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Bispecific antibodies (BsAbs) are designed to recognize and bind to two different
antigens or epitopes. In the last few decades, BsAbs have been developed within the
context of cancer therapies and in particular for the treatment of hematologic B-cell
malignancies. To date, more than one hundred different BsAb formats exist, including
bispecific T-cell engagers (BiTEs), and new constructs are constantly emerging.
Advances in protein engineering have enabled the creation of BsAbs with specific
mechanisms of action and clinical applications. Moreover, a better understanding of
resistance and evasion mechanisms, as well as advances in the protein engineering
and in immunology, will help generating a greater variety of BsAbs to treat various cancer
types. This review focuses on T-cell-engaging BsAbs and more precisely on the various
BsAb formats currently being studied in the context of B-cell malignancies, on ongoing
clinical trials and on the clinical concerns to be taken into account in the development
of new BsAbs.

Keywords: bispecific antibodies, leukemia, lymphoma, myeloma, bispecific T-cell engager, BiTE, clinical
development, concerns

INTRODUCTION

The idea of bispecific antibodies (BsAbs) was initially launched in the early 1960s and the first
examples were constructed in 1985 (1). Ten years later, a BsAb (anti-CD19 × anti-CD3) was
studied in a clinical trial for the treatment of non-Hodgkin’s lymphoma (NHL) (2) and it took until
2009 for the approval of catumaxomab (anti-epCAM × anti-CD3) for the treatment of patients
with malignant ascites (3). Advances in protein engineering enable the creation of BsAbs with
specific mechanisms of action and clinical applications (4). Although catumaxomab was withdrawn
from the market in 2017 for commercial reasons, the excellent clinical results of the bispecific
T-cell engager (BiTE), blinatumomab (anti-CD19 × anti-CD3) (5), have renewed the interest and
investment in BsAb development.

BISPECIFIC ANTIBODIES

Bispecific antibodies are designed to bind to two different antigens (Ag) or epitopes. These Ags can
be present on the same cell, thereby improving the selectivity and binding kinetics of these antibody
(Ab) formats. Most BsAbs are developed to bind different targets on different cells, which expand
their potential applications. In immunotherapy, they are used to improve tumor cell eradication
by bringing cytotoxic cells [T-cells or natural killer (NK)-cells] directly in contact with tumor
cells. Given their potential economic value, the pharma industry has taken over their biotechnical
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development resulting in more than 100 different formats that
have been designed (6). This review tries to focus on different
T-cell recruiting formats that have been developed in the
treatment of B-cell malignancies.

Effector cell-engaging BsAbs are generally made up of an
effector cell-binding domain linked to a tumor Ag-binding
fragment. The final format can be made of various known
Ab fragments such as single-chain variable fragment (scFv),
heavy chain variable domain (VH), light chain variable domain
(VL), variable region of a heavy chain of a heavy chain only
Ab (VHH), diabody, etc.; or resemble the general architecture
of immunoglobulins (Ig). Such fragments provide advantages
and disadvantages according to their specific characteristics and
properties. Therefore, selection of Ab fragments require careful
evaluation, in order to create the most suitable BsAbs for
the desired applications (4, 7). One single format is probably
not suitable for all applications and BsAbs are generated
according to desired characteristics. They differ in terms of
size, valency, flexibility, distribution of their pharmacological
properties, etc. The two most common forms of BsAbs are
the IgG-based and Ab-fragment based formats. IgG-Based BsAb
contain an Fc region that helps the stability of the BsAb
and the production and purification procedures. Some of the
formats of BsAbs currently used for hematological cancers are
described in Tables 1, 2 and these various formats are shown
in Figure 1.

Bispecific Antibodies IgG-Like
The Fc domain of an Ig facilitates BsAb purification, improves
solubility and stability, extends their in vivo half-life (8) and
activates several immune cells. When its effector functions
are maintained, this Fc region will induce Ab-dependent cell-
mediated cytotoxicity (ADCC) by recruiting NK-cells and/or
macrophages and complement-dependent cytotoxicity (CDC) by
binding the complement (4, 8).

Preferably, CD3-targeting BsAbs require the complete
suppression of the Fc-mediated effector functions in order to
maximize therapeutic efficacy and to minimize off-target toxicity
because binding of Fc to Fc gamma receptor (FcγR) leads to
activation of immune effector cells. In reality, the majority of
the CD3-targeting BsAbs, currently in clinical practice, have
Fc domains with reduced binding activity to FcγR or are BsAb
fragments intentionally without the Fc region (9).

However, IgG-like BsAbs composed of two different heavy
chains and two different light chains are difficult to produce.
The heavy chains of the Bsab can form homodimers (described
as heavy chain-pairing problem) and also the light chains
can pair to the incorrect heavy chains (light chain-pairing
problem). Different solutions have been proposed to avoid
these undesired mispairs and some of them are integrated in
Table 1. A major progress in this field was the development
of the “knobs-into-holes” (KiH) strategy that consisted of
introducing large amino acid side chains into the CH3
domain of one heavy chain that fit into an appropriately
designed cavity in the CH3 domain of the other heavy
chain (10).

Bispecific Antibodies Without Fc Region
BsAbs lacking an Fc region can be produced by linking two
different single-chain antibodies with a linker. Their Ag-binding
part contain only the variable regions of the heavy and light
chains connected to each other by a linker (Table 2). They
are smaller than the bispecific molecules with an Fc region,
and this reduced size results with increased tissue penetration,
but also fast renal elimination resulting in a short plasma
half-life. This reduced circulation time requires more frequent
administrations or continued infusion (11, 12). The half-life can
be extended using different engineering technologies, such as
coupling to inert polymers (polyethylene glycol) (13) adding
an Fc part (14), attaching an albumin-binding part (15) or
even immunoglobulin-binding domains (16). Companies are
currently introducing these half-life extended BsAb in order
to limit the administration frequency and improve patients’
comfort. Prospective clinical studies will investigate the efficacy
and toxicity of these conjugated BsAbs and allow a comparison
with the original BsAbs (e.g., AM701, an anti CD3 × BCMA
BiTE) is a half-life extended version of AMG420 that showed
promising results in the first phase I trial).

RECRUITMENT OF EFFECTOR CELLS

Main Ag for Targeting T-Cells: CD3
BsAb constructs guide immune effector cells to tumor cells by
cell-specific receptors such as CD3 on T-cells or CD16 on NK-
cells. Currently, approximately half of the evaluated BsAbs by
clinical trials are BsAbs that recruit T-cells (17). Their mechanism
of action is based on the activation of T-cells by binding CD3ε

in the T-cell receptor (TCR) complex irrespective of major
histocompatibility complex (MHC) restriction or TCR epitope
specificity. Although required for their anti-cancer activity, the
binding to the antigen may lead to an excessive immune reaction
with activation of bystander immune cells and non-immune cells
that finally results in a cytokine release syndrome (CRS).

Most T-cell engaging BsAbs aim to bind CD3ε to guide T-cells
to the target cells. An alternative Ag, CD5, has been previously
explored (18) but the observed responses were inferior to those
obtained with CD3ε-binding BsAbs. Unfortunately, CD3 will
recruit different types of T-lymphocytes (including immune-
suppressive ones) that can limit their efficacy. For example, Duell
et al. (19) showed that blinatumomab also activates regulatory
T-cells (Tregs), who inhibit cytotoxic T-cell proliferation, thereby
preventing tumor cell destruction. As a result, usage of NK-cells
instead of T-cells draw attention in clinical development (see
Table 3) (17).

CD3-based BsAbs targeting T-cells also demonstrated other
disadvantages, such as (1) potentially high toxicity, particularly
for targets with wide tissue expression; (2) partial tumor
destruction and the development of resistance to treatment due
Ag escape (8) and rapid and powerful activation of a large pool
of T lymphocytes that is no longer counterbalanced by TCR
regulation (20, 21). The interest in this type of BsAbs renewed
after the first clinical results obtained with blinatumomab (see
section “BiTE anti-CD19 – CD3”) (22). Impressive responses
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TABLE 1 | Ab formats used for hematological cancers: Bispecific antibodies IgG-like.

Name/Platform Firm Characteristics Heavy chain engineering Light chain
engineering

Fc domain Production Remarks References

“Knob-in-hole”
technology

Other strategies

BsAb armed
activated
T-cells (BAT)

Mostely
academic

Combination of an
mAb targeting the
tumor Ag with an mAb
targeting the effector
cells

No No No Functional Fc Chemical
heteroconjugation of 2
mAbs

Combined with ex vivo
activated T-cells

161

CrossMab Roche Exchange of either the
constant domain,
variable domains or the
whole Fab fragment

Yes Electrostatic steering Crossover of an
existing fragment
without the need for
the identification of
common light chains

Fc part without effector
function

Almost natural,
full-sized humanized
IgG1 antibody

Not immunogenic, also
applied to 2 + 1 and
2 + 2 formats

162, 163

Veloci-Bi Regeneron Common light chain
approach combined
with mutation of
protein A binding site
for improved
purification

No Selection of correct
heterodimers by
Protein A affinity
chromatography using
a new protein A resin

Use of heavy chains
that employ identical
light chain

Fc part without effector
function

Recombinant
production, purification
enables identification
of correct
heterodimers

Not immunogenic 164

SEEDbodies Specific pairing
through the design of
alternating segments
from human IgA and
IgG

No Strand-exchange
engineered domain:
interdigitating β-strand
segments of human
IgG and IgA CH3
domains

Additional engineering
for correct
heavy-to-light chain
pairing

Fc part without effector
function

Recombinant
production

SEEDbodies assure
correct Heavy chain
pairing, but additional
engineering of light
chains can be
necessary

165

Biclonics Merus Charge pairs in the
CH3 that favor
heterodimerization

No Introduction of
charged residues at
different positions
within the Fc part

Fab fragment
consisting of common
light chain fragments

Fc part without effector
function

VH genes cloned in the
backbone IgG1;
Recombinant
production of full IgG

/ 166, 167

XmAb Xencor Typically, scFv fused to
one Fc instead of Fab
fragment to enable
bispecificity

Yes Set of minor and
precise changes to the
Fc region leading
enhanced
heterodimerization
Improved purification
procedure

Different formats exist:
Fab or ScFV

Fc part without effector
function

Recombinant
production and
purification by l protein
A affinity
chromatography

Full-sized humanized
IgG1 Ab, nearly
identical to natural Ab
(similar structure and
sequence)

168

Duobody Genmab Controlled Fab-arm
exchange (cFAE) from
two parent
homodimeric
antibodies

Yes Fc silent mutations Separate expression
and purification of the
2 component
antibodies followed by
assembly into BsIgG

Fc activity can be
retained or silenced
depending on the
characteristics desired

Almost natural,
full-sized humanized
IgG1 antibody

Full-sized humanized
IgG1 Ab, minimal
modifications to the
native Ab structure

169

TriFAb
(Trifunctional
Ab)

TRION Produced from two
half antibodies from
parental mouse IgG2a
and rat IgG2b isotypes

No / Species−restricted
heavy/light chain
pairing

Fc part with effector
function

Produced using the
quadroma technology
and captured by
protein A affinity
chromatography

Trifunctional ≥ Highly
immunogenic and
toxic (CRS)

170
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TABLE 2 | Ab Formats used for hematological cancers: Bispecific antibodies with single chain formats.

Characteristics Molecular Weigth Half life Linker Administration Remarks References

BiTE 2 scFv fragments,
connected by
flexible linker
peptides

∼55 kDa 2 h 15–amino acid
(G4S1)3
(single-letter amino
acid code) linker

Continuous infusion Rely exclusively on
effector-tumor
synapse formation

171

BiKE BiKEs: 2 scFv
fragments,
connected by
flexible linker
peptides are similar
in design to BiTEs
but they target
CD16 on NK-cells

58–60 kDa ND 20-amino acid
segment of human
muscle aldolase

ND Not immunogenic,
further expansion of
NK-cells (TriKE)

172, 173

TriKE TriKEs consist of a
BiKE into which
IL-15 was
subsequently
sandwiched

∼96 kDa ND Human IL-15 with
N72D substitution,
flanked by two
flanking sequence

ND Mutated form of
IL-15 expands
NK-cells

173

Diabodies A single−chain
format based on 2
peptides, each one
contains a heavy
chain variable
region (VH) for an
Ag recognition site
paired with a light
chain variable
region (VL) of a
second Ag
recognition site

58 KDa 2 h 15 amino acids
with sequence
GGGGSGGRASGGGGS

Frequent injections
or infusions

Variants of
diabodies consist
of dual-affinity
retargeting
molecules (DART)
or tetravalent
constructs that
combine two
diabodies (TandAb)

174

FIGURE 1 | BsAb formats studied for hematological B-cell malignancies (A), BiTE (Tandem scFvs); (B) DART; (C) TandAb (Tandem diabodies); (D) BAT; (E) TDB:
Xmab (scFv-Fab IgG); (F) TCB: CrossMAb; (G) TDB: DuoBody; (H) TriFAb (Rat-mouse hybrid IgG). The different antibody domains are as follows: green, variable
region of heavy chain 1 (VH 1); red, variable region of heavy chain 2 (VH 2); yellow, variable region of light chain 1 (VL 1); pink, variable region of light chain 2 (VL 2);
light purple, constant region of light rat chain; dark purple, heavy chain of immunoglobulin G2b (IgG2b); light blue and light gray, constant regions of light mouse
chain; dark blue and dark gray, heavy chains of mouse IgG2b; turquoise circles, Knob-in-Hole (KiH) BiTE, bispecific T-cell engager; DART, dual-affinity re-targeting;
Fab, Fab region; S, disulfure; scFv, single-chain variable fragment; TandAb, tandem diabody; TDB, T-cell-dependent bispecific antibody; TriFAb, trifunctional
antibody, triomab.
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TABLE 3 | Clinical development of BsAbs (selected trials).

Names (Sponsors) Targets (diseases
indications)

Format Phase (NCT#) References

T-cell redirection

AMG420, BI 836909
(Boehringer Ingelheim,
Amgen)

CD3 × BCMA (MM) Tandem scFv (BiTE) Phase I (NCT02514239,
NCT03836053)

102, 175

AMG701 (Amgen) CD3 × BCMA (MM) Tandem scFv-scFc(G1) (HLE-BiTE)
Possibly Fc-silencing

Phase I (NCT03287908) 176

CC-93269, EM901
(Celgene)

CD3 × BCMA (MM) Fab-Fc(G1) × Fab-Fab-Fc(G1)
(CrossMab in the 2 + 1 format)
Possibly Fc-silencing

Phase I (NCT03486067) 103

JNJ-64007957 (Janssen) CD3 × BCMA (MM) Hetero H, HL exchanged IgG4
(DuoBody)
Possibly Fc-silencing

Phase I (NCT03145181) 177

PF-06863135 (Pfizer) CD3 × BCMA (MM) Hetero H, HL assembly IgG (DuoBody)
Possibly Fc-silencing

Phase I (NCT03269136) 106

REGN5458 (Regeneron) CD3 × BCMA (MM) Hetero H, cL IgG4
Possibly Fc-silencing

Phase I/II (NCT03761108) 178

AMG424, Xmab13551
(Amgen)

CD3 × CD38 (MM) Fab-Fc(G1) × scFv-Fc(G1) (Xmab)
Possibly Fc-silencing

Phase I (NCT03445663) 97

GBR 1342 (Glenmark) CD3 × CD38 (MM) Fab-Fc(G1) × scFv-Fc(G1) (Xmab)
Possibly Fc-silencing

Phase I (NCT03309111) 98, 179

RG6160, RO7187797,
BFCR4350A (Genentech)

CD3 × FcRH5
(CD307) (MM)

Hetero H, HL assembly IgG1, IgG
assembled from half-antibodies

Phase I (NCT03275103) 35

JNJ-64407564 (Janssen) CD3 × GPRC5D
(MM)

Hetero H, HL exchange IgG4
(DuoBody)
Possibly Fc-silencing

Phase I (NCT03399799) 109

Vibecotamab, Xmab14045
(Xencor)

CD3 × CD123
(B-ALL, AML, CML)

Fab-Fc(G1) × scFv-Fc(G1) (Xmab)
Possibly Fc-silencing

Phase I (NCT02730312) 180, 181

A-319 (Generon) CD3 × CD19
(B-cell lymphoma)

scFv-Fab (ITab) Phase I (NCT04056975) 182

MGD011, JNJ-64052781
(Janssen)

CD3 × CD19 (NHL,
B-ALL, CLL)

DART Phase I: Withdrawn
(NCT02743546)

85

AFM11 (Affimed) CD3 × CD19 (ALL,
NHL)

Tandem diabodies (TandAb) Phase I: Suspended
(NCT02106091 and
NCT02848911)

86

AMG562 (Amgen) CD3 × CD19 (NHL) Tandem scFv-scFc(G1) (HLE-BiTE)
Possibly Fc-silencing

Phase I (NCT03571828) 183

Blinatumomab, Blincyto,
MT103, MEDI-538,
AMG103 (Amgen)

CD3 × CD19
(B-ALL, NHL, MM)

Tandem scFv (BiTE) Marketed (ALL), Phase I/II
[NCT01741792 et
NCT02811679 (NHL),
NCT03173430 (MM)]

5, 83, 184, 185

GEN3013 (Genmab) CD3 × CD20 (NHL) Hetero H, HL exchanged IgG1
(DuoBody)
Possibly Fc-silencing

Phase I/II (NCT03625037) 186

Mosunetuzumab, RG7828,
RO7030816, BTCT4465A
(Genentech)

CD3 × CD20 (CLL,
NHL)

Hetero H, HL assembly IgG1, IgG
assembled from half-antibodies
Possibly Fc-silencing

Phase I/II (NCT03677141
and NCT03677154)

187, 188

Plamotamab, XmAb13676
(Xencor)

CD3 × CD20 (CLL,
NHL)

Fab-Fc(G1) × scFv-Fc(G1) (Xmab)
Possibly Fc-silencing

Phase I (NCT02924402) 189

REGN1979 (Regeneron) CD3 × CD20 (ALL,
CLL, and NHL)

Hetero H, cL IgG4
Possibly Fc-silencing

Phase I/II (NCT03888105,
NCT02290951)

90, 91

RO7082859, RG6026,
CD20-TCB (Hoffmann-La
Roche)

CD3 × CD20 (NHL) Fab-Fc(G1) × Fab-Fab-Fc(G1)
(CrossMab in the 2 + 1 format)
Possibly Fc-silencing

Phase I (NCT03075696) 93

FBTA05, Lymphomun
(Technical University of
Munich)

CD3 × CD20 (CLL,
NHL)

Trifunctional Ab (TriFAb) Phase I/II (NCT01138579):
Terminated

87, 89, 170

CD20Bi (Barbara Ann
Karmanos Cancer Institute)

CD3 × CD20 (NHL) BAT Phase I (NCT00244946) 190, 191

(Continued)
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TABLE 3 | Continued

Names (Sponsors) Targets (diseases
indications)

Format Phase (NCT#) References

NK-cell redirection

AFM13 (Affimed) CD16A × CD30
(NHL, HL)

Tandem diabodies (TandAb) Phase I/II (NCT02321592,
NCT03192202 and
NCT04101331

24, 192

Immune cell redirection

INBRX-105 (Inhibrx) PD-L1 × 4-1BB
(NHL, HL)

Tandem VHH-Fc(G1)
Possibly Fc-silencing

Phase I (NCT03809624) 193

Targeting tumor heterogeneity

OXS-1550, DT2219ARL
(Masonic Cancer Center,
University of Minnesota)

CD19 × CD22
(B-cell lymphoma
and leukemia)

Tandem scFv fusion protein (BiTE fused
to modified diphtheria toxin)

Phase I/II (NCT02370160,
NCT00889408)

132, 194

Targeting multiple checkpoints

MGD013 (Macrogenics) PD-1 × LAG3
(Solid and
Hematological
malignancies)

Tandem domain-exchanged Fv-Fc(G4)
(DART-Fc)

Phase I (NCT03219268) 142

KN046 (Alphamab) PD-L1 × CTLA4
(Solid and
hematological
malignancies)

Hetero H, cL IgG1 Phase I (NCT03733951) 195

Targeting checkpoint and tumor antigen

TG-1801, NI-1701 (TG
Therapeutics)

CD47 × CD19
(B-cell lymphoma)

cH IgG1 (κλ body) Phase I (NCT03804996) 196

Data available as of November 05, 2019. Molecules are classified based on target Ags. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; B-ALL, B-cell
acute lymphoblastic leukemia; BAT, Bispecific antibody armed activated T-cells; BCMA, B-cell maturation antigen; BiTE, bispecific T-cell engager; CLL, chronic lymphocytic
leukemia; CML, chronic myeloid leukemia; CTLA4, cytotoxic T-lymphocyte-associated protein 4; DART, dual-affinity re-targeting; Fab, antigen-binding fragment; FcRH5,
Fc receptor homolog 5 (CD307); GPRC5D, G protein-coupled receptor family C group 5 member D; H, heavy; HL, Hodgkin lymphoma; HLE, half-life extended; Ig,
immunoglobulin; ITab, immunotherapy antibody; L, light; LAG3, lymphocyte-activation gene 3; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; NK, natural killer;
PD-1, programmed cell death 1; PD-L1, programmed cell death 1 ligand; scFc, single-chain Fc fragment; scFv, single-chain variable fragment; TandAb, tandem diabody;
TriFAb, trifunctional antibody, triomab; VHH, heavy chain-only variable domain.

were observed at very low doses in patients with NHL who
received blinatumomab via a continuous intravenous infusion
to reach the desired minimum concentrations (22). In addition,
an exceptional complete response rate of 43% was reported in
the first studies on relapsed/refractory (r/r) acute lymphoblastic
leukemia (ALL) (23).

Main Ag for Targeting NK-Cells: CD16A
An alternative to T-cell usage consists in activating and directing
NK-cells to malignant cells. Compared to T-cells, NK-cells are
not subjected to HLA restriction. In addition, NK-cell therapies
may be better tolerated by patients than their T-cell counterparts
(24). Several receptors capable of activating the cytotoxic function
of NK-cells have already been described, notably CD16, NKp30,
NKp46, NKG2D and DNAX Accessory Molecule-1 (DNAM-
1) (25, 26). Contrary to other activating receptors present in
human NK-cells, CD16 can strongly trigger activation without
co-stimulatory receptors. There are two isoforms of CD16 in
humans, CD16A and CD16B, having a low affinity receptor for
IgG Fc domain. CD16A is expressed in NK-cells, macrophages
and placental trophoblasts, whereas CD16B is expressed in
neutrophils. Only the CD16A isoform is capable of triggering
both IL-2 secretion and tumor cell destruction (27).

Despite its advantages, CD16 is often cleaved on the surface of
NK-cells by a disintegrin and metalloptroteinase-17 (ADAM17)

which likely results in a decrease in the activities mediated by
this receptor (28). To address this concern, combining a BsAb
and ADAM17 inhibitor was evaluated and showed improved
therapeutic efficacy (29). An alternative solution is targeting
other receptors on the NK–cells, alone or in parallel to CD16.
Recently, the group of E Vivier showed the increased cytotoxic
effect of targeting two activating receptors, NKp46 and CD16, on
NK-cells (30).

Lastly, in addition to directing the cytotoxicity of the NK-cells,
improvements were made to their survival and proliferation.
IL-15 was incorporated into a Bispecific Killer cell Engager
(BiKE) structure to create a Trispecific Killer cell Engager (TriKE)
which was confirmed to have the capability to enhance NK-
cell cytotoxicity with improved survival and proliferation in
vitro (31).

BINDING TO TUMOR CELLS

Various parameters will influence the effectiveness of the BsAbs
activity. The major factors that determine whether an Ag is a
good target include (1) tumor-specificity and absence on healthy
tissues (32), (2) prevalence and level of expression on tumor
cells (32), (3) potential expression on malignant precursor or
stem cells (33), and (4) low levels of circulating, soluble forms.
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Moreover, the cytotoxic potential of BsAbs is affected by the
target Ag size and the distance between the epitope and the target
cell membrane (34, 35). For example, if the distance between
the epitopes is large, inhibitory molecules can interfere with the
formation of the synapse (35). To achieve optimal effector cell
activation, the affinity of the monoclonal Ab, the location of the
target epitope in the antigen (Ag) and the Ag density on the
surface of the target cells must be taken into account (10).

Furthermore, the low number of truly tumor-specific cell
surface molecules limits the use of BsAbs in to cancers where the
target Ag is highly overexpressed in malignant cells compared to
healthy cells and when the related toxicity toward healthy cells
is clinically tolerable (36). Most BsAbs in clinical development
target well-known B-cell Ags, particularly the CD19, CD20,
CD38, CD123, or B-Cell Maturation Ag (BCMA). These targets
are generally also expressed by normal plasma cells and B-cells.
Nevertheless, depletion of these cells can be tolerated without
inducing serious clinical side effects (17). In addition, these
targets are specific for hematopoietic lineage and are not
expressed in other normal tissues, which helps to reduce off-
tumor activity and side effects.

B-CELL MALIGNANCIES

The B-cell subtypes and the various associated malignancies as
well as the different Ags expressed in the B-cell lineage are shown
in Figures 2, 3.

Acute Lymphoblastic Leukemia
Acute lymphoblastic leukemia (ALL) is a hematological
malignancy induced by proliferation and accumulation of
immature lymphoblasts in various tissues. It is seen in both
pediatric and adult patients, showing a bimodal distribution (37).
While young patients have a good prognosis, the outcome for
adults can be dismal (38, 39). Its prognosis depends further of
other factors, such as age, chromosomal abnormalities, genetic
alterations and the implicated cell lineage. Although, ALL can
be derived from NK-cell, T-cell and B-cell lineages, the majority
of the disease is associated with B-cell precursors (40, 41).
Chromosomal abnormalities play a critical role in development
of ALL. The Philadelphia chromosome (Ph) or translocation
t(9;22), is a critical anomaly that determine the characteristic of
the disease, yielding poor prognosis (42, 43). Initially, patients
are diagnosed based on the abundance of lymphoblasts (>20%)
in bone marrow or blood (44). Since ALL is associated with
premature B-cells, B-cell specific differentiation markers; CD19,
CD20, and CD22, are highly associated Ags that are used
for diagnosing and targeting with immunotherapeutic agents
(40, 45).

Chronic Lymphocytic Leukemia
Chronic lymphocytic leukemia (CLL) is a hematologic disorder
defined by accumulation of monomorphic mature B-cells within
blood, bone marrow, lymph nodes, and spleen (46). It is observed
with a median age at diagnosis of 70 and male:female ratio
of 1.5 (47).

Chronic lymphocytic leukemia progression is driven by
various genetic abnormalities. Somatic mutations, such as
TP53, BIRC3, NOTCH1, ATM, and SF3B1 disrupt pathways
including DNA damage, cell cycle control, NOTCH signaling
and mRNA processing (48–50). Deletion of chromosome 13
(loss of miR-15a and miR-16-1) and trisomy 12 are the most
common chromosomal aberrations observed in CLL, triggering
tumorigenesis. Secondary abnormalities are observed at the
later stages of the disease, causing resistance to therapy.
Essentially, the presence of mutations or deletions in the p53
gene and the mutation status of the immunoglobulin heavy-
chain variable region gene (IGH) are strong indicators of poor
prognosis (51–54).

Chronic lymphocytic leukemia is well characterized by the
expression of CD5 and CD23 along with B-cell markers CD19,
CD20, together with high abundance of a single light chain (κ
or λ), due to clonal B-cell amplification (46). The diagnosis is
obtained by immunophenotyping and blood count of B-cells. If
monoclonal B-cells are more than 5000 cells per µL, the diagnosis
of CLL is retained (55).

Multiple Myeloma
Multiple myeloma (MM) is an incurable malignancy, caused by
monoclonal proliferation of non-functional plasma cells in the
bone marrow (56). The median age at diagnosis is 69 years
with median overall survival of 8.5 years for transplant-eligible
patients (57). Although good response rates are observed with
initial therapy, the disease relapses and no longer responds to
therapy, causing poor prognosis (56).

Multiple myeloma is characterized by the secretion of
monoclonal immunoglobulins or light chains (described
as M-protein). Initially, it is a benign disorder where 5 to
10% can evolve into a symptomatic malignancy (58, 59).
This progression is driven by a clonal evolution within
malignant plasma cells. The genomic infrastructure of MM
is highly heterogeneous. Although, the events leading to MM
transformation are unclear, numerous genetic abnormalities
contribute to disease progression. Disruption of regulation
of cyclin D and IgH proteins, including translocations
t(11;14) and t(4;14), are common chromosomal abnormalities
observed in early stages, together with hyperdiploidy located
in odd chromosomes (60, 61). During progression, as the
disease advances, the genetic stability decreases. Additional
aberrations, such as chromosomal loss/gains, somatic
mutations (KRAS, NRAS, and TP53), hypermethylation
and more translocations (MYC), trigger further oncogenic
events (62, 63).

An initial diagnosis is assessed by monoclonal protein
level, bone marrow biopsy, radiologic imaging and is based
on the presence of symtoms (annotated by the acronym
CRAB: hypercalcemia, renal failure, anemia and bone lesion)
(64, 65). Furthermore, the disease stage can be obtained by
International Staging System (ISS) (66), revised on 2015 with
additional genetic risk factors (67). Although there is no
specific gene marker for MM, Ags such as CD38, BCMA,
and CS1/SLAMF7, are currently targeted by immunotherapeutic
strategies (68).
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FIGURE 2 | B-cell subtypes and associated malignancies. From Hematopoietic stem cell differentiation into myeloid and lymphoid lineages. After Ag-binding,
B-lymphocytes further mature in lymphoid tissues where they undergo various morphological, genetic, and chromosomal alterations. As a consequence, various cell
surface Ags reside on cell membrane along maturation process. Disruptions in these mechanisms may lead to the development of malignancies. The B-cell
malignancies are divided into subgroups based on location, subtype and activation state of B-cells. This figure is adapted from (70, 159).

Non-Hodgkin Lymphomas
Non-Hodgkin lymphomas are B-cell malignancies that are
primarily located in lymph nodes. The disease progression
is driven by precursor lymphocytes, where 85% of the cases
emerge from B-cell precursors (69). The 5-year survival rates
vary highly, from 30% to 86%, among the subtypes of NHL
(70). These subtypes are mainly categorized into two groups.
Aggressive lymphomas are rapidly evolving entities with a high
tumor cell proliferation rates, but potentially curable when
responding to high-dose chemotherapy. In contrast, indolent
subtypes represent low grade lymphomas and are incurable (71).

Specific translocations enhance the expression of oncogenic
proteins and disrupt DNA damage control mechanisms and
will finally result in the development of various NHL subtypes
(69). To target these cells, cell surface Ags CD19, CD20 and
CD30 are widely used targets (72).The diagnosis is established
by tissue biopsy, followed by immunohistochemistry and genetic
studies (71). Further evaluation of the disease progression can
be obtained by staging systems, such as international prognostic
index (IPI) and combined Positron Emission Tomography –
Computed Tomography (PET-CT) (73).

Treatment Strategies for B-Cell
Malignancies
For fit patients, the combination of chemotherapy with
corticosteroids remains the first line treatment for most

of the listed malignancies. The anti-CD20 monoclonal Ab
rituximab will be added for patients with CLL, B-cell NHL,
and ALL. Patients that are ineligible for chemotherapy
will be treated with specific pathway-inhibitors, such
as Bruton tyrosine kinase (ibrutinib), B-cell lymphoma
2 (bcl-2) inhibitors (venetoclax), proteasome inhibitors
(bortezomib, carfilzomib) or immunomodulating agents
(lenalidomide, pomalidomide). For MM and Hodgkin
lymphoma, monoclonal Abs are currently approved in the
relapsed setting: daratumumab is the monoclonal Ab that binds
to CD38, while brentuximab-vedotin is an Ab-drug conjugate
that recognizes CD30. Autologous stem cell transplantation
(SCT) will be performed at diagnosis for patients with MM or at
relapse for NHL patients.

The efficacy of the initial therapy is evaluated by specific
disease parameters and by minimal residual disease (MRD)
status. MRD evaluation being negative is a strong indicator of
prognosis-free survival while being positive suggests potential
relapse (74). In case of disease relapse, a second line therapy is
applied. Depending on the cancer type and relapse time, salvage
therapy includes more and more specific pathway inhibitors
that will be used in combination or in monotherapy. MRD
determination has clinical implications in the treatment for ALL,
where only MRD positive patients will undergo allogeneic SCT.

Current developments in immunotherapy, such as T-cell
engaging BsAbs and chimeric Ag receptor T-cells (CAR-T),
show promising results in the first clinical studies to enhance
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FIGURE 3 | Antigen expression during B-cell maturation. Cell surface Ags and their presence at in different B-cell subtypes. This figure is adapted from (160).

traditional approaches (75). The Ags expressed during B-cell
development are illustrated in Figure 3. The clinical development
of blinatumumab will be discussed later. CD19-binding CAR-
T cells were recently approved by the Food and Drug
Administration (FDA) and the European Medicines Agency
(EMA) for the treatment of relapsed ALL and aggressive NHL.

BISPECIFIC ANTIBODIES IN CLINICAL
DEVELOPMENT

A selection of BsAbs in clinical development is shown in Table 3.

Clinical Development for ALL, CLL,
and/or NHL (CD19 – CD3)
CD19 is expressed from the early development of B-cells up to
their differentiation into plasma cells. Targeting CD19 results in
B-cell aplasia, which is considered as manageable since patients
can receive intravenous Igs until the recovery of the B-cell lineage.
When compared with other B-cell Ags, its broad expression
profile and low negative regulation rate (76) makes CD19 a
suitable target for B-cell malignancies. It is expressed in 80% of
ALL cases, 88% of B-cell NHL and all cases of CLL (77).

Three main (anti-CD19 × CD3) BsAbs have been developed
for the treatment of B-cell ALL: Blinatumumab, AMG103 (BiTE),

MGD011 (dual-affinity re-targeting Ab: DART) and AFM11
(Tandem diabody: TandAb).

BiTE Anti-CD19 – CD3 (Blinatumomab; AMG103)
Blinatumomab is a BiTE with excellent cell-binding capacities
due to its small size allowing a better tumor penetration
compared to Igs (78). In humans, it was initially explored in
relapsed/refractory (r/r) NHL and afterwards in ALL (79). It
was approved by the FDA in December 2014 and the EMA in
December 2015 for the treatment of r/r Ph-negative ALL (23, 80–
83). However, it is currently being tested in clinical trials for other
hematologic malignancies, such as NHL and MM.

Given its short half-life, blinatumomab is continuously
administrated via an intravenous infusion, at a constant rate
(after an increase in the initial dose) and by repeated cycles of
4 weeks, that are interrupted with 2 weeks without treatment
(23). The observed side effects are mostly mild to moderate and
occur during the first cycle. The treatment generally starts under
vigilant monitoring with a lower dose during the first 7 days.
The most commonly observed adverse effects are chills, pyrexia,
constitutional symptoms and reversible neurological events, such
as tremors, seizures, aphasia, and ataxia. Furthermore, up to
70% of patients had symptoms of a transient CRS (84). In order
to minimize these effects, premedication with dexamethasone is
required on the first day of each cycle and on the first day of any
dose increase (5, 23).
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TABLE 4 | Clinical trials of BsAbs in combination with different immunotherapeutic strategies (selected trials).

Names (Sponsors) Targets Diseases
indication

Phase (NCT#)

Combinations with immune modulators

Combination of Blinatumomab and Nivolumab (anti-PD-1
mAb) +/− Ipilimumab (anti-CTLA4 mAb) [National Cancer
Institute (NCI)]

CD3 × CD19 × PD-1 (x CTLA4) B-ALL Phase
I (NCT02879695)

Combination of Blinatumomab and Pembrolizumab
(anti-PD-1 mAb) (Merck Sharp & Dohme Corp., Amgen)

CD3 × CD19 × PD-1 B-ALL Phase I/II
(NCT03160079)

Combination of Blinatumomab and Pembrolizumab
(anti-PD-1 mAb) (Amgen)

CD3 × CD19 × PD-1 NHL Phase
I (NCT03340766)

Combination of Blinatumomab and (anti-PD-1 mAb) (City of
Hope Medical Center)

CD3 × CD19 × PD-1 ALL Phase I/II
(NCT03512405)

Combination of Blinatumomab and Pembrolizumab
(anti-PD-1 mAb) (Children’s Hospital Medical Center,
Cincinnati)

CD3 × CD19 × PD-1 B-cell lymphoma
and leukemia

Phase
I (NCT03605589)

Combination of BTCT4465A and Atezolimumab
(anti-PD-L1 mAb) (Genentech)

CD3 × CD20 × PD-L1 CLL, NHL Phase I
(NCT02500407)

Combination of REGN1979 and REGN2810 (cemiplimab:
anti-PD-1 mAb) (Regeneron Pharmaceuticals)

CD3 × CD20 × PD-1 Lymphoma Phase I
(NCT02651662)

Combination of REGN1979 and REGN2810 (anti-PD-L1
mAb) (Hoffmann-La Roche)

CD3 × CD20 × PD-L1 NHL Phase I
(NCT03533283)

Combination with mAb

Combination of JNJ-64407564/JNJ-64007957 and
Daratumumab (Janssen)

CD3 × BCMA or GPRC5D × CD38 MM Phase I
(NCT04108195)

Combination with ADC

Combination of BTCT4465A and Polatuzumab vedotin
(anti-CD79b × MMAE) (Hoffmann-La Roche)

CD3 × CD20 × ADC B-cell NHL Phase I
(NCT03671018)

Data available as of November 05, 2019. Molecules are classified based on target antigens. ADC, antibody-drug conjugate; BCMA, B-cell maturation antigen; CTLA4,
cytotoxic T-lymphocyte-associated protein 4; GPRC5D, G protein-coupled receptor family C group 5 member D; mAb, monoclonal antibody; MMAE, monomethyl
auristatin E; PD-1, programmed cell death 1; PD-L1, programmed cell death 1 ligand.

Blinatumomab is currently in Phase I and II clinical trials in
combination with monoclonal Abs (mAbs) targeting inhibitory
checkpoints, such as programmed cell death protein 1 (PD-1) and
cytotoxic T lymphocyte antigen 4 (CTLA-4) (Table 4).

DART CD19 – CD3 (MGD011)
MGD011 (duvortuxizumab) is a CD19 × CD3 DART with
a silenced, human IgG1 Fc domain. The presence of this Fc
domain prolongs its circulating half-life (approximately 14.3
to 20.6 days), similar to conventional mAbs, allowing for an
administration every 2 weeks (85). The humanized Ab arms
have a 10-fold greater affinity for CD19 than for CD3, thereby
enabling preferential binding to target cells, while minimizing
the engagement of CD3 in the absence of target cells. Although
the preclinical results in murine NHL models was promising,
the clinical development of MGD011 was discontinued early
due to high levels of neurotoxicity observed in a Phase I
study on the treatment of B-cell malignancies (NHL, CLL, and
NCT02743546) (85).

TandAb CD19 – CD3 (AFM11)
AFM11 is a tetravalent bispecific TandAb with two binding
sites for CD3 and two for CD19. This structure increases
the binding affinities for CD19 and CD3 by approximately
5- and 100-fold, respectively, compared to those of BiTE.
Furthermore, AFM11 potency is not correlated with CD19

density on the surface of the target cell (86). This BsAb was
tested in phase I studies for the treatment of ALL (NCT02848911)
and r/r NHL (NCT02106091). These two clinical trials were
suspended due to neurological side effects that caused the
death of one patient and life-threatening toxicities in two
others. Therefore, the risk/benefit profile was not favorable
with the dosing regimens studied, putting an end to these two
clinical studies.

Clinical Development for ALL, CLL,
and/or NHL (CD20 – CD3)
The CD20 Ag is expressed exclusively on mature B-cells and
not on B-cell precursors, stem cells and plasma cells. It is also
observed on the surface of malignant B-cells: more than 95% of
B-cells in NHL and other B-cell malignancies express CD20.

TriFab CD20-CD3 (FBTA05)
FBTA05 (Lymphomun) has a TriFAb format; the third
functional site is the Fc region which provides an
additional capacity to recruit accessory cells bearing the
Fcγ receptor (FcγR) (macrophages, dendritic cells, NK-cells
and neutrophil granulocytes) (87). Promising responses
have already been observed in pediatric patients (88,
89), but details on its further development or its current
status are not clear.
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IgG4-Based CD20 – CD3 (REGN1979)
REGN1979 is a fully humanized bispecific IgG4 Ab designed to
resemble natural human Abs (90). As a result, this construct has
the advantages of native Abs, such as stability, low aggregation
propensity, low immunogenicity and good pharmacokinetics.
This BsAb induces prolonged B-cell depletion in the peripheral
blood as well as in lymphoid organs in preclinical models (90). In
a phase I study on r/r NHL, administration of BsAb resulted in an
overall response of 100% in follicular lymphoma and provided a
complete response in two patients who did not respond to CAR
T-cell therapy (91).

IgG1-Based CD20 – CD3 (Mosunetuzumab)
Mosunetuzumab (or BTCT4465A) is a another full-length,
humanized IgG1 molecule with an almost native Ab
structure using KiH technology. The first clinical results
with mosunetuzumab were recently reported: In the patients
with r/r aggressive NHL, the objective response rate (ORR) was
37.1%, with a complete response rate of 19.4%. Higher response
were seen in the group with indolent NHLs with an ORR of
62.7% and complete response (CR) rate of 43.3% (92).

CD20-CD3 (RG6026)
RG6026 is a BsAb that binds to CD20 and CD3 in a 2:1 format,
providing better affinity for the tumor Ag. The CD3 binding
arm is fused directly to one of the CD20 binding arms via a
short flexible linker. RG6026 also has a modified heterodimeric
Fc region that prevents binding to FcγRs, while binding to the
neonatal Fc Receptor is maintained, which results for an extended
circulatory half-life (93). It showed significant in vitro and in vivo
activity even on cells expressing low levels of CD20, it remains
active in the presence of competing anti-CD20 antibodies and can
potentially bypass the resistance to rituximab (94). Furthermore,
its cytotoxicity activity has been observed even at very low
effector:target ratios (95).

Clinical trials are underway to evaluate the efficacy of
these different anti-CD20 × anti-CD3 BsAbs (Table 3). Several
of these CD20-targeting BsAbs (Mosunetuzumab, REGN1979,
and RG6026, etc.) are currently in Phase I clinical trials in
combination with monoclonal Abs targeting the PD-1 inhibitory
checkpoint or its ligand, PD-L1 (Table 4).

Clinical Development for Lymphoma
(CD30 – CD16A)
AFM13 is a tetravalent BsAb in the TandAb format without Fc
domain (24). Therefore, it has two binding sites for CD30, located
between two binding sites for CD16A. The center of the molecule
interacts with the CD30 Ag, whereas the effector cell binds to
both ends of the molecule. It is used to direct NK-cell toxicity to
CD30-expressing lymphoma cells. It has been shown that AFM13
activates NK-cells only after binding to CD30 (94). AFM13 has
shown signs of activity in a Phase I study, as well as effective
NK-cell activation and a decrease in soluble CD30. Moreover, it
has been well tolerated and may even be better tolerated than
T-cell based BsAbs (24). AFM13 is currently in phase II clinical
development (Table 3).

Clinical Development for MM (CD38 –
CD3)
The uniformly overexpressed CD38 Ag is the most widely studied
target in the treatment of MM (96). Intriguingly, it is also
expressed by many other hematopoietic cells, but treatment with
the monoclonal Ab daratumumab is safe and without major side
effects (96).

Several humanized anti-CD38/CD3 XmAb BsAbs and with
different affinities for CD38 and CD3, were simultaneously
evaluated during the preclinical stage. The best in vitro and in
vivo results were obtained with AMG424. Although it has a
lower affinity for CD3 to prevent an uncontrolled CRS in the
presence of soluble CD38, it shows strong anti-tumor effects
(97). Given that CD38 is also expressed by T-cells, a fratricide
problem could interfere with the activity of AMG424. A Phase
I Study (NCT03445663) evaluating the safety, tolerability,
pharmacokinetics, pharmacodynamics, and efficacy of AMG 424
in recurrent/refractory Multiple Myeloma (r/r MM) began in
2018 and will end in 2022.

GBR 1342 is another anti-CD38/CD3 BsAb that is developed
by Glenmark. It contains a complete Fc domain with a reduced
effector function. In preclinical studies, GBR1342 showed a more
potent anti-cancer effect than the anti-CD38 mAb daratumumab.
It efficiently recruited T-cells and induced CD38 + cell depletion
in the blood and especially the bone marrow (98). A Phase I study
(NCT03309111) started in October 2017 evaluating the safety and
tolerability of GBR 1342.

Clinical Development for MM (BCMA –
CD3)
BCMA is a membrane Ag expressed by malignant plasma cells as
well as plasmacytoid dendritic cells. In contrast, it is not expressed
on naive B-cells, CD34 + hematopoietic cells or any other normal
tissue cells (99–101). BCMA has several advantages making it
a highly studied target as part of the treatment for MM. First,
BCMA is highly expressed by MM cells, as well as in patients with
poor prognosis. Second, a rapid re-emergence of B-cell immunity
after the end of the anti-BCMA treatment would be possible
since this Ag is not expressed early in B-cell development. Third,
the lack of BCMA expression in other bone marrow populations
prevents off-tumor toxicities.

Several BsAbs are currently in clinical trials to evaluate their
efficacy primarily in patients with advanced MM who have
relapsed or are refractory to standard treatment (Table 3).

BCMA-CD3 BiTEs (AMG420 and 701)
AMG420 (or BI 836909) is a BiTE that has a short half-
life time and therefore must be administered intravenously for
4 weeks followed by 2 weeks treatment-free. While AMG420
induces potent lysis of BCMA-positive MM cells in vitro and
in vivo, BCMA-negative cells were not affected. Accordingly,
clinical trials started for the treatment of r/r MM in 2015
(NCT02514239) and in 2019 (NCT03836053) (102). In a phase
I study including 42 refractory MM patients, a high response
rate of 70% was observed including 50% MRD-negative complete
responses. The most common side effects were infections and
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polyneuropathy. AMG701 is a half-life–extended BiTE that
contains the single-chain variable fragments of AMG420. It is
suitable for once-weekly dosing and is currently tested in a phase I
trial. Comparison of the observed responses and toxicities, allows
to study the clinical implications of such a half-life extension.

BCMA-CD3 CrossMabs (EM801, CC-93269)
EM801 is a CrossMab in the 2 + 1 format. Its prolonged half-
life due to maintenance of the Fc region allows for a convenient
weekly intravenous treatment. Nonetheless, it is eliminated from
the circulatory system within 1 to 2 months of treatment
discontinuation. EM801 achieved lysis of 90% of myeloma cells
after 48 h with a very low E:T ratio (103). The first results of a
related molecule, EM901/CC-93269 (ENgMab/Celgene), on 30
r/r MM patients were recently presented: clinical activity was
seen at higher doses of the drug with almost 90% of the patients
responding at the highest dose. 76% of patients developed a CRS
which was severe (> Grade 3) in one patient (104).

IgG2a-Based BCMA-CD3 (PF-06863135)
PF-06863135 (PF-3135) is a humanized BsAb using a IgG2a
backbone with mutations in the Fc part that promote heavy
chain heterodimer formation and reduce Fcγ receptor binding
(105). This BsAb showed potent anti-myeloma activity in
both in vitro and in vivo models and its toxicity profile in
cynomolgus monkeys was acceptable (105). PF-06863135 is
currently undergoing a Phase I study to assess its safety and
tolerability (NCT03269136) (106).

Clinical Development for MM (FcRL5 –
CD3 and GPRC5D – CD3)
Two new targets have recently emerged as part of the MM-related
targets: Fc Receptor-Like 5 (FcRL5) and G-protein coupled
receptor family C group 5 member D (GPRC5D).

The first (also known as FcRH5, IRTA2, or CD307) is a specific
and exclusive surface marker of the B-cell lineage. Its expression
is detected starting from the pre-B-cell stage (107). However,
unlike other B-cell-specific surface proteins, FcRL5 expression
is preserved in normal and malignant B-cells (including plasma
cells). This suggests a potential broader applicability of this target
in B-cell malignancies, such as chronic lymphocytic leukemia,
mantle cell lymphoma, diffuse large B-cell lymphoma, and
follicular lymphoma (107, 108).

In contrast, GPRC5D is expressed on the surface of malignant
cells involved in multiple myeloma without being expressed
at appreciable levels by normal hematopoietic cells, such as
T-cells, NK-cells, monocytes, granulocytes and bone marrow
progenitors, including hematopoietic stem cells (109). High
mRNA expression of GPRC5D was observed in patients with
MM, whereas only low expression was detected in normal tissues.
Its mRNA expression was also significantly correlated with poor
overall survival rates (110). As a result, its very limited expression
profile makes it a suitable target in MM treatment.

Two BsAbs have been developed against these two targets and
are currently in a phase I clinical trial: RG6160 which targets
FcRL5 (NCT03275103) and the DuoBody JNJ-64407564 which
targets GPRC5D (NCT03399799) (Table 3). Both showed in vitro

and in vivo B-cell depletion and tumor growth suppression in
myeloma models (35, 109).

CONCERNS IN CLINICAL
DEVELOPMENT

Cytokine Release Syndrome (CRS)
CRS is a potentially fatal systemic inflammatory reaction
that is observed after the infusion of immunotherapeutic
agents (monoclonal Abs, BsAbs, and CARs). Although our
understanding of CRS is incomplete, different immune
populations including T-lymphocytes, monocytes and
macrophages are activated, all resulting in a mass production
of inflammatory cytokines, particularly interleukin (IL)-6 and
interferon (IFN)-γ (111). Although the immunological cascade
is initiated by T-cell activation, this massive systemic production
of toxic cytokines is mainly due to monocyte and macrophage
activation. T-cell IFN-γ, macrophage IL-6, IL-10 and tumor
necrosis factor alpha (TNF-α) seem to cooperate to facilitate
this cytokine release (112). In addition, IL-6 has been shown to
play a central role in humans and mice in the development of
CRS (111, 113). Patients presenting CRS usually develop mild
fatigue, fever, chills, headache, arthralgia, or even more serious
life-threatening problems, such as hypotension, tachycardia,
vascular leaks and circulatory collapse during or immediately
following administration of the drug.

In general, signs and symptoms of CRS only appear during
the first cycle of the drug, and not later during subsequent
administrations. This CRS is not implicated in the mechanisms
of action of T-cell directed immunotherapies (114), as the
response to treatment is unaffected by the severity of CRS
(115). A mitigation strategy based on corticosteroids and IL-
6 blockade has been proposed to minimize the release of toxic
cytokines (112).

An alternative way to avoid CRS-related problems is to
dissociate tumor cell destruction and cytokine release. There are
two distinct thresholds for T-cell activation based on the number
of TCR- peptide-MHC (pMHC) complexes formed (116). The
formation of two TCR-pMHC complexes is sufficient between a
T-cell and an Ag-presenting cell, to trigger T-cell-mediated cell
lysis. On the other hand, 10 TCR-pMHC complexes are required
for the formation of a complete immune synapse and cytokine
secretion. Thus, adjusting the binding characteristics for the
CD3-binding arm, a BsAb could more closely mimic the natural
TCR-pMHC induced T-cell activation (117). Consequently, new
CD3-binding Abs have been generated that bind to multiple
epitopes on CD3 with a wide range of affinities and agonist
activities. Functional studies were realized with BsAbs that
integrated the different CD3-binding domains. A BsAb with a
new T-cell-engaging domain could be created that elicited strong
in vivo tumor cell killing and low levels of cytokine release (118).

Neurotoxicity
Neurotoxicity is the second most common adverse effect
observed with different BsAbs. Symptoms may range from
subtle changes in personality to tremors, vertigo, confusion,
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and focal neurological symptoms to more serious episodes of
encephalopathy, ataxia, cerebellar alteration, convulsions and
delirium (23). The pathophysiology of these neurotoxic effects
still has not been determined but, as in CRS, inflammatory
cytokines appear to be involved (119).

Grade 3 or higher neurotoxicity occurs in approximately 10
to 20% of the patients treated with blinatumomab (5, 120).
However, in most cases, the neurological side effects were
reversible after stopping the BsAb perfusion and initiation of
corticosteroids. Furthermore, grade 3 or higher neurological
events were avoided using a progressive dosing regimen and
the prophylactic administration of dexamethasone. Although
the application of steroids relieves the central nervous system
symptoms, it could potentially hamper the immune response.
While reduced levels of inflammatory cytokines were produced
by dexamethasone-treated T-cells, there was no inhibitory effect
of dexamethasone on the cytotoxic capacities of T-cells observed
(121). This indicates that dexamethasone does not interfere with
the therapeutic efficacy of BsAbs.

Administration Route
The most commonly used administration route for BsAbs
is intravenous (IV) perfusion. Although it has advantages
in terms of pharmacokinetics and pharmacodynamics, it has
certain drawbacks with regards to patient convenience, access
to therapeutic targets and cost of treatment. The reduced
half-life time of some BsAbs results in either more frequent
administrations or continuous infusion (11, 12). On the other
hand, the addition of an Fc domain facilitates the BsAb
purification, improves solubility and stability, and molecule’s
half-life (12). However, although BsAbs with an extended half-
life may ease the logistics of administration, prolonged exposure
could potentially increase the toxicity. Ongoing clinical trials will
test this hypothesis and confirm or refute it.

Resistance Mechanisms
T-Cell Exhaustion/Dysfunction
During cancer development, T-cells rapidly become
dysfunctional due to persistent Ag-exposure. This reduces
their proliferation capacity and their cytotoxic effector function.
Moreover, several inhibitory receptors (such as PD-1, CTLA-
4, T-cell immunoglobulin and mucin domain-3 (TIM-3),
Lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin
and ITIM domain (TIGIT) are overexpressed by malignant
cells (122, 123). Among them, the PD1/PD-L1 axis appears
to be a central process in T-cell dysfunction (124). Targeting
these inhibitory pathways is currently used to block immune
suppressive signals coming from tumor cells and to prolong
T-cell activation.

T-cell exhaustion is characterized by a progressive loss of
function, such as proliferation, cytokine production, and cell
lysis. T-cells do not become totally inactive, but fail to effectively
eradicate cancer cells. Three distinct signals are normally
required for optimal T-cell activation and proliferation. First,
an Ag recognition via the TCRs is needed, followed by a
costimulation and a cytokine release by the T-cells, which is
required for their expansion. BsAb only provide the first signal.

However, BiTEs and many other Ab formats may trigger the
formation of an effective immunological synapse, abolishing the
need for co-stimulation (125). Co-activation of T-cells through
CD28 or 4-1BB, will increase the activation of T-cells by
BsAbs (126, 127). Regarding the third requirement, new BsAb
constructs have been developed to include cytokine IL-15 (128).
Moreover, as mentioned previously, the blockade of PD-1 or its
ligand, PD-L1, can successfully reactivate T-cell function.

Unfortunately, most patients do not maintain sustainable
responses to this treatment. The lack of a sustainable response
can be at least partly explained by the presence of other inhibitory
pathways in T-cells. Thus, the identification of resistance and
evasion mechanisms as well as the understanding of the processes
that direct and maintain the various dysfunctional T-cell states
are still a major concern for enabling effective BsAb activity
targeting T-cells, while avoiding potentially life-threatening
autoimmune side effects (129).

Antigen Escape
Tumor cells can also downregulate a targeted Ag and circumvent
immune recognition during treatment. For example, loss of
CD19 has been observed in patients with ALL, contributing
to progression of the leukemia in 10 to 20% of cases. Altered
membrane traffic and export (130) as well as, acquired mutations
and alternative splicing explain this loss of expression at the
cell-surface, while its intracellular abundance is preserved (131).
Alternative splicing can, for example, result in the loss of CD19
extracellular domain (131). This leads to a conformational change
in the extracellular domain of CD19, while the loss of a chaperone
molecule (CD81) can lead to the intracellular accumulation of
CD19 (130).

Consequently, a potential strategy to control Ag escape is
to combine the targeting of several Ags in order to generate
T lymphocytes that can recognize several Ags expressed on
the tumor cells. For instance, a clinical study evaluating the
efficacy of an anti-CD19/anti-CD22 BsAb is currently ongoing
(NCT02370160) (132) (Table 3).

Immunosuppressive Microenvironment
Another major concern is the possible involvement of tumor
microenvironment factors, such as immunosuppressive
regulatory T lymphocytes (Tregs). Given that BsAbs trigger
T-cell activation via binding to the CD3 complex, other T
lymphocyte cell subtypes, besides effector T lymphocytes, will
also be activated (133). A high percentage of Tregs present
in the tumor environment predicts a resistance to treatment.
For example, Tregs, activated by blinatumomab, are able to
suppress the proliferation of effector T-cells and the subsequent
cell lysis. As a result, T-cell depletion prior to administration of
blinatumomab may increase effectiveness for non-responding
patients treated with blinatumomab (19).

Immune Checkpoint Receptor PD-1
PD-1 is a co-inhibitory receptor that acts as an immune
checkpoint. It is used to attenuate immune responses by limiting
the duration and intensity of the immune reaction. Tumor
cells often express its ligand, PD-L1, to evade immune system
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attacks (134). It is an adaptive mechanism of immune escape
in response to pro-inflammatory cytokines (135). A wide range
of anti-PD-1 antibodies (nivolumab, pembrolizumab) or anti-
PD-L1 antibodies (atezolizumab, durvalumab, avelumab) have
been tested in mono- or in combination therapy (136). However,
PD-L1 is widely expressed on healthy tissues and therefore, the
efficacy of these blocking Abs can be reduced due to binding to
PD-L1 positive normal cells. This may lead to blind activation
of T-cells, including those involved in (auto)immune-related
adverse events such as endocrinopathy (for example, thyroiditis),
dermatitis, pneumonia, hepatitis, and colitis (137–139).

Immune modulation through PD-1 is one of the mechanisms
of resistance to blinatumomab (140). While refractory leukemic
blasts overexpressed PD-L1, T-cell exhaustion was observed with
overexpression of PD-1. Combination of blinatumomab and the
anti-PD-1 antibody Pembrolizumab enhanced T-cell function
and induced an anti-leukemic response in a 12-year-old patient
with refractory ALL (140). The activity of blinatumomab could
also be restored by adding an anti-PD-L1 × CD28 BsAb that
abolished the PD-L1 mediated resistance and even reverted the
negative PD-L1 signaling into positive costimulation through
CD28 on T-cells (141). The combined action of PD-1/PD-
L1 blocking Abs and BsAbs inspired the design and initiation
of clinical studies combining blinatumomab with checkpoint
inhibition as summarized in Table 4. In order to improve the
clinical benefit, BsAbs that simultaneously target two immune
checkpoints have been developed. For example, the dual blockade
of PD-1 and LAG-3 with monoclonal Abs further suppresses
T-cell activation. For instance, an anti-PD-1/anti-LAG-3 DART,
called MGD013, binds specifically to both PD-1 and LAG-3 (142).
Blocking both pathways enhanced T-cell responses compared to
those observed upon independent blockade of either the PD-
1 or LAG-3 pathways alone. The BsAb KN046 is another that
binds to PD-L1 on the tumor cells and to CTLA-4 expressed
by the T-cells. However, the increase in anti-tumor activity has
been associated with a significant increase in the number of
adverse events due to over-activation of the immune system.
Consequently, a new approach is currently being investigated.
It consists in the deletion of the PD-1 pathway via high-affinity
PD-1 binding, while inhibiting CTLA-4 with a low affinity
binding arm. This construct inhibits CTLA-4 in double-positive
T-cells while reducing the binding to peripheral T lymphocytes
expressing CTLA-4, resulting in better tolerability (143).

The Co-stimulatory Receptor 4-1BB
4-1BB (CD137) is a potent co-stimulatory receptor that
is upregulated on effector T lymphocytes including tumor
infiltrating T-cells. Its stimulation improves cytotoxic function,
as well as the induction of an immunological memory (144).
In addition to its function on T-cells, it has been shown
to improve the cytotoxic function of NK-cells (145). 4-1BB-
binding monoclonal Abs are classified according to their
agonistic capacities and Fc receptor affinities. While urelumab
is a strong agonist and inducing signal activation without Fc
receptor binding, the basal agonistic activity of utomilumab is
weak but increases after Fc receptor crosslinking (146). The
clinical development of these first-generation Abs was stopped:

utomilulab showed only a reduced efficacy (although no major
toxicities were seen) and urelumab showed efficacy but also
severe liver toxicity (147, 148). Interestingly, new 4-1BB binding
Abs have recently been created by adapting the level of intrinsic
agonistic activity, the FcγR interactions, the IgG subclass and Ab
affinities (146, 149). Another strategy to overcome the limitations
of the first- generation Abs is the integration of 4-1BB-binding
domains in BsAbs.

A few BsAbs containing a tumor Ag-binding fragment and
a 4-1BB agonist have been developed (150–152). The main
characteristic of these compounds is the lack of significant 4-
1BB activation in the absence of tumor Ag binding, ensuring
tumor-localized immune activation. For example, a BsAb that
simultaneously targets 4-1BB and the CD19 tumor Ag was
developed for systemic administration (153). Since additional
mutations in the Fc region prevents Fcγ receptor cross-linking,
the 4-1BB in this construct is only activated when cross-
linked to CD19 and thus, hepatic toxicity is avoided (9).
Another example of BsAb targeting checkpoint agonists is
INBRX-105 (Inhibrx) which is directed toward PD-L1 and
4-1BB. While simultaneously suppressing inhibition via the
PD-1 – PD-L1 axis, it is designed to only activate T-cells
via 4-1BB in the tumor environment when it encounters
PD-L1 (17).

Immune Checkpoint Receptor CD47
CD47 [Integrin-associated protein (IAP)] is ubiquitously
expressed in normal tissues and can be found on mesenchymal
stromal cells and blood cells, particularly erythrocytes and
platelets, and is generally upregulated in cancers. When it binds
to its ligand, the signal regulatory protein α (SIRPα) which is an
inhibitory receptor on macrophages and dendritic cells, CD47
sends “don’t eat me” signals by inhibiting phagocytosis of tumor
cells and triggering an immune evasion (154).

Hematological cancer cells overexpress CD47 in order to
evade removal by phagocytes (macrophages and dendritic cells)
(154, 155). As a consequence, both the innate and adaptive
anti-cancer immune responses are suppressed. Therefore, CD47
neutralizing antibodies could improve tumor lysis by effector
cells. However, CD47 is also widely expressed on normal cells
(156). Thus, a general blockade of the CD47/SIRPα interaction
may result in the removal of normal healthy cells and may be
associated with toxicity.

Furthermore, the abundant expression of CD47 throughout
the entire human body could eventually lead to the formation
of "Ag sinks" that would prevent anti-CD47 antibodies from
reaching the targeted tumor. To circumvent this problem,
BsAbs with a low affinity for CD47 and a high affinity for
a tumor Ag have been developed, which guarantee CD47 to
be bound by BsAb only on tumor cells co-expressing both
Ags. For example, a CD47 × CD19 BsAb (TG-1801, NI-1701,
NovImmune, TG Therapeutics) induced increased phagocytosis
by Fc and retained its activity in the presence of high amounts
of non-tumor-associated CD47 (157). However, the functional
Fc domains present in this BsAb can cause the off-target
premature activation of Fc receptor (FcR)-expressing phagocytes,
thereby causing systemic toxicity. Another BsAb format called
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RTX-CD47, targeting CD47 and CD20 without an Fc domain,
triggered a significant phagocytic removal of both CD20 and
CD47 malignant B-cells, but not cells expressing CD47 alone,
while preventing toxicity associated with the presence of an Fc
domain (158).

CONCLUSION

As seen in different clinical trials, BsAbs are promising tools
for the treatment of hematologic B-cell malignancies. They
enable different mechanisms of action, each having its own
advantages and disadvantages. Although anti-tumor effects are
observed, their clinical translation is hampered by limiting
side-effects, such as off-target effects, a reduced E:T ratio in
pretreated patients, and pharmacological limitations. Therefore,
combined expertise in immunology, pharmacology and Ab
engineering is required to improve their efficacy. A number of
approaches are currently being studied and include combinations
with checkpoint inhibitors, chemotherapy and other existing
treatments. The different platforms on which BsAbs are produced
will further improve their anti-tumor activity. Looking at
the variety of targets, indications, mechanisms of action and
implicated companies, it is clear that BsAbs will become key
players in the field of immunotherapy.
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