounds and ligands to the Impα-NLS binding pocket. Using
this information in parallel with testing the compounds identified
in the screen for their ability to inhibit other proteins recognized
by Impα, a detailed map of interactions in the Impα binding
pocket could be established, which would be of great value to
researchers in the future.

ALTERNATIVE IN SILICO APPROACHES

Our in silico approach was intended to screen existing libraries
of molecules to facilitate the transition from screening hit to
testing for antiviral activity, as any lead compounds would
be readily obtainable for experimentation, and with varying
degrees of information already available for them. Alternative
in silico approaches include LBDD (see above), which could be
applied to find mimics of the VEEV CP NLS pharmacophore.
SAR analysis of the activities of a range of compounds would
provide a starting point to enable additional potentially active
compounds to be identified, whereas inactive compounds
could be used to eliminate unwanted interactions or volumes
in the binding pocket that should not be used. From the
initial dataset, active compounds could be predicted through
LBDD pharmacophore modeling, similarity searching (Yang,
2010; Yu and MacKerell, 2017), or quantitative SAR (QSAR)
analysis. QSAR calculates a range of descriptors such as
physicochemical, electronic, topological, and shape properties.
Lipinski’s rule of five (Lipinski et al., 2001) is a classic
example of a straightforward application of QSAR where
bioavailability is related to descriptors including the octanol–
water partition coefficient (logP), molecular weight, number of
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FIGURE 3 | Mechanism of action of inhibitors of Impα/β1–VEEV CP Interaction. During infection, VEEV CP simultaneously binds Impα/β1 and CRM1, accumulating at

the nuclear pore complex (NPC) to prevent nucleocytoplasmic transport through the NPC. This impairs the ability of the host cell to develop an antiviral response, and

leads to the development of cytopathic effects. Lead compounds inhibiting CP recognition by Impα/β1 through blocking the Impα-binding pocket (1111684) or

preventing binding generally (G281-1564) abrogate nuclear transport disruption, enabling an optimal antiviral response to reduce viral replication/cytopathic effects.

hydrogen bond donors and acceptors, and number of rotatable
bonds. In contrast, LBDD pharmacophore modeling superposes
a set of active molecules and extracts common chemical
features that are essential for their bioactivity. In general,
pharmacophore generation from multiple ligands involves two
main steps: handling the conformational flexibility of ligands
and conducting molecular alignment. “Similarity searching” (Yu
and MacKerell, 2017) measures and ranks library compounds
for similarity to active reference compounds or compounds
that possess desired properties, based on the assumption
that similar structures have similar properties in terms of
activities/mechanism/target; multiple rounds of experimental
assessment and in silico analysis are usually required to develop

a relevant model to identify active compounds and avoid
non-specific inhibitors.

Fragment-based docking enables new custom compounds
to be designed/built, as opposed to repurposing existing
ones, and can be performed in silico (Anderson, 2003) or
experimentally (Erlanson, 2012). This approach aims to generate
novel compounds by docking small molecule fragments to the
binding site, scoring them, and growing active fragments into
drug-like compounds by linking with other docked fragments.
It enables molecules and docking modes to be investigated
that can fully exploit possible binding site(s)/binding modes
to enable significantly more structural permutations to be
considered/tested. Difficulties with this approach, however,

Frontiers in Chemistry | www.frontiersin.org 6 December 2020 | Volume 8 | Article 573121

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Shechter et al. In Silico/HTS for VEEV

include the issue of how to identify suitable fragments that
can be predicted to bind selectively to the site of interest,
and how to optimize merging of these fragments into a
functional molecule without distorting individual binding
modalities. Finally, the ensuing medicinal chemistry challenge of
synthesizing the merged compounds gives no guarantee that the
end-product will possess the expected functionality. Fragment-
based drug design does benefit from the potential of developing
customized compound–protein interactions, resulting in a
greater capacity for optimization. By growing compounds
from smaller fragments, it is also possible to explore a wider
chemical space.

OTHER COMPARISONS OF
CONVENTIONAL AND
STRUCTURE-BASED DRUG DESIGN
HIGH-THROUGHPUT SCREENING

Although not common, several other research groups have
performed parallel conventional HTS and in silico screens of
the same biological target. These have targeted host proteins
such as the A2A adenosine receptor (Chen et al., 2013), protein
tyrosine phosphate-1B (Doman et al., 2002), angiogenin (Jenkins
et al., 2003), and glycogen synthase kinase-3β (Polgar et al.,
2005), proteins which are targets for the treatment of Parkinson’s
disease, type 2 diabetes, cancer, and Alzheimer’s disease,
respectively. Complementary screens to identify pathogen
inhibitors have targeted cruzaine, an essential cysteine protease in
Trypanosoma cruzi (causative agent of Chagas disease) (Ferreira
et al., 2010), and dihydrodipicolinate reductase, an essential
Mycobacterium tuberculosis protein (Paiva et al., 2001). However,
neither of these studies ultimately tested the activity of identified
hit compounds against the target pathogen. All of the above
studies were successful in identifying active compounds through
both their HTS and in silico approaches with similar properties.
Perhaps not unexpectedly, however, the structures identified
depended on the libraries used; when using the same library, both
HTS and in silico screens identified similar classes of structures

(Polgar et al., 2005). In silicoHTS approaches generally were able

to generate a list of compounds enriched in active hits by 20-

fold or more compared with the traditional HTS approaches, but

this often came at the cost of fewer active compounds identified.
This shortcoming could be addressed by lowering the threshold
for selecting compounds from the in silico screen, although this
would also reduce the enrichment of true hits in the selected
library. However, the ability of in silico screens to assess orders
of magnitude more compounds than traditional HTS is also able
to compensate for the lower overall hit rate.

Our experience as outlined here indicates that both SBDD
and HTS are indeed able to identify novel compounds with
comparable activities, and that SBDD is able to identify a
small subset of compounds highly enriched in active molecules.
The trade-off between the two approaches is the high speed
with which the SBDD can screen an extensive library to
produce a shortlist of compounds consistently enriched in active
compounds compared with the ability of the traditional HTS

screen to routinely identify more varied active compounds.
Using the information from the crystal structure for a known
ligand will greatly increase the likelihood of success in an in
silico screen. It would seem, therefore, that for targets where
a large number of active compounds are likely to exist, an in
silico screening approach would be strongly recommended in
order to expedite the early phase of hit identification while
still identifying a sufficient number of hits. For targets with
a known structure SBDD would be appropriate, while LBDD
is well suited when a large number of active compounds are
known. In contrast, where active compounds are likely to be
rare, computational screening runs the risk of missing potentially
valuable compounds, meaning that a larger, albeit more involved,
HTS may be favored. Finally, tandem/parallel conventional HTS
followed by in silico screening is a powerful approach, with
in silico approaches being particularly valuable for selection
of compounds/scaffolds for focused SAR around hits from
conventional HTS.

CONCLUSION

This focused review provides, to our knowledge, the first
assessment of conventional HTS and in silico screening for
inhibitors of a host–pathogen protein–protein interaction
interface, with antivirals as the end product. Consistent
with other studies that have performed screens in a
comparable fashion, but for inhibitors of very different target
proteins/enzymes with other outcomes in mind (see above), it
is clear from this case study that combined and iterative HTS
and in silico screens afford complementary strengths to the
task of novel drug identification. Traditional HTS can always
be enhanced by insightful computational modeling based on
ever-advancing structural inputs that are able to incorporate
more of the physicochemical properties of the compounds,
existing information about active compounds, and known
off-target effects to help identify a compound library enriched
in hits for experimental assessment. In the same way, results
from traditional HTS can be a great starting point for in silico
approaches to identify related compounds/structures for testing
and optimization. Importantly, as available computational power
increases, the ability to extract new information from traditional
screens will undoubtedly encourage the incorporation of
contributions from in silico CADDmore and more in the future.
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