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Abstract
The emergence of immunotherapy has provided an option of treatment methods for 
bladder cancer (BC). However, the beneficiaries of immunotherapy are still limited 
to small-scale patients, and immunotherapy-related adverse events often occur. It is 
a major challenge for clinical work to study the immune subtypes of BC and the 
molecular mechanism of immune escape, and identify the immune responders ac-
curately. Here, we explore the immune molecular subtypes of bladder cancer and 
potential escape mechanisms. First, we screened the expression profiles of 303 dif-
ferentially expressed immune-related genes in BC patients from the Cancer Genome 
Atlas (TCGA) database, and successfully identified 4 molecular subtypes of BC. By 
comparing the clinical characteristics, immune cells infiltration, the expression of 
checkpoint genes, human leukocyte antigen (HLA) genes, and gene mutation status of 
different subtypes, we identified different clinical and immunological characteristics 
of 4 subtypes. Among 4 subtypes, Cluster 2 met the general characteristics of immu-
notherapy responders and responded well to immunotherapy, while Cluster 4 had the 
highest expression of immune characteristics, and is similar to the immune environ-
ment of normal bladder tissue. Then, the weighted gene co-expression network analy-
sis (WGCNA) of immune-related genes revealed that brown module was positively 
correlated with subtypes. Pathway enrichment analysis explored the major pathways 
associated with subtypes, which are also associated with immune escape mechanisms. 
Moreover, the decision tree model, which was constructed by the principle of ran-
dom forest screening factors, was also validated in internal validation set and exter-
nal validation set from the Gene Expression Omnibus (GEO) cohort (GSE13​3624), 
and could achieve accurate subtypes prediction for BC patients with high-throughput 
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1  |   INTRODUCTION

Bladder cancer (BC) is ranked as the ninth most frequently di-
agnosed cancer worldwide. It is mainly represented by blad-
der urothelial carcinoma, which accounts for 90% of BC.1 
According to the World Health Organization (WHO), there 
were 549,000 new cases and 200,000 deaths for BC world-
wide in 2018.2 BC deaths will continue to increase in some 
low sociodemographic index countries in the next 10 years.3 
The traditional treatments for BC mainly include surgical 
resection and chemotherapy, but there is a high distant me-
tastasis and recurrence rate, the 5 years overall survival rate 
remains at 15%–20%.4 The emergence of immune checkpoint 
inhibitors has ended the deadlock of no significant progress 
in the treatment of BC after Bacillus Calmette–Guerin (BCG) 
for more than 30 years and increased treatment options for 
BC.5 But just like other solid tumors, the beneficiaries of im-
munotherapy for BC are still limited to small-scale popula-
tion, and tumor-induced immune escape is a very common 
phenomenon.

The emergence of immunotherapy, especially immune 
checkpoint inhibitors, has revolutionized the treatment of 
many cancers. Currently, immune checkpoint inhibitors have 
been successfully used in the treatment of advanced bladder 
cancer and are increasingly being used in clinical work. Since 
April 2016, Food and Drug Administration (FDA) have ap-
proved atezolizumab, nivolumab, durvalumab, avelumab, 
and pembrolizumab, five PD-1/PD-L1 inhibitors for second-
line treatment options in patients with clinical advanced or 
chemotherapy resistant bladder cancer. Additionally, atezoli-
zumab and pembrolizumab have replaced cisplatin as first-
line therapies for distant metastatic bladder cancer (stage 
Ⅳ). Many clinical studies have shown that bladder cancer 
immunotherapy is superior to conventional chemotherapy in 
terms of overall survival, progression-free survival and ob-
jective remission rate.6 However, due to the high incidence 
of immune-related adverse events (irAEs), the overall status 
of immunotherapy is not very ideal. Sharma et al.'s research 
indicated that objective response rate of advanced BC pa-
tients treated with nivolumab was 19.6%, and the effect of 
immunotherapy was not related to the expression of PD-L1.7 
Another study, which was published in the Lancet, found that 
objective response rate of BC patients via atezolizumab is 

different with the infiltration degree of immune cells, which 
is about 15%–27%.8 Moreover, the study indicated that the 
immune response of BC patients was associated with differ-
ent immune subtypes, but specific subtypes analysis was not 
carried out in the study. If immunotherapy was used without 
selection, the overall response rate of treatment was lower, 
and the incidence of irAEs was 41.1%, far higher than the 
objective response rate of immunotherapy.9–11 Different from 
the side effects of traditional chemotherapy, irAEs are more 
serious in some cases, such as acute kidney injury, pancreati-
tis, and even death in some severe cases, with an incidence 
of about 3%.12,13 The effect of immunotherapy is affected by 
the tumor immune microenvironment, and different patients 
show different therapeutic responses to immunotherapy, so 
there is marked individual variation in the clinical treatment 
outcome.14 In an era of personalized therapy, it is a major 
challenge for immunotherapy to identify the responders and 
nonresponders accurately. Moreover, the molecular mecha-
nisms of immune subtypes and immune escape mechanisms 
in bladder tumor microenvironment are not entirely clear.

Most of the previous studies on immunotherapy about BC 
have focused on the identification of new immunotherapeutic 
targets and early clinical trials of immunotherapy efficacy for 
BC.7,8,15 The study of BC immune subtypes is at an early stage 
and no universally applicable model proposed. Currently, the 
common clinical markers for predicting immune response 
are mainly the expression of single immune checkpoint mol-
ecules, such as PD-1, PD-L1, and CTLA-4. However, the 
expression of single immune checkpoint molecules has a lim-
ited predictive efficiency for immunotherapy responders, and 
the conclusions are inconsistent in several studies.7,16 In re-
cent years, many new predictive markers of immune response 
have been proposed, such as tumor mutation burden (TMB), 
somatic copy-number alterations (SCNAs), microsatellite in-
stability (MSI), T-cell inflammatory microenvironment, and 
others.17 Despite the presence of multiple predictive markers, 
the complexity and heterogeneity of tumor immune micro-
environment increase the difficulty of immunotherapy and 
affect the effectiveness of immunotherapy, and there are still 
no unified standard markers for clinical application.18 An ac-
curate understanding of this heterogeneity contributes to the 
molecular subtypes of BC and the management of individu-
alized therapy. Therefore, it is very necessary to thoroughly 

sequencing. Taken together, we explored the immune molecular subtypes and their 
mechanisms of BC, and these results may provide guidance for the development of 
new BC immunotherapy strategies.
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study the overall immune status, identify the immune  
molecular subtypes.

This study aims to comprehensively explore the hetero-
geneous immune molecular phenotypes of BC and its clini-
cal significance. We screened the expression profiles of 303 
differentially expressed immune-related genes in BC patients 
from the TCGA database, and successfully identified 4 mo-
lecular subtypes of BC. By comparing the clinical character-
istics, immune cells infiltration, the expression of checkpoint 
genes and HLA genes, and gene mutation status of different 
subtypes, we identified different clinical and immunologi-
cal characteristics of 4 subtypes. Among 4 subtypes, Cluster 
2 has a decreased immune profile, while Cluster 4 has the 
highest expression of immune characteristics, and similar to 
the immune environment of normal bladder tissue. Moreover, 
the establishment of decision tree model, by the principle of 
random forest screening factors, can achieve accurate sub-
type prediction for clinical BC patients with high-throughput 
sequencing. These findings prove the feasibility of predict-
ing immune responders via immune molecular subtypes, and 
provide guidance for the development of new BC immuno-
therapy strategies.

2  |   MATERIALS AND METHODS

2.1  |  Data acquisition and analysis

The mRNA-seq data (counts format), simple nucleotide vari-
ation (SNV) data, clinical data of 409 BC patients were down-
loaded from the TCGA database (https://cance​rgeno​me.nih.
gov/). The gene expression value of mRNA-seq was log2-
transformed for further exploration. The external validation 
cohort GSE13​3624 included 36 BC samples and 29 para-
cancer samples with high-throughput sequencing data were 
also downloaded from GEO database (www.ncbi.nlm.nih.
gov/gds/). Then 1830 immune-related genes were obtained 
from an immune gene set in the IMMport database (https://
www.immpo​rt.org/resou​rces). And 225 immune checkpoint 
gens and 19 human HLA genes were retrieved and obtained 
from National Center for Biotechnology Information website 
(www.ncbi.nlm.nih.gov/gene/). All statistical extraction and 
analyses were performed using R 3.4.0 (R Foundation for 
Statistical Computing) software.

2.2  |  Identification of BC subtypes based 
on the differentially expressed immune genes

The differentially expressed genes (DEGs) for 411 BC sam-
ples and 19 para-cancer samples from TCGA were analyzed 
with the edgeR package, and |log2FC| >1.5 and p < 0.05 were 
set as the cutoff for DEGs. Veen algorithm was performed 

on the obtained DEGs and 1830 immune genes from the 
IMMport database, and obtained differentially expressed im-
mune genes in BC. The ConsensusClusterPlus package19 was 
utilized to perform consistent clustering and screen of molec-
ular subtypes based on the differentially expressed immune 
gene expression profiles. The optimal cluster number was de-
termined by cumulative distribution function (CDF) curves 
of the consensus score. The immune genes from IMMport 
database with high expression in each subtype were identi-
fied using edgeR package and the cutoff was set |log2FC| 
>1.5 and p < 0.05. The top 100 upregulated genes in each 
subtype were selected and subjected to heatmap analysis and 
three-dimensional principal component analysis (PCA) to 
distinguish different molecular subtypes. Moreover, Kaplan–
Meier analysis and log-rank test for overall survival were 
conducted for all upregulated immune genes in each subtype 
whose cutoff level was set at the median value of the expres-
sion value with the aid of survival package, and the most five 
prognosis-related genes were displayed.

2.3  |  Clinical characteristics difference 
among four immune subtypes

The relationship between clinical characteristics and immune 
subtypes was analyzed and visualized. Kaplan–Meier curves 
and log-rank tests were used to compare the overall survival 
and disease free survival of the 4 subtypes. Chi-square test 
and one-way ANOVA were used for the comparison of other 
clinical features, which include age, sex, TNM stage, high- 
and low-grade, and clinic pathological stage.

2.4  |  Comparison of immune characteristics 
among four subtypes

Univariate Cox regression analysis was performed on 225 
immune checkpoint genes in BC patients, and genes with 
p < 0.05 were selected. The differences of prognostic immune 
checkpoint genes among 4 subtypes were demonstrated in 
the form of heatmap via pheatmap package. Then, Kruskal–
Wallis test was conducted to compare the differences of 
the 4 clinical common immune checkpoint genes (PDCD1, 
PDCD1LG2, CTLA4, and IDO1) and the 4 genes with the 
most significant differences among 4 subtypes (BACH2, 
LRRC32, SLFN11, and WWTR1), and ggplot2 package was 
used for the drawing of boxplot. Nineteen HLA genes were 
compared using heatmap and boxplot. The heatmap is drawn 
via pheatmap package, while the boxplot is drawn via ggpubr 
package.

Immune cells and immune-related scores are important 
factors in the tumor immune microenvironment. We used 
MCPcounter20 R package and TIMER website (http://timer.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
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http://www.ncbi.nlm.nih.gov/gene/
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cistr​ome.org/)21 to calculate and obtain scores of 10/8 types 
of immune-related cells, respectively. The stromal score, im-
mune score, and ESTIMATE score were achieved using es-
timate R package.22 The immune cells and immune-related 
scores obtained were compared and demonstrated in the form 
of heatmap via pheatmap package.

2.5  |  Comparison of gene mutations among 
four subtypes

It is well known that the occurrence of cancer is the result 
of the accumulation of genetic mutations. TMB refers to a 
total number of coding errors, base substitutions, gene inser-
tions, or deletions, etc. detected per million bases in somatic 
cells, and it is also considered to be a promising marker for 
predicting immune efficacy.23 First, we compared the over-
all mutation status of 4 subgroups of BC patients, including 
TMB of 4 subtypes, the number of mutated samples and the 
proportion of mutated genes. Then, the SNV data of each 
subtype patients were extracted. The Maftools package24 was 
used to analyze the overall states of gene mutations in each 
subtype, and the top 30 genes with the highest frequency of 
mutation in each subtype were shown in waterfall plots. The 
genes with mutation frequency greater than 8 in each subtype 
were shown in the form of word cloud plot via wordcloud2 
package.

2.6  |  Co-expression genes analysis and 
pathways analysis

Weighted gene co-expression network analysis (WGCNA)25 
is a comprehensive algorithm used to perform analysis of 
various aspects of weighted correlation networks. The im-
mune genes with high expression in each subtype were se-
lected for co-expression analysis via WGCNA package. 
First, adjacency was calculated from the soft threshold power 
β, and the soft threshold power β is tested via function soft-
Connectivity in WGCNA. Second, the expression matrix 
is converted to an adjacency matrix, and the frequency of 
different connectivity points in the adjacency matrix is ana-
lyzed. Third, the adjacency matrix is transformed into a topo-
logical matrix. Modules were detected through hierarchical 
clustering and dynamic tree cut function with the minimum 
number of genes was set at 30 per module, and then merged 
the modules with a height cut of 0.25. Fourth, we calculated 
and visualized the correlation between modules and clinical 
characteristics. Information on genes in each module was 
used for further analysis.

To explore the biological functions and pathways of 
gene modules, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis was performed using 

clusterProfiler package and the cutoff set as false discovery 
rate (FDR) <0.05 and count ≥4. The main associated path-
ways of each module were visualized by ggplot2 package. 
The Cytoscape 3.7.126 was used to demonstrate the associa-
tion of 6 modules with all enriched pathways.

2.7  |  Construction of decision tree model

WGCNA analysis suggested that the brown module was the 
most related module to BC subtype. We set 411 BC sequenc-
ing samples as training set, and selected the expression matrix 
(log2-transformed) of 79 genes in the brown module as the 
characteristic variables of the model. Through the algorithm 
of random forest with setting mtrys as 5 and ntrees as 600, 
the random forest model was constructed via random Forest 
R package. Then, the rpart package was used to construct a 
decision tree model for the most important five genes, so as 
to predict the subtypes of clinical patients with sequencing.

2.8  |  Internal validation and external 
validation of the four subtypes

We randomly selected 30% (123) samples from 411 BC 
mRNA expression profiles as an internal validation set. The 
confusion matrix of the predicted results is displayed and 
evaluated the internal stability of the decision tree model. 
There were 36 BC samples and 29 para-cancer samples with 
high-throughput sequencing data in GSE13​3624, and highly 
consistent with the training set for its high-throughput se-
quencing. The decision tree model was used to predict sub-
types of 65 samples. TIMER website and estimate package 
were used to calculate the contents of 8 immune cells and 
immune-related scores of the 36 tumor samples in GSE13​
3624, and HLA genes expression profiles were also extracted. 
All of these features were shown in the form of heatmap via 
pheatmap R package, and compared with the immune char-
acteristics of the original training set subtypes to test its pre-
dictive efficacy.

3  |   RESULTS

3.1  |  Identification of BC subtypes based on 
the differentially expressed immune genes

Analysis of DEGs (Figure  1A) indicated that there were 
3203 DEGs in BC and para-cancer. Veen calculation 
(Figure  1B) result showed a total of 303 differentially ex-
pressed immune genes (Table  S1). The 303 genes expres-
sion profiles were used to explore the immune subtypes of 
BC via ConsensusClusterPlus package. The optimal division 

http://timer.cistrome.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
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F I G U R E  1   Screening the differentially expressed immune genes of bladder cancer. (A) Volcano plot of the distribution of differentially 
expressed genes in bladder cancer. Red/blue symbols classify the upregulated/downregulated genes according to the criteria: |log2FC| > 1.5 and 
p-value < 0.05. (B) Veen calculation was performed for the differentially expressed genes in bladder cancer and the 1830 immune-related genes 
obtained from the IMMport database, and to obtain 303 differentially expressed immune genes in bladder cancer

F I G U R E  2   Identification of BC immune subtypes based on 303 differently expressed immune genes. (A) Consensus clustering cumulative 
distribution function (CDF) for k = 2–9. Different colors reflect different cluster numbers, the horizontal axis represents the consensus index, the 
vertical axis stands for CDF. (B) Relative change in area under CDF curve for k = 2–9. (C) Heatmap of sample clustering at consensus k = 4. (D) 
Intersection Venn diagram of significant high expression immune genes of 4 subtypes. (E) Three-dimensional principal component analysis (PCA) 
according to the expression profiles of the top 100 significant high expression genes. (F) Heatmap of the top 100 significant high expression genes 
in 4 subtypes. Red represents high expression, and blue represents low expression
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was reached when k  =  4 based on the CDF curves of the  
consensus score (Figure 2A,B). The 411 tumor samples were 
classified into 4 molecular subtypes underlying the 303 im-
mune gene expression profile (Figure 2C). Among the 1830 
immune-related genes, 73 genes in Cluster 1, 63 genes in 
subtype Cluster 2, 207 genes in Cluster 3, and 230 genes in 
Cluster 4 were significantly upregulated (Figure 2D). More 
importantly, there are 552 genes expressed upregulated in 
each subtype, and only 1 gene overlapped in cluster 2 and 
cluster 3. Therefore, each subtype has relatively independent 
immune genes, and with significant differences among sub-
types. Then, the top 100 upregulated genes in each subtype 
were extracted to construct PCA (Figure  2E) and heatmap 
(Figure 2F), which also showed a distinct expression pattern 
in the immune upregulated gene profiles of each subtype. 
Furthermore, we made Kaplan–Meier survival analysis and 
log-rank test for the DEGs of 4 subtypes, the most significant 

results are shown in Figure 3. These genes can be seen as 
prognostic-related gene markers of each subtype.

3.2  |  Clinical characteristics of the 
four subtypes

To explore the relationship between the BC clinical features 
and different subtypes, some clinical characteristics, including 
age, sex, TNM stage, high- and low-grade, and clinic patholog-
ical stage, were analyzed and shown in Table S2. Figure 4A,B 
shows significant differences in overall and disease-free sur-
vival among the 4 subtypes, among which Cluster 2 patients 
have a good survival prognosis, while Cluster 4 patients have 
the poorest prognosis. Figure 4C–I indicates that among the 4 
subtypes, the cluster 2 patients' age was lower, and the TNM 
stage and clinicopathological stage were earlier, and most of 

F I G U R E  3   Kaplan–Meier analysis of overall survival for main DEGs of each subtype. Kaplan–Meier survival analysis and log-rank test for 
the upregulated DEGs of each subtype were conducted, and the most five prognosis-related genes were displayed. The 4 rows are Cluster 1, Cluster 
2, Cluster 3, and Cluster4, respectively
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low-grade BC patients are also in Cluster 2. The clinical char-
acteristics of Cluster 4 are the opposite of Cluster 2.

3.3  |  The difference of immune 
characteristics among four subtypes

Immune checkpoint genes are currently the target genes in 
clinical immunotherapy. First, univariate Cox regression 
analysis was performed on the relationship between 225 im-
mune checkpoint genes and prognosis of BC patients. The 
results were shown in Table  S3, and 32 immune check-
point genes with p  <  0.05 were selected for further study. 
Figure 5A shows that these genes are low expressed in Cluster 
2 and high expressed in Cluster 3 and Cluster 4. Figure 5B–
E shows the expression difference of 4 clinical common 
immune checkpoint genes, namely PDCD1, PDCD1LG2, 
CTLA4, and IDO1. Figure 5F–I shows the 4 genes (BACH2, 
LRRC32, SLFN11, and WWTR1) with the most significant 
differences among the 4 subtypes. These immune checkpoint 

genes were all low expressed in Cluster 2 and relatively high 
expressed in Cluster 3 and Cluster 4.

HLA genes are important immune genes in human body, 
and mainly involved in the immune response as the pre-
senting molecules of endogenous and exogenous antigens. 
Tumor-induced immune escape could alter the expression of 
HLA genes, allowing the tumor to evade the immune system 
without being killed.27 Figure 6A,B shows the difference of 
19 HLA genes among the 4 subtypes in the form of heat-
map and boxplot, respectively. Same as immune checkpoint 
genes, the expression of HLA genes in Cluster 2 is low, in 
line with the immunosuppressive subtype, and the immune 
escape occurs in tumor tissue, while the expression was high 
in Cluster 4.

As for immune cells and immune scores, MCPcounter, 
TIMER and estimate three algorithms were used to calculate 
and obtain immune cells and immune scores in BC samples 
from TCGA cohort. These features were shown as heat maps 
in Figure 7A–C. Among them, the contents of various im-
mune cells, stromal score, immune score, and ESTIMATE 

F I G U R E  4   Relationship between 4 immune subtypes and clinical characteristics. (A, B) K-M curves showing overall survival and disease-free 
survival in patients with 4 subtypes, respectively. Different colors represent different subtypes. The p-value was calculated using the log-rank test 
by comparing 4 subtypes. (C) The age distribution of each subtype of patients. (D–I) Distribution ratio of gender, TNM stage, high- and low-grade, 
and clinic pathological stage of each subtype, respectively
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scores in Cluster 2 subtype are low expression, and in Cluster 
4 are high expression.

In summary, most of the immune signatures are down-
regulated in subtype Cluster 2 and upregulated in subtype 
Cluster 4 comparison with the other subtypes, which suggests 
that Cluster 2 had a decreased immune profile and Cluster 4 
had an enhanced immune profile. It also suggests that the im-
mune characteristics in bladder cancer patients are increased 
or decreased synchronously.

3.4  |  The difference of gene mutations 
among four subtypes

The higher the TMB, the higher the gene mutation frequency 
of tumor cells, and the more tumor antigens carried on the 
cell surface and vulnerable to attack by the body's immune 
system, and the better the efficacy of immunotherapy could 
be achieved.23 As shown in Figure  8A, Cluster 2 has the 

highest TMB and may have a better immunotherapy effect. 
Figure 8B,C shows the total number of samples and propor-
tions of mutation genes among the 4 subtypes, respectively. 
Cluster 4 has the fewest total number of mutated samples 
and the proportion of mutated genes. In addition, Figure 8D 
shows the top 30 genes of mutation frequency in the 4 sub-
types in the form of waterfall map. Figure 8E–H shows the 
main mutation genes with a mutation frequency greater 
than 8. From these figures, it can be found that the muta-
tion patterns of the 4 subtypes are different. TNN and FGFR3 
mutation frequency are the highest in Cluster 2, while P53 
mutation is dominant in other subtypes.

3.5  |  Co-expression analysis and KEGG 
pathways analysis

To explore the potential biological pathways associated with 
BC immune subtypes and immune escape, WGCNA, and 

F I G U R E  5   The expression difference of immune checkpoint genes in 4 subtypes. (A) Heatmap shows the expression levels of 32 prognostic 
immune checkpoint genes among 4 subtypes. (B–E) Comparison of 4 common immune checkpoint genes among 4 subtypes, namely PDCD1, 
PDCD1LG2, CTLA4, IDO1. Gene expression were log2-transformed and P value is the result of Kruskal–Wallis test. (F–I) Comparison of 4 
checkpoint genes with the most significant differences among 4 subtypes, namely BACH2, LRRC32, SLFN11, and WWTR1
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KEGG enrichment analysis were conducted. To construct a 
scale-free network, the soft threshold power β was set as 2 
(Figure 9A,B). Figure 9C shows that logarithm log(k) of the 
node with the connection degree k is negatively correlated 
with the logarithm log(P[k]) of the probability of the node, 
and the correlation coefficient is 0.92. Figure 9D shows the 
frequency of different connectivity points in the adjacency 
matrix. Finally, a total of 6 modules with all immune-related 
differentially expressed genes were identified and each mod-
ule was assigned with a unique color as showed in Figure 9E. 
Each module and its corresponding number of genes was dis-
played in Table 1, and the specific genes within six modules 
obtained were displayed in Table S4. With the value of diss-
TOM as the coordinate, the positions of genes of each module 
in the three-dimensional space are displayed as Figure 9F. The 
552 immune-related genes were clearly divided into 6 mod-
ules, and the genes within each module were consistent. Then, 
the correlation between each module and clinical characteris-
tics (Figure 9G), and subtype (Figure 9H), was analyzed and 
visualized. According to the results, the brown module is the 
most correlated module with immune subtypes.

Subsequently, KEGG enrichment analysis of each module 
genes showed that the interaction pathways in each module 

(Figure  10A) were mainly enriched in neuroactive ligand-
receptor interaction, cytokine-cytokine receptor interaction, 
primary immunodeficiency, viral protein interaction with 
cytokine and cytokine receptor, natural killer cell-mediated 
cytotoxicity, graft-versus-host disease, regulation of actin 
cytoskeleton, and MAPK, Rap1, Ras, IL-17, ErbB, B-cell 
receptor, and other signaling pathways. These pathways, 
which are associated with the immune escape of BC, play 
an important role in the transformation of different subtypes 
of BC. The relationship network of enriched pathways in 
these modules was visualized as Figure  10B, and showed 
that blue module genes and green, red, brown, and yellow 
module genes have many common pathways. In addition, the 
red module and brown module also have more common path-
ways. These modules may share similar regulatory processes 
in the 4 subtypes.

3.6  |  Construction of decision tree model

In order to make the subtypes available for clinical work, 
we constructed a decision tree model using 79 genes in the 
brown module. According to Figure 11A, when mtry set as 

F I G U R E  6   The expression difference of HLA genes in 4 subtypes (A) Heatmap shows the expression levels of 19 HLA genes among 4 
subtypes. Red indicates high expression and blue indicates low expression. From left to right are Cluster 1, Cluster 2, Cluster 3, and Cluster 4. 
(B) Comparison of 19 HLA genes among 4 subtypes in the form of boxplot. The horizontal axis represents different genes and subtypes, and the 
vertical axis represents the amount of gene expression (log2-transformed)



5384  |      CAO et al.

5, the model has a low error. Figure 11B shows that when 
ntrees set as 600, the model tends to stabilize. Therefore, the 
random forest model is constructed by using the above set 
values. Figure 11C shows the top 20 most important genes 
ranked by mean decrease accuracy and mean decrease gini in 
the random forest model. Figure 11D is the most accurate de-
cision tree model in the random forest, which can be used to 
predict the immune subtypes of BC patients with sequencing.

3.7  |  Internal validation and external 
validation of the four subtypes

Figure  12A presents the confusion matrix in the training 
sets of 411 BC samples, with an accuracy of 90.5%. And 
Figure 12B is the confusion matrix of the internal valida-
tion set, with an accuracy of 91.8%, which indicates that 
the model has high fitting ability in the internal samples. 
External validation was performed on the 36 BC samples 

from GSE13​3624, of which Cluster 1/2/3/4 has 9/22/2/3 
samples, respectively (Table  S5). By comparing various 
immune features in the external validation set (Figure 12C–
E), it could be found that the differences of immune fea-
tures between the external validation set and the training set 
were highly consistent. Therefore, the model has good sta-
bility and applicability. Notably, both the training set and 
the external validation set are high-throughput sequencing 
samples. Additionally, we made subtype predictions for 29 
para-cancer samples in GSE13​3624 via the decision tree 
model, and 24 of them belonged to Cluster 4. For Cluster 
4 has the highest expression of immune characteristics 
among all subtypes, it can be generally considered that 
normal bladder tissues have higher expression of immune 
characteristics. By comparing the immune characteristics 
of 4 subtypes, we believe that the immune subtype of nor-
mal bladder tissue is mostly Cluster 4, and different levels 
of immune escape and immune attenuation occur in the car-
cinogenesis of BC.

F I G U R E  7   Different infiltration of immune cells in the 4 molecular subtypes of bladder cancer. (A) Expression scores of 6 immune cells 
obtained via TIMER website in the 4 subtypes of bladder cancer. Heatmap shows the associated gene expression value, with red indicating high 
expression and blue indicating low expression. (B) Gene expression scores of 10 immune cells obtained via MCPcounter calculation in 4 subtypes 
of bladder cancer. (C) The tumor stromal scores, the immune scores and the ESTIMATE scores in 4 molecular subtypes of bladder cancer

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
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4  |   DISCUSSION

BC is the most common tumor of the urinary system, and 
its treatment progress has been slow. In recent years, the in-
troduction of immune checkpoint inhibitors has provided a 
treatment option for BC. The identification of BC immune 
subtypes can classify the heterogeneous tumor microenviron-
ment of BC, which is helpful for the biological research of 
BC and individualized immunotherapy. The study analyzed 
the heterogeneous BC microenvironment subtypes and re-
lated clinical significance systematically using public data 
extracted from the TCGA cohort. Four immune subtypes 
were found to exhibit significantly different clinical charac-
teristics, immune escape mechanisms, genomic alterations, 
and clinical outcomes. Finally, these subtypes can be well 
identified by the decision tree model and external valida-
tion in the GEO database. For clinical patients with bladder 
cancer, high-throughput sequencing, and immune molecular 
subtypes prediction can be performed, and Cluster 2 patients 
can be treated with immunotherapy for a better immune 

response. This study provides new ideas and strategies for 
bladder cancer immunotherapy, and to some extent, proves 
the feasibility of predicting immune responders via immune 
molecular subtypes.

Previous studies have analyzed BC subtypes based on im-
mune cell expression in the immune environment.28 However, 
its clinical practice value is limited because of the difficulty 
in determining cells content. Moreover, the BC subtypes 
based on its pathological characteristics are related to im-
munotherapy checkpoint genes expression, but it could not 
accurately distinguish the complex microenvironment sub-
types of BC.29 In this study, 4 immune molecular subtypes 
of BC were identified. Moreover, the decision tree model, 
which constructed by the principle of random forest screen-
ing factors, can achieve accurate prediction for subtypes of 
BC patients with high-throughput sequencing. Through ex-
ternal validation of samples from GSE13​3624, we found 
that 24 of 29 para-cancer samples belonged to Cluster 4 in 
the decision tree model prediction results. Although Cluster 
4 had higher immune characteristics expression compared 

F I G U R E  8   Comparison of genes mutations among 4 subtypes. (A) Comparison of tumor mutation burden (TMB) among the 4 subtypes, and 
p-value is the result of one-way ANOVA. (B) The number of mutated samples in 4 subtypes of bladder cancer. (C) The proportion of the total 
number of mutated genes in all transcriptome genes in 4 subtypes of bladder cancer. (D) The waterfall map shows the mutation distribution of the 
top 30 genes with mutation frequency in the 4 subtypes. (E–H) The word cloud plot represents the genes with a frequency greater than 8 in each 
subtype. The size of the gene names indicates the frequency of the gene mutations. From left to right are Cluster 1, Cluster 2, Cluster 3, and Cluster 
4

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
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with other subtypes, it may be called the immune normal 
subtype, and Cluster 1, Cluster 2, and Cluster 3 occur vary-
ing degrees of immune attenuation. This indicates that there 
are multiple mechanisms of immune escape and transforma-
tion of multiple immune subtypes during the development 
of BC. Additionally, it also indicates that it may be unrea-
sonable to call the subtype with high immune characteristics 
as the immune-enhanced subtype in some subtypes-related 
studies due to the lack of comparison with normal adjacent 
tissues.30,31

The clinical characteristics of 4 immune subtypes were 
significantly different. For both overall survival and disease-
free survival, Cluster 2 patients have the best prognosis, 
while Cluster 4 subtypes had a poor prognosis. Compared 
with other subtypes, Cluster 2 patients tend to have lower 
age, early TNM stage, and clinicopathological stage. And 
most of the low-grade BC patients are Cluster 2. The clini-
cal characteristics of Cluster 4 are the opposite of Cluster 2. 
Cluster 2 patients have low-expression immune characteris-
tics and a better prognosis than other subtypes with higher 

F I G U R E  9   Weighted gene co-expression network analysis (WGCNA) of high expression immune genes of 4 subtypes in TCGA cohort. (A) 
Analysis of the scale-free fit index for various soft threshold powers β. (B) Analysis of the mean connectivity for various soft threshold powers. 
(C) Checking the scale free topology when β = 2. (D) Histogram of connectivity distribution when β = 2. (E) Hierarchical cluster analysis was 
conducted to detect co-expression gene modules with corresponding color assignments. Different colors represent different modules. (F) The three-
dimensional map shows the distribution of genes in the six modules in cubical space. (G) Heatmap showing the correlation between feature vectors 
of six modules and clinical characteristics. (H) Heatmap showing the correlation between feature vectors of six modules and 4 BC subtypes
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immune characteristics. This is contrary to the prognosis of 
the immunodeficiency subtypes of ovarian cancer and hepa-
tocellular carcinoma,30,31 suggesting that the attenuation of 
immune characteristics of BC may be a potential mechanism 
of self-protection.

To explore the immune-related characteristics difference 
among 4 subtypes, we analyzed and compared differences 
in immune checkpoints, HLA genes, immune cells, and 
immune-related scores among the 4 subtypes. These immune 
checkpoint genes and HLA genes are all low expressed in 
Cluster 2 and high expressed in Cluster 3 and Cluster 4. The 
algorithms MCPcounter, TIMER and estimate were used to 
estimate common immune cells and immune-related scores. 
Heatmap comparison results show that Cluster 2 is an im-
mune reduced subtype, while Cluster 4 was immune normal 
subtype. The occurrence of immune escape in BC is not 
only the change of immune checkpoint genes expression, 
but also the synchronous change of many immune charac-
teristics. This characteristic is consistent with other solid 
tumors.28,30,31 There may exist a possible immune escape-
driven mechanism, similar to the tumor-driven mechanism, 

T A B L E  1   The number of co-expression genes of 6 modules

Modules Genes

Black 32

Blue 94

Brown 79

Green 263

Red 35

Yellow 49

F I G U R E  1 0   KEGG pathways analysis with co-expressed genes in the 6 modules. (A) Main interaction pathways of the 6 modules genes. The 
size of the point represents the proportion of genes enriched in the specific pathway in each module genes, and the color represents the p-value of 
enrichment analysis. (B) Cytoscape software presents the all enriched pathways associated with co-expressed genes in the 6 modules. The pale red 
ellipsoids represent different enrichment pathways and the hexagons with different colors represent different co-expressed gene modules
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that causes different patients to convert to different immune 
subtypes.

BC is a tumor with a large number of gene mutations, par-
ticularly in chromatin regulatory genes, which occur more fre-
quently than other common cancer.32 TMB is an important 
indicator of gene mutation, and some studies have shown the 
TMB as a predictive biomarker for immunotherapy due to its 
refection of the overall neo-antigens load.33,34 Among the 4 
subtypes, Cluster 2 had the highest TMB and may have a good 
immunotherapeutic effect. Meanwhile, Cluster 4 had a low 
TMB and the least total number of mutated genes and the pro-
portion of mutant samples. The waterfall map and word cloud 
map were used to analyze the main gene mutation landscapes 
in 4 subtypes, and it was found that the gene mutation patterns 

of 4 subtypes were significantly different. TNN and FGFR3 
mutation frequency are the highest in Cluster 2, while P53 is 
dominant in other subtypes. TNN, FGFR3, and P53 are com-
mon mutated genes in BC.35,36 FGFR3 mutations are common 
in nonmuscular invasive BC and associated with favorable BC 
prognosis.37 P53, as an important tumor suppressor gene, is 
mutated in more than 50% of human malignant tumors, thus 
promoting the occurrence and development of tumors.38 TTN 
is a gene encoding sarcomere, and there has been no report on 
BC. The mutation of these genes not only plays an important 
role in the carcinogenesis of BC, but also participates in the 
transformation of different subtypes and immune escape.

Cancer cells and immune system form a complex immune 
network between their struggle, and which is also the premise 

F I G U R E  1 1   The construction of random forests and decision tree model. (A, B) The selection of two major parameters (mtry, ntrees) of 
the random forest model construction. When mtry set 5, the error of the model is the smallest, so the best decision tree model should include 
5 variables. And ntrees >600, the model has high stability. (C) The top 20 most important genes ranked by mean decrease accuracy and mean 
decrease gini in the random forest model. (D) Optimal decision tree model in random forest. Here, each step is classified according to different 
gene expressions; In each rectangle, the first column is the subtype with the largest proportion in this part; The second column shows the proportion 
of the 4 subtypes in this part; The third column is the proportion of this part in the total samples
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and guarantee of tumor immune escape. The maladjustment 
of immune checkpoint PD-1 is one of the main mechanisms 
for tumor cells to achieve immune escape.39 However, the 
specific mechanisms in different tumors need further study. 
In this study, the 552 subtype-related immune genes were 
divided into 6 modules by WGCNA analysis, among which 
the brown module was the most correlated with the subtype 
of BC. The KEGG pathways enrichment analysis shows 
that pathways associated with the immune subtypes are as 
follows, neuroactive ligand-receptor interaction, cytokine-
cytokine receptor interaction, primary immunodeficiency, 
viral protein interaction with cytokine and cytokine recep-
tor, natural killer cell-mediated cytotoxicity, graft-versus-
host disease, regulation of actin cytoskeleton, and MAPK, 
Rap1, Ras, IL-17, ErbB, B-cell receptor, and other signaling 
pathways. Of the enrichment results, Natural killer cell (NK)-
mediated cytotoxicity can regulate NK cells in tumor micro-
environment and plays an important role in monitoring and 
controlling tumor.40,41 The main activated receptor of NK 
killing early tumor cells is natural cytotoxicity receptors and 
NKG2D.40 B-cell receptor plays a major role in maintaining 
immunotherapy and self-tolerance. The existence of B cells 
and tertiary lymphoid structures in tumor tissues can enhance 

the effect of immunotherapy.42,43 IL-17- induced a variety of 
complicated factors and chemokines can promote the recruit-
ment of a variety of immune cells, to play a role in immune 
promotion.44 MAPK pathway is one of the main downstream 
pathways associated with IL-17.45 These are the main path-
ways directly related to immunity, and other pathways also 
play important roles in tumor immune escape and deserve 
further study. In particular, regulation of actin cytoskeleton is 
one of the most interesting pathways associated with immune 
escape in BC. A study shows that ATF3 could inhibit the me-
tastasis of BC cells by upregulation GSN-mediated actin re-
modeling,46 but the relationship between bladder muscle and 
immune is not clear. In this study, TTN, as a gene encoding 
sarcomere, was the most common mutant gene in Cluster 2, 
which also indicates the importance of muscle tissue in BC.

This study has some limitations. First of all, the samples 
of each subtype are relatively small in the training and valida-
tion sets, and it was easy to miss some relatively rare immune 
subtypes of BC. Second, in order to explore the immune sub-
types comprehensively, more clinical and demographic char-
acteristics of BC patients should be included. In future studies 
on BC immune subtypes, a larger sample analysis should 
be carried out to find some rare clinical immune subtypes. 

F I G U R E  1 2   Internal validation and external validation. (A) The confusion matrix of the training set. The abscissa represents the correct 
subtype samples number, and the ordinate represents the subtype samples number predicted by the decision tree model. (B) The confusion matrix of 
the internal validation set. (C) Expression score of the tumor stromal scores, the immune scores and ESTIMATE score were calculated via estimate 
R package in 4 predicted molecular subtypes of GSE13​3624. Heatmap shows the associated expression value, with red indicating high expression 
and blue indicating low expression. (D) Expression scores of 6 immune cells obtained via TIMER website. (E) HLA genes express differently in 
the 4 predicted subtypes

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133624
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Moreover, research on the immune escape-driven mechanism 
and the transformation of immune subtypes during the car-
cinogenesis of BC may have more important findings.

In conclusion, the current study suggests that the im-
mune phenotypes of BC could be classified into 4 molecular 
subtypes with potential immune escape mechanisms in BC. 
Patients of different subtypes have significant differences in 
the immune checkpoint molecules, HLA genes, gene muta-
tions, immune cells, and prognostic, etc. Specific functional 
pathways or gene mutations may drive the formation of mi-
croenvironment immune subtypes. In addition, through the 
construction of decision tree model, the subtype of BC pa-
tients with high-throughput sequencing could be accurately 
predicted. These results may provide guidance for developing 
novel strategies of immunotherapy in BC, and to a certain 
extent, prove the feasibility of predicting immune response 
via immune molecular subtypes.
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