
micromachines

Article

The Boundary Proportion Differential Control Method of
Micro-Deformable Manipulator with Compensator Based on
Partial Differential Equation Dynamic Model

Xiangli Pei, Ying Tian *, Minglu Zhang and Ruizhuo Shi

����������
�������

Citation: Pei, X.; Tian, Y.; Zhang, M.;

Shi, R. The Boundary Proportion

Differential Control Method of

Micro-Deformable Manipulator with

Compensator Based on Partial

Differential Equation Dynamic Model.

Micromachines 2021, 12, 799. https://

doi.org/10.3390/mi12070799

Academic Editor: Yangmin Li

Received: 31 May 2021

Accepted: 2 July 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300000, China;
pxl_hebut@163.com (X.P.); zhangml@hebut.edu.cn (M.Z.); srzhbgydx@163.com (R.S.)
* Correspondence: flyserelo@126.com

Abstract: It is challenging to accurately judge the actual end position of the manipulator—regarded
as a rigid body—due to the influence of micro-deformation. Its precise and efficient control is a crucial
problem. To solve the problem, the Hamilton principle was used to establish the partial differential
equation (PDE) dynamic model of the manipulator system based on the infinite dimension of
the working environment interference and the manipulator space. Hence, it resolves the common
overflow instability problem in the micro-deformable manipulator system modeling. Furthermore,
an infinite-dimensional radial basis function neural network compensator suitable for the dynamic
model was proposed to compensate for boundary and uncertain external interference. Based on this
compensation method, a distributed boundary proportional differential control method was designed
to improve control accuracy and speed. The effectiveness of the proposed model and method was
verified by theoretical analysis, numerical simulation, and experimental verification. The results
show that the proposed method can effectively improve the response speed while ensuring accuracy.

Keywords: micro-deformable manipulator; partial differential equation dynamic model; radial basis
function neural network compensator; boundary proportional differential control method

1. Introduction

With the rapid development of modern manipulators, the traditional rigid manipu-
lators with large mass and margin cannot satisfy fast response and accurate positioning
requirements. However, micro-deformable manipulators have lighter weight, lower energy
consumption, and less inertia than traditional manipulators; moreover, they have high
precision, high efficiency, high speed, high flexibility, high adaptability, and intelligence [1].
Their application range is wider than that of rigid manipulators. Therefore, the lightweight
and dexterous micro-deformable manipulator dynamic model and its precise control have
gradually become a hot research topic [2].

Researchers have done much work on the dynamic modeling and precise control
of micro-deformable manipulators. In [3], to control a single-link flexible manipulator, a
hybrid method combining sliding mode and H −∞ theory was proposed. Furthermore,
a linear optimal damping controller was used in [4] to adjust the flexible boom vibration
mode to a lower level. Based on the partial differential equation (PDE) dynamic model
of the flexible manipulator system, some researchers used the adaptive boundary control
method [5–7] to control the manipulator, while others used the neural network control
method [8]. Several researchers have combined the adaptive boundary control method
with the approximation or compensation results of radial basis function (RBF) neural
network [9–13] to optimize the control performance of flexible systems. Additionally, the
RBF neural network proportional differential (PD) control method of the flexible manipula-
tor was studied in [14]. Moreover, in [15], based on a wavelet neural network, a dynamic
surface control method was proposed. Furthermore, the iterative learning-based adap-
tive control methods were designed in [16,17] to obtain trajectory tracking and vibration
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reduction. The dynamic model of the flexible manipulator system was established, and
the dynamic characteristics were analyzed in addition to different methods in [18–20].
In [21,22], the boundary control of flexible Timoshenko arm was studied and analyzed.
Furthermore, the position control method and residual vibration of the flexible system were
analyzed in [23–25]. Moreover, some optimized fuzzy control methods were proposed
in [26–28]. However, most studies mentioned above simplified the micro-deformation
manipulator into a relatively simple ideal model; these idealized models were not consis-
tent with the actual situation [6,8,17,23]. Additionally, most studies ignored the infinite
dimensionality of the micro-deformation manipulator. These lead to overflow and instabil-
ity; moreover, change of the system space state cannot be described accurately [18,19,26].
The overflow problems were considered in a few PDE modeling papers [5,7,9,12] and
RBF neural network was used to estimate interference of one end, but the other end was
ignored [9]. Due to the partial interference being neglected, the established model was not
accurate enough. This study completely considered the interference at both ends of the
boundary while establishing the PDE dynamic model. The estimated interference results
were added to the control law using two outputs RBF neural network for improvement
and optimization purposes. Thus, the accuracy of the model was improved, and the model
fitted the actual situation better.

Furthermore, this study fully considered the vibration and deformation of the micro-
deformation manipulator and the joint micro-deformation. Moreover, we studied the
distributed parameter boundary PD control method of RBF neural network compensator
for the micro-deformation manipulator. First, the infinite-dimensional PDE dynamic model
of the micro-deformable manipulator system was established. After that, the PD control
method and stability analysis of the micro-deformable manipulator based on the RBF
neural network compensator were introduced. Finally, numerical simulation and analysis
of the control method were performed. Additionally, the response speed of the proposed
method was increased by at least 30% compared with the adaptive boundary control
method and RBF neural network method. Experimental verification was carried out for
the proposed method at last.

2. Dynamic Modeling of Micro-Deformable Manipulator

An accurate dynamic model is a basis for achieving high-performance control. The
control methods of micro-deformation manipulators were developed based on the ordinary
differential equation (ODE) dynamic model in most studies. However, it cannot accurately
describe the distributed parameter characteristics of the micro-deformable structure and
may cause overflow instability problems. The PDE dynamic model can reflect the dynamic
characteristics of the micro-deformed structure more accurately than the ODE dynamic
model [5,9]. The Hamilton method was used to derive the PDE dynamic equation of the
micro-deformable manipulator system [5,7,9,12]; moreover, the corresponding boundary
conditions of the system were obtained. This process did not require complex force analysis
of the micro-deformable manipulator system. The dynamic model can be derived directly
by mathematical methods.

Remark 1. The deformation of the micro-deformable manipulator is spatiotemporal, but the time
variable t does not affect the calculation and derivation of the dynamic model. For simplicity, we
omitted the time variable, t, in the function variable. For example, y(x, t) is expressed as y(x),
l(x, t) is expressed as l(x), and θ(t) is expressed as θ.

Remark 2. The usage and explanation of subscripts in this paper are as follows:

(∗)x = ∂(∗)
∂x , (∗)xx = ∂2(∗)

∂x2 , (∗)xxx = ∂3(∗)
∂x3 , (∗)xxxx = ∂4(∗)

∂x4 , (∗)t =
∂(∗)

∂t , (∗)tt =
∂2(∗)

∂t2 ,

(∗)xtt =
∂(∗)
∂x∂t2 .

We considered the plane motion single-rod micro-deformable manipulator as the
research object (Figure 1); its cross-section was circular, and its radius, R, was 0.01 m.
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The relevant symbols of the manipulator are shown in Nomenclature. According to the
theory and formulas of structural dynamics, mean normal stress ratio to shear stress can
be calculated, as shown in Equation (1). Therefore, σave � τs. In other words, bending
deformation is the main deformation; therefore, the shear deformation can be neglected.
Hence, we developed the dynamic model based on the Euler–Bernoulli beam theory.

σave

τs
=

σmax · (2/3)
τs

=
(MLymax/Iz) · (2/3)

M/A
=

8M/3πR3

M/πR2 =
8

3R
≈ 266.67 (1)

Micromachines 2021, 12, x FOR PEER REVIEW 3 of 16 
 

 

( ) ( )**
x x

∂
=

∂
, ( ) ( )2

2

*
*
xx x

∂
=

∂
, ( ) ( )3

3

*
*

xxx x
∂

=
∂

, ( ) ( )4

4

*
*
xxxx x

∂
=

∂
, ( ) ( )**

t t
∂

=
∂

, ( ) ( )2

2

*
*
tt t

∂
=

∂
, 

( ) ( )
2

*
*
xtt x t

∂
=

∂ ∂
. 

We considered the plane motion single-rod micro-deformable manipulator as the 
research object (Figure 1); its cross-section was circular, and its radius, R, was 0.01 m. The 
relevant symbols of the manipulator are shown in Nomenclature. According to the the-
ory and formulas of structural dynamics, mean normal stress ratio to shear stress can be 
calculated, as shown in Equation (1). Therefore, ave sσ τ . In other words, bending de-
formation is the main deformation; therefore, the shear deformation can be neglected. 
Hence, we developed the dynamic model based on the Euler–Bernoulli beam theory. 

( ) ( ) ( ) 3
max max

2

2 3 2 3 8 3 8 266.67
3

zave

s s

MLy I M R
M A M R R

σσ π
τ τ π

⋅ ⋅
= = = = ≈  (1)

 

  

 

(a) (b) 

Figure 1. A typical single link micro-deformable manipulator: (a) coordinate diagram; (b) free-body diagram of the sys-
tem. 
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Figure 1. A typical single link micro-deformable manipulator: (a) coordinate diagram; (b) free-body diagram of the system.

The offset of any point, [x, y(x)], in the follow-up coordinate system, xOy, from the
micro-deformation manipulator in the inertial coordinate system, XOY, is approximately
expressed as l(x).

l(x) = xθ + y(x) (2)

The manipulator is regarded as an Euler–Bernoulli beam here and clamped to a motor
at x. The natural boundary conditions can be expressed as:

y(0) = yx(0) = 0 (3)

Using Equations (2) and (3), we get:

l(0) = 0, lx(0) = θ,
∂ml(x)

∂xm =
∂my(x)

∂xm , m ≥ 2 (4)

According to Hamilton principle [5,6,29,30], the PDE dynamic equations of the micro-
deformable manipulator can be developed for every 0 ≤ t1 < t < t2, as shown in
Equation (5): ∫ t2

t1

(
δWk − δWp + δWnc

)
dt = 0 (5)

where δWk, δWp and δWnc represent the kinetic energy, potential energy, and the variation
of work done by non-conservative force, respectively; ti denotes a moment.

The total kinetic energy of the system can be obtained considering the rotational kinetic
energy of the micro-deformation manipulator joint, the kinetic energy of the manipulator,
and the kinetic energy of the load, as shown in Equation (6).

Wk =
1
2

Imθ2
t +

1
2

∫ L

0
ρl2

t (x)dx +
1
2

ml2
t (L) (6)
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The potential energy of the system is expressed as:

Wp =
1
2

∫ L

0
EIy2

xx(x)dx (7)

The work done by the non-conservative force of the system is expressed as:

Wnc = τθ + p1θ + Ml(L) + p2l(L) (8)

Substituting Equations (4), (6)–(8) into Equation (5), we get:∫ t2
t1

(
δWk − δWp + δWnc

)
= −

∫ t2
t1

∫ L
0 K1δl(x)dxdt−

∫ t2
t1

K2δlx(0)dt−
∫ t2

t1
K3δl(L)dt−

∫ t2
t1

K4δlx(L)dt = 0
(9)

where: 
K1 = ρltt(x) + EIlxxxx(x)
K2 = Imlxtt(0)− EIlxx(0)− (τ + p1)
K3 = mltt(L)− EIlxxx(L)− (M + p2)
K4 = EIlxx(L)

Each monomial in Equation (9) is linearly independent because δl(x), δlx(0), δl(L),
δlx(L) are independent variables. Hence, K1 = K2 = K3 = K4 = 0. Therefore, the PDE
dynamic model of the micro-deformation manipulator system is obtained as Equation (10).

ρltt(x) = −EIlxxxx(x)
τ = Imlxtt(0)− EIlxx(0)− p1
M = mltt(L)− EIlxxx(L)− p2
lxx(L) = 0

(10)

where: ltt(x) = xθtt + ytt(x).
The dynamic model of the manipulator system was developed from the mathematical

model perspective. The motion characteristics are related to time and position; therefore,
the micro-deformable manipulator is essentially a distributed parameter system. Hence,
the distributed parameter model was established based on the PDE equation. Furthermore,
the corresponding control method adopted the distributed parameter boundary PD control,
which can effectively obtain the micro-deformable system control. The boundary control
only needs a small number of thrusters to achieve a better control effect than the discrete
distributed control.

3. RBF Neural Network Distributed Boundary PD Control Method

The paper [5] proposed an adaptive boundary control method suitable for the PDE
dynamic model. The method was simple and accurate, but the response time remained
long. Compared with other machine learning algorithms, RBF neural network has the
ability of parallel information processing, stronger computing power, and faster running
speed. Moreover, RBF neural network can avoid the local minimum problem. Therefore,
the control scheme based on RBF neural network is more suitable for the requirement
of real-time control. Thus, RBF neural network compensator was used to improve the
adaptive boundary control method described in [5]. The joint position was adjusted, and
the vibration was weakened by designing the Lyapunov function and boundary PD control
law (Figure 2).
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Figure 2. Boundary PD control principle with RBF neural network compensator.

3.1. Design of Distributed Boundary PD Control Law Based on RBF Neural Network Compensator

The error function is defined as e = θ − θd, where θd denotes the expectation angle.
Consider that the uncertainty interference p1 and p2 of the actual model is unknown.
The RBF neural network is used to estimate the uncertainty interference p1 and p2. The
estimated values are p̂1 and p̂2. Furthermore, the input vector of the neural network is
considered as x =

[
eT .

eT
θT

d

.
θ

T
d

..
θ

T
d

]
. Moreover, the ideal RBF neural network

algorithm is shown in Equation (11). ϕi = exp
(
− ‖x−ci‖2

2b2
i

)
, i = 1, 2, . . . , m

p1 = W∗1 ϕ1(x) + γ1, p2 = W∗2 ϕ2(x) + γ2

(11)

where ϕi = [ϕ1, ϕ2, . . . , ϕm]
T denotes the output vector of hidden layer obtained by Gaus-

sian function, m represents the number of neurons in the hidden layer, ci is the coordinate
vector value of the Gaussian function’s center point, bi represents the width of Gaussian
function, W∗i denotes the ideal weight matrix of the neural network, and γi is the network
estimation error.

The output of the RBF neural network is shown in Equation (12).{
p̂1 = Ŵ∗1 ϕ1(x)
p̂2 = Ŵ∗2 ϕ2(x)

(12)

where Ŵ∗i represents the estimated weight of the neural network for unknown
parameter estimation.

The errors of the above estimation results are defined in Equation (13).{
W̃∗1 = W∗1 − Ŵ∗1 , W̃∗2 = W∗2 − Ŵ∗2
p̃1 = p1 − p̂1, p̃2 = p2 − p̂2

(13)

Equations (11)–(13) suggest that{
p̃1 = W̃∗1 ϕ1(x) + γ1
p̃2 = W̃∗2 ϕ2(x) + γ2

(14)

Furthermore, the estimated results, p̂1 and p̂2, of the RBF neural network were added
into the control law as a compensator to compensate for the external interference, in
order to obtain the angular response of the micro-deformation manipulator and suppress
its deformation and vibration effectively. The RBF-based boundary PD control law is
presented as:
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{
τ = −kpe− kdet + p̂1
M = −kuα + mlxxxt(L) + p̂2

(15)

where: kp, kd, and k are control gain values and kp > 0, kd > 0, k > 0, uα = lt(L)− lxxx(L),
et = θt, ett = θtt.

Remark 3. All parameters mentioned in the designed control law (Equation (15)) are measurable
or computable. We can use the position sensor, tachometer, laser displacement sensor, and shear
force sensor to get the measurements, θ, θt, l(x), and lxxx(x), respectively. e, et, ett, lt(x), and
lxxxt(x) can be calculated from the measurements.

3.2. Stability Analysis Based on Lyapunov Function

Lemma 1. For φ1(x, t), φ2(x, t) ∈ R, x ∈ [0, L], t ∈ [0, ∞), the following inequality holds:

φ1(x, t)φ2(x, t) ≤ |φ1(x, t)φ2(x, t)| ≤ φ1
2(x, t) + φ2

2(x, t)
|φ1(x, t)φ2(x, t)| ≤ 1

λ φ1
2(x, t) + λφ2

2(x, t), (λ > 0)

Lemma 2. For p(x, t) ∈ R, x ∈ [0, L], t ∈ [0, ∞), if p(0, t) = 0, t ∈ [0, ∞), then p2(x, t) ≤
L
∫ L

0 p2
x(x, t)dx, x ∈ [0, L]. Similarly, if px(0, t) = 0, t ∈ [0, ∞), then p2

x(x, t) ≤ L
∫ L

0 p2
xx(x, t)dx,

x ∈ [0, L].

Lemma 3. For V : [0, ∞) ∈ R, t ≥ t0 ≥ 0, if
.

V ≤ −ηV + g, then:

V(t) ≤ e−η(t−t0)V(t0) +
∫ t

t0

e−η(t−s)g(s)ds, η > 0.

Theorem 1. The closed-loop system described by Equation (10) is asymptotically stable, with the
proposed RBF neural network compensator (Equation (12)) and control law (Equation (15)), namely,
θ → θd , θt → 0 , y(x)→ 0 , yt(x)→ 0 , as x ∈ [0, L], t→ ∞ .

Proof of Theorem 1. The Lyapunov function is defined to prove the stability of the controller, as
in Equation (16).

H(t) = W1 + W2 + Wα (16)

�

where: 
W1 = 1

2

∫ L
0 ρl2

t (x)dx + 1
2 EI
∫ L

0 y2
xx(x)

W2 = 1
2 Ime2

t +
1
2 kpe2 + 1

2 mu2
α − p1e− p2

∫ t2
t1

uαdt

Wα = αρ
∫ L

0 xlt(x)lex(x)dx + αImeet

(17)

In Equation (17), W1 represents the inhibition index bending deformation of the micro-
deformation manipulator. The first two items in W2 represent the control error-index, and
the rest of the items are the auxiliary terms. Moreover, Wα is the auxiliary part and α
denotes a small positive constant. Furthermore,

le(x) = xe + y(x), lex(x) = e + yx(x), lexx(x) = yxx(x) = lxx(x) (18)

According to Lemmas 1 and 2, we obtain:

|Wα| ≤ αρL
∫ L

0 lt2(x)dx + 2αρL2e2 + 2αρL3
∫ L

0 l2
xx(x)dx + αIm

(
e2 + e2

t
)

≤ α1(W1 + W2)
(19)

where: α1 = max
(
2αL, 2αρL3/EI, 2

(
αIm + 2αρL2)/kp, 2α

)
.
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Therefore,

− α1(W1 + W2) ≤Wα ≤ α1(W1 + W2) (20)

Take 0 < α1 < 1, i.e., 0 < max
(
2αL, 2αρL3/EI, 2

(
αIm + 2αρL2)/kp, 2α

)
< 1, then α

can be designed as 0 < α < 1
(2L,2ρL3/EI,2(Im+2ρL2)/kp ,2)

. We define 1 > α2 = 1− α1 > 0,

2 > α3 = 1 + α1 > 1; hence,

0 ≤ α2(W1 + W2) ≤ H(t) ≤ α3(W1 + W2) (21)

According to inequality in Equation (21), the Lyapunov function is positively
definite. Hence,

Ht(t) = (W1)t + (W2)t + (Wα)t (22)

In Equation (22), (W1)t =
∫ L

0 ρlt(x)ltt(x)dx + EI
∫ L

0 yxx(x)yxxt(x)
(W2)t = Imetett + kpeet + muα(uα)t − p1et − p2uα

(Wα)t = (Wα1)t + (Wα2)t + (Wα3)t

(23)

In Equation (23), 
(Wα1)t = αρ

∫ L
0 xltt(x)lex(x)dx

(Wα2)t = αρ
∫ L

0 xlt(x)ltex(x)dx
(Wα3)t = αIm

(
e2

t + eett
) (24)

Substituting Equation (10) into Equation (23) and combining Equation (4), (W1)t can
be rewritten as:

(W1)t = −EIyxxx(L)lt(L)− EIyxx(0)θt = −EIlxx(0)et − EIl2
xxx(L)− EIlxxx(L)uα (25)

Using Equations (10) and (15) and combining Equations (23) and (25), we obtain:

(W1)t + (W2)t = −EIlxx(0)et − EIl2
xxx(L)− EIlxxx(L)uα + Imetett + kpeet + muα(uα)t − p1et − p2uα

= et
(
−EIlxx(0) + Imett + kpe− p1

)
+ uα(−EIlxxx(L) + m(uα)t − p2)− EIl2

xxx(L)
= et

(
τ + kpe− p1

)
+ uα(M−mlxxxt(L)− p2)− EIl2

xxx(L)
= −kde2

t − ku2
α − EIl2

xxx(L)

(26)

According to Lemmas 1–3, combining Equations (10) and (18), and using the method
of integral by parts, we deduce:

(Wα1)t = −αEILlex(L)lxxx(L)− 3
2 αEI

∫ L
0 l2

xx(x)dx− αEIelxx(0)
≤ −

(
3
2 α− 2αL2 − 2αL3

EI

)∫ L
0 EIl2

xx(x)dx + αEILl2
xxx(L)−αEIelxx(0) +

(
2αEIL + 2αL2)e2 (27)

(Wα2)t =
1
2

αρLl2
t (L)− 1

2
αρ
∫ L

0
l2
t (x)dx (28)

(Wα3)t = αIme2
t + αeEIlxx(0)− αkpe2 − kdαeet ≤ (αIm + kdα)e2

t −
(
αkp − kdα

)
e2 + αeEIlxx(0) (29)

We obtain Equation (30) using Equations (23), (27)–(29).

(Wα)t ≤ −
(

3
2 α− 2αL2 − 2αL3

EI

)∫ L
0 EIl2

xx(x)dx + αEILl2
xxx(L) +

(
2αEIL + 2αL2)e2

+ 1
2 αρLl2

t (L)− 1
2 αρ
∫ L

0 l2
t (x)dx + (αIm + kdα)e2

t −
(
αkp − kdα

)
e2

(30)
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Substituting Equations (26) and (30) into Equation (22), we get Equation (31).

Ht(t) = (W1)t + (W2)t + (Wα)t

≤ −kde2
t − ku2

α − EIl2
xxx(L)−

(
3
2 α− 2αL2 − 2αL3

EI

)∫ L
0 EIl2

xx(x)dx + αEILl2
xxx(L)

+
(
2αEIL + 2αL2)e2 + 1

2 αρLl2
t (L)− 1

2 αρ
∫ L

0 l2
t (x)dx + (αIm + kdα)e2

t −
(
αkp − kdα

)
e2

= −
(

3
2 α− 2αL2 − 2αL3

EI

)∫ L
0 EIl2

xx(x)dx− 1
2 α
∫ L

0 ρl2
t (x)dx− (kd − αIm − kdα)e2

t

−
(
αkp − kdα− 2αEIL− 2αL2)e2 − ku2

α +
1
2 αρLl2

t (L)− (EI − αEIL)l2
xxx(L)

(31)

The inequality EI − αEIL > 1
2 αρL can be established by choosing α, which guaran-

tees that:

1
2

αρLl2
t (L)− (EI − αEIL)l2

xxx(L) ≤ η0(lt(L)− lxxx(L))2 = η0u2
α (32)

where: η0 > max
(

η1, η1η2
η2−η1

)
, η1 = 1

2 αρL, η2 = EI − αEIL.
According to Equations (31) and (32), we obtain Equation (33).

Ht(t) ≤ −
(

3
2 α− 2αL2 − 2αL3

EI

)∫ L
0 EIl2

xx(x)dx− 1
2 α
∫ L

0 ρl2
t (x)dx− (kd − αIm − kdα)e2

t

−
(
αkp − kdα− 2αEIL− 2αL2)e2 − (k− η0)u2

α ≤ −λ0(W1 + W2) ≤ −λ0
H(t)
α3

= −λH(t)
(33)

The following constraints must be met to ensure the validity of Equation (33).

ε1 = 3
2 α− 2αL2 − 2αL3

EI > 0, ε2 = 1
2 α > 0, ε3 = kd − αIm − kdα > 0,

ε4 = αkp − kdα− 2αEIL− 2αL2 > 0, ε5 = k− η0 > 0, min
(

2ε1, 2ε2, 2ε3
Im

, 2ε4
kp

, 2ε5
m

)
≥ λ0 > 0, λ = λ0

α3

(34)

The solution for the inequality in Equation (33) is H(t) ≤ H(0)e−λt. Therefore, the
Lyapunov function H(t) is close to 0 if the condition H(0) is bounded.

According to Equation (21), W1 + W2 → 0 , therefore, e→ 0 and et → 0 , meaning
θ → θd and θt → 0 . Additionally, lt(x)→ 0 , yt(x)→ 0 . Moreover, according to Lemma
2,y2

x(x) ≤ L
∫ L

0 y2
xx(x)dx, y2(x) ≤ L

∫ L
0 y2

x(x)dx. Therefore, we can further deduce that
y(x)→ 0 . Moreover, the closed-loop system tends to be stable.

4. Numerical Simulation Analysis

Three simulation tests were performed to verify the performance and effect of the
proposed control method. During simulation, the discrete time was ∆t = 5× 10−4 and
discrete distance was ∆x = 0.01m. The system parameters and controller coefficients
were set as shown in Table 1. The initial state of the system and the initial interference
compensation were set to 0. The number of neurons in the input layer, hidden layer, and
output layer of the RBF neural network was 5, 5, and 2, respectively. According to the
actual range of the input layer x, the parameters of the Gaussian basis function of the

hidden layer were set to: cj =


−2.5 −1.5 0 1.5 2.5
−2 −1 0 1 2
−1.5 −0.75 0 0.75 1.5
−1 −0.5 0 0.5 1
−0.5 −0.25 0 0.25 0.5

, bj = 0.5. In order to

ensure reasonable results, the parameters and coefficients in the simulation scenarios 1–3
should be consistent.

Scenario 1: with the adaptive boundary control method [5].
Scenario 2: with the RBF neural network control method [8].
Scenario 3: with the proposed control method.
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Table 1. Numerical simulation marks of micro-deformable manipulator system.

Mark EI m Im L ρ kp kd k λ

Value 3 0.15 0.1 1.0 0.21 60 30 20 200
Unit N ·m2 kg kg ·m2 m kg/m / / / /

Remark 4 . The design description of coefficients kp, kd, and in control law is shown in Appendix A.

Remark 5. An appropriately large control gain kp can ensure the good tracking performance of
the system, but if too large, the system will become invalid. Therefore, in practical operation, the
system performance and the actuator saturation should be considered simultaneously when we
design the coefficient.

The simulation results of the micro-deformable manipulator with the proposed control
method are shown in Figures 3c, 4, 5c, 6c and 7c; results with the adaptive boundary control
method are shown in Figures 3a, 5a, 6a and 7a; Figures 3b, 5b, 6b and 7b show the simulation
results with the RBF neural network control method.

Figure 3 shows the angle tracking and angular velocity response results of micro-
deformable manipulator with different methods. As shown in Figure 3a,b, the adaptive
boundary control method and RBF neural network control method affect the control
performance due to the large error and long response time. On the contrary, the proposed
control method can accurately adjust the joint angle to the expected value within 6 s, as
shown in Figure 3c. The response time comparisons of three methods are shown in Table 2.
As shown in Table 2, the response speed is improved by at least 30% than that of the
other two methods. Therefore, the compensation results of the RBF neural network are
satisfactory, as shown in Figure 4.
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Figures 5 and 6 show the elastic deformation and deformation rate of manipulator
successively. The statistical results of deformation rate are shown in Table 2. As shown
in Figure 5a,b, the elastic deformation of the micro-deformable manipulator is remark-
able, and it is not suppressed obviously. Conversely, in Figure 5c, the elastic deformation
reaches the peak in 5 s and is eliminated obviously in 7 s. Furthermore, compared with
Scenarios 1 and 2, the deformation rate of the manipulator is reduced by an order of mag-
nitude with the proposed method (Table 2).
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Figure 7 depicts the corresponding control input with different methods. Furthermore,
the related statistical results are shown in Table 2. In Figure 7a,b, the control input of the
adaptive boundary control method and RBF neural network control method is unacceptable
because of sizeable fluctuation and overshoot. Conversely, in Figure 7c, the fluctuation and
overshoot are nearly weakened within 2 s.

Table 2. The statistical results of the simulation data of the proposed method and the comparison methods.

Comparisons Adaptive Boundary Method RBF Neural Network Method The Proposed Method

Response time (s) 7 9 6
Maximum of

deformation rate (m/s) −0.2132 −0.1396 −0.0269

Mean value of M (N·m) 0.2964 0.7233 0.3333
Mean value of τ (N·m) −0.3334 −0.8040 −0.3750
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The three simulations confirmed that the proposed method performs excellently in
trajectory tracking and vibration and deformation suppression of the micro-deformable
manipulator under the premise of considering the double boundary interference. Through
the analysis of the above simulation results, the proposed method is superior to the adaptive
boundary control method and RBF neural network control method. Compared with the
other two methods, the response time of the proposed method is reduced by at least 30%.
The deformation of the manipulator is restrained to a great extent.

5. Experimental Tests

A simple slender single link micro-deformable manipulator (L = 1 m, R = 0.01 m
which are consistent with the numerical analysis) was used for the experimental test in this
paper. Air experiment was carried out in the laboratory. The experimental apparatus is
shown in Figure 8a. In each experiment, the real-time position, current, speed, and other
information of the micro-deformable manipulator were sent to the computer through the
serial port, and then the computer, as the host computer, sent the order to the driver which
drives the thruster to control the motion of the manipulator. The schematic diagram of the
experiment is shown in Figure 8b. The thruster here was a MOTEC DC servo motor of
DSEM-V241230E60LN type. It was driven by MOTEC DC servo driver of ARES-80-15-E-A0
type. The host computer here was a notebook computer with Intel Core i7-5500u 2.5 GHz
CPU and 12 GB of RAM, running under Windows 10 operating system. The control
software was developed by Visual Studio 2017. The manipulator system was powered by
24 V DC power supply.
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Figure 8. Experimental apparatus and schematic diagram: (a) experimental apparatus of the micro-deformable manipulator;
(b) the schematic diagram of the experiment.
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In each air experiment, the parameters of the motor were set to pulse/2π rad in
advance. The manipulator was controlled to rotate 1592 pulses per time, which was about
0.5 rad, and swing back and forth every time. In order to ensure the accuracy of data
analysis, the angle set in the experiment was consistent with that in the simulation. The
data of one cycle were collected for analysis (Figure 9).

Micromachines 2021, 12, x FOR PEER REVIEW 13 of 16 
 

 

0.5 rad, and swing back and forth every time. In order to ensure the accuracy of data 
analysis, the angle set in the experiment was consistent with that in the simulation. The 
data of one cycle were collected for analysis (Figure 9). 

 

 
(b) 

 
(c) 

 
(a) (d) 

Figure 9. Comparison of τ  between experiment and simulations: (a) comparison of overall results; (b) comparison of 
partial enlarged results of adaptive boundary method; (c) comparison of partial enlarged results of the RBF neural net-
work method; (d) comparison of partial enlarged results of the proposed method. 

Figure 9 depicts the change of the torque values of those collected from the experi-
ment and simulated with different methods. The errors of experiment and three simula-
tions are recorded in Table 3. In Figure 9b,c, the other two methods are not satisfactory 
due to their sizeable errors. As shown in Figure 9d, the variation of the numerical torque 
value of the proposed method is similar to that of the experimental torque value. The 
maximum error did not exceed 0.7 N m⋅  as shown in Table 3, which verified the cor-
rectness of the numerical results of the proposed method. 

Table 3. The errors between experiment and three simulations. 

Errors ( N m⋅ ) 
Adaptive Boundary 

Method 
RBF Neural Network 

Method 
The Proposed Meth-

od 
Mean value 1.3190 6.6750 0.3008 

Standard deviation 0.9203 8.5060 0.1604 
Maximum 1.7620 20.930 0.6644 

6. Conclusions 
This paper studied the PDE dynamic model; based on this model, the distributed 

boundary PD controller with infinite-dimensional RBF neural network compensator was 
proposed. The RBF neural network was used to compensate for double boundary inter-

Figure 9. Comparison of τ between experiment and simulations: (a) comparison of overall results; (b) comparison of partial
enlarged results of adaptive boundary method; (c) comparison of partial enlarged results of the RBF neural network method;
(d) comparison of partial enlarged results of the proposed method.

Figure 9 depicts the change of the torque values of those collected from the experiment
and simulated with different methods. The errors of experiment and three simulations are
recorded in Table 3. In Figure 9b,c, the other two methods are not satisfactory due to their
sizeable errors. As shown in Figure 9d, the variation of the numerical torque value of the
proposed method is similar to that of the experimental torque value. The maximum error
did not exceed 0.7 N·m as shown in Table 3, which verified the correctness of the numerical
results of the proposed method.

Table 3. The errors between experiment and three simulations.

Errors (N·m) Adaptive Boundary Method RBF Neural Network Method The Proposed Method

Mean value 1.3190 6.6750 0.3008
Standard deviation 0.9203 8.5060 0.1604

Maximum 1.7620 20.930 0.6644



Micromachines 2021, 12, 799 13 of 15

6. Conclusions

This paper studied the PDE dynamic model; based on this model, the distributed
boundary PD controller with infinite-dimensional RBF neural network compensator was
proposed. The RBF neural network was used to compensate for double boundary inter-
ference and uncertain interference. The boundary control can be used to obtain the angle
tracking of the micro-deformable manipulator. At the same time, it effectively weakened
the vibration generated by the micro-deformation manipulator during the movement. The
response time of the proposed method was reduced by at least 30% compared with the
adaptive boundary controller and the RBF neural network controller. The error between
the simulated results and experimental results was no more than 0.7 N·m , which verified
the accuracy of numerical results and the feasibility of the proposed method. Since the
unknown interference distribution in the external space is random and unpredictable,
it is essential to subdivide the spatially distributed interference further and study the
corresponding compensation control method in the future.
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Nomenclature

L Length of micro-deformable manipulator, m
R Radius of micro-deformable manipulator, m
ρ Linear density of micro-deformable manipulator, kg/m
Im Center moment of inertia, kg·m2

EI Bending stiffness of uniform beam, N·m2

τ Motor control input torque at initial end point, N·m
M Control input force of end load, N
m Terminal load mass, kg
θ Joint turning angle (excluding deformation),
y(x) Elastic deformation of manipulator at point x, m
l(x) Offset of micro-deformable manipulator in the inertial coordinate system, m
F End force in the free-body diagram, N
T Moment obtained by force analysis, N·m
σave Mean normal stress, N/m2

τs Shear stress, N/m2

A Cross section area of micro-deformable manipulator, m2

p1 Boundary interference of one side
p2 Boundary interference of another side
p̂1 The estimated value of p1
p̂2 The estimated value of p2
kp The coefficient of control law
kd The coefficient of control law
k The coefficient of control law
λ Flexibility of micro-deformable manipulator
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Appendix A

Design explanation of kp, kd, and k.

1. According to the engineering trial method, the coefficient kp is taken as 60.
2. According to Equations (19)–(21), 0 < α < 1

(2L,2ρL3/EI,2(Im+2ρL2)/kp ,2)
.

3. From η1 = 1
2 αρL, η2 = EI − αEIL, we obtain that η0 > max

(
η1, η1η2

η2−η1

)
.

4. Take kd = 30 according to the condition: ε3 = kd − αIm − kdα > 0; take k = 20
according to the condition: ε5 = k− η0 > 0.

5. Verifying other conditions in Equation (34): ε1 = 3
2 α− 2αL2 − 2αL3

EI > 0, ε2 = 1
2 α > 0,

ε4 = αkp − kdα− 2αEIL− 2αL2 > 0, ε5 = k− η0 > 0.
6. Take α3 = 1.5 according to the condition: 2 > α3 > 1.

7. From min
(

2ε1, 2ε2, 2ε3
Im

, 2ε4
kp

, 2ε5
m

)
≥ λ0 > 0, we obtain λ = λ0

α3
.
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