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ABSTRACT

Introduction: Studies have shown that genetic
variation and environmental factors are associ-
ated with individual differences in therapeutic
efficacy and side effects of opioids. However,
the focus of these studies has been on a single
factor of single-nucleotide polymorphisms
(SNPs) or haplotypes, for which results have
rarely been validated. For complex traits, such
as cancer pain and opioid response, interactions
between multiple genetic variation and

environmental factors need to be considered to
explain the opioid individual differences.
Methods: We conducted an exploratory two-
stage cross-sectional study with 1027 Chinese
patients who were taking strong opioid medi-
cations for their cancer pain, and genotyped
110 SNPs to explore the association of SNPs,
haplotypes, gene–gene and gene–environment
interactions with opioid dose, pain relief, and
opioid-induced constipation.
Results: Due to the failure to meet Ben-
jamini–Hochberg criteria in the discovery stage
or to be validated in replication stage, no asso-
ciation was found between SNPs, haplotypes,
paired SNP–SNP interactions or multi-dimen-
sional gene–gene interactions and opioid
response. However, for gene–environment
interactions, optimal models have been con-
structed in all phenotypes of opioid response.
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Conclusions: This study reveals for the first
time that construction of multidimensional
gene–environment interactions enables better
interpretations of the effect of genetic variation
and environmental factors on the opioid
response in patients with cancer pain.
Trial registration: Chictr.org.cn, identifier,
ChiCTR2000033576.

Keywords: Cancer pain; Opioid response;
Individual difference; Gene–gene interaction;
Gene–environment interaction; GMDR

Key Summary Points

This two-stage cross-sectional study
explored the association of SNPs,
haplotypes, gene–gene and
gene–environment interactions with
opioid dose, pain relief, and opioid-
induced constipation.

No association was found between SNPs,
haplotypes, paired SNP–SNP interactions
or multi-dimensional gene–gene
interactions and opioid response.
However, optimal gene–environment
interaction models have been constructed
in all phenotypes of opioid response.

Construction of multidimensional
gene–environment interactions enables
better interpretations of the effect of
genetic variation and environmental
factors on the opioid response in patients
with cancer pain.

INTRODUCTION

Strong opioids are the mainstay of analgesic
therapy in moderate-to-severe cancer-related
pain management [1, 2]. However, the efficacy
and side effects of opioids vary considerably
among individuals, which results in inadequate
pain control in 10–30% of patients with cancer
pain [3, 4]. Both genetic and environmental

factors contribute to individual differences in
opioid response. Regarding genetic factors,
numerous studies have identified that genetic
polymorphisms of drug metabolizing enzymes
(cytochrome P450 family 3 subfamily A mem-
ber 4 [CYP3A4], CYP2D6, UDP glucuronosyl-
transferase family 2 member B7 [UGT2B7]),
membrane drug transport proteins (ATP bind-
ing cassette B1 [ABCB1]), and molecules
involved in opioid receptor signaling (opioid
receptor mu 1 [OPRM1], opioid receptor kappa
1 [OPRK1], opioid receptor delta 1 [OPRD1],
potassium inwardly rectifying channel subfam-
ily J member 6 [KCNJ6]) and pain regulation
(catachol-omethyltransferase [COMT]), which
are associated with the efficacy, dose, and toxi-
city of opioids [5–8]. However, results from
different studies are inconsistent. For example,
the European Pharmacogenetic Opioid Study
(EPOS), the largest study to date, which inclu-
ded 2294 European patients with cancer pain,
did not find any association between opioid
dose and 112 candidate SNPs in 25 genes [9]. In
two genome-wide association studies (GWAS),
although three SNPs were identified to be asso-
ciated with pain relief, opioid efficacy, or opioid
sensitivity in patients with cancer pain, these
results have not been confirmed in subsequent
studies [10, 11]. Even for the most extensively
studied OPRM1 rs1799971, a recent meta-anal-
ysis revealed that there was only a statistically
significant association between the OPRM1
A118G polymorphism and pain relief after opi-
oid analgesia in Asian patients but not in Cau-
casian populations [12].

Given the complexity of pain biology and
the size of the human genome, conflicting
results on the association of genetic polymor-
phisms with opioid response may be explained
by variable study designs, sample heterogeneity,
small sample sizes, phenotype complexity, and
alternative statistical approaches [13]. Pain per-
ception and opioid response are complex traits,
which are likely to be the product of numerous
gene–gene and gene–environment interactions.
Therefore, it is necessary to detect gene–gene
and gene–environment interactions between
different genes for complex traits (e.g., pain or
opioid response). Most previous studies had
explored the relationship between SNPs and
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opioid analgesia [14–20]. Few studies have
investigated the interactions between genetic
variants from more than one gene. However,
these studies have been limited to two candi-
date SNPs at a time [18–20], and no further
studies have analyzed gene–environment inter-
actions. Even for the GWAS, there are some
limitations, such as only a limited number of
SNPs to reach the statistical threshold. Genetic
variants that do reach the statistical threshold
explain only a small proportion of phenotypic
variation, and the function of these variants
may be minor or isolated. GWAS cannot iden-
tify every genetic determinant or their interac-
tions [21].

Moreover, genetic studies for cancer pain
and opioid response in China are conducted
with sample size of ten to over 100 cases,
focusing on only a few SNPs and lagging behind
the United States, Europe, Japan, and other
countries or regions. There is evidence showing
significant differences in pain sensitivity and
analgesic effects between races and ethnicities
[22].

To address these issues, the present study was
designed to analyze polymorphisms of 136 SNPs
in 54 candidate genes in the Chinese popula-
tion and investigate the effects of genetic and
environmental factors on the efficacy and
adverse drug reaction (ADR) of opioids in Chi-
nese cancer pain patients by combining clinical
characteristics from multiple perspectives,
including SNPs, haplotypes, gene–gene interac-
tions, and gene–environment interactions to
provide a reference for individualized treatment
of cancer pain.

METHODS

Patient Enrollment Criteria

This exploratory cross-sectional study was divi-
ded into two stages, namely discovery and
replication stages. Subjects in the discovery
sample were enrolled from March 1, 2018 to
January 31, 2019 at a cancer center in a Grade
III Level A hospital in central China. Patients
were enrolled according to the following crite-
ria: (1) age[18 years; (2) had a histologically or

cytologically diagnosed malignant tumor; (3)
experienced cancer pain symptoms and
received regular treatment with strong opioids
(categorized as the third step for cancer pain
treatment by the WHO’s pain ladder for adults
[23]) for at least 72 h; and (4) voluntarily pro-
vided informed consent. Subjects in the repli-
cation sample were recruited at the same
medical center from April 1, 2019 to October
31, 2019, using the same enrollment criteria as
the replication sample. Each patient was only
enrolled in either the discovery or the replica-
tion sample. After informed consent was
obtained, blood samples that were remaining
following the hematology tests were collected
for DNA analysis. The clinical characteristics of
all patients are summarized in Table 1.

This study protocol was approved by the
medical ethics committee of Tongji Medical
College, Huazhong University of Science and
Technology (approval number: 2018-S016) and
registration was submitted to the China Clinical
Trials Registry (registration number:
ChiCTR2000033576). This study was performed
in accordance with the Helsinki Declaration of
1964 and its later amendments.

Patient Enrollment Procedure

The patient’s age, ethnicity, gender, body mass
index (BMI), tumor diagnosis, and known
localization of metastases, were collected on the
day of enrollment. The duration and dose of
opioids and number of adjuvant analgesics were
recorded. Opioid dose included fixed dose
administered in the past 24 h and rescue dose.
In this study, 81.91% of patients were on oxy-
codone hydrochloride sustained-release tablets.
Thus, all opioid doses were converted into oral
oxycodone equivalent daily dose (OEDD)
according to the conversion factors in the
NCCN adult cancer pain guideline [2]. Accord-
ing to the definition of opioid tolerance by FDA,
the patient was considered to be opioid tolerant
if for at least 1 week he or she had been receiv-
ing oral morphine 60 mg/day; transdermal fen-
tanyl 25 mcg/h; oral oxycodone 30 mg/day; or
an equianalgesic dose of any other opioid [24].
Characteristics of pain were assessed using the
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Table 1 Patient demographics and symptoms

Variables All patients Discovery sample Replication sample p
(N = 858) (N = 572) (N = 286)

Age 56.241 ± 11.449 56.360 ± 11.108 56.003 ± 12.118 0.667

Ethnic group

Han 858 (100.000) 572 (100.000) 286 (100.000) 1.000

Others 0 (0.000) 0 (0.000) 0 (0.000)

Gender 0.268

Male 517 (60.256) 337 (58.916) 180 (62.937)

Female 341 (39.744) 235 (41.084) 106 (37.063)

BMI 21.230 ± 3.601 21.340 ± 3.913 21.010 ± 2.872 0.209

Tumor diagnosis

Lung 348 (40.559) 220 (38.462) 128 (44.755) 0.227

Gastrointestinal 256 (29.837) 176 (30.769) 80 (27.972)

Breast 69 (8.042) 49 (8.566) 20 (6.993)

Genitourinary 57 (6.643) 40 (6.993) 17 (5.944)

Hematological 15 (1.748) 12 (2.098) 3 (1.049)

Unknown origin 7 (0.816) 5 (0.874) 2 (0.699)

Others 106 (12.354) 70 (12.238) 36 (12.587)

PS

0–1 734 (85.548) 489 (85.490) 245 (85.664) 1.000

[ 1 124 (14.452) 83 (14.510) 41 (14.336)

Tumor metastasis status

Bone 404 (47.086) 261 (45.629) 143 (50.000) 0.220

Liver 194 (22.611) 125 (21.853) 69 (24.126)

CNS 100 (11.655) 65 (11.364) 35 (12.238)

Lung 148 (17.249) 100 (17.483) 48 (16.783)

Other 400 (46.620) 273 (47.727) 127 (44.406)

Opioid tolerance 230 (26.807) 153 (26.748) 77 (26.923) 1.000

Pain category

Bone soft tissue pain 588 (68.531) 379 (66.259) 209 (73.077) 0.213

Visceral pain 85 (9.907) 59 (10.315) 26 (9.091)

Neuropathic pain 15 (1.748) 10 (1.748) 5 (1.748)

Mixed pain 170 (19.813) 124 (21.678) 46 (16.084)

NRS2002 score 3.144 ± 1.169 3.147 ± 1.173 3.138 ± 1.162 0.918
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modified Edmonton Staging System [25] and
performance status (PS) was assessed using the
Zubrod-ECOG-WHO scoring system [26].
Patients’ nutritional status was assessed using
the nutritional risk screening (NRS 2002) scor-
ing system [27] and mental status was assessed
using the Zung Self Rating Depression Scale
(SDS) [28].

Phenotypes

In this study, three phenotypes that reflect
opioid drug response in the past 24 h, namely
opioid dose, pain relief, and constipation, were
collected on the day of enrollment to examine
the relevance of genetic polymorphisms in
opioid drug efficacy and safety. The pain relief
phenotype in the study was semi-quantitative
and determined based on the Brief Pain Inven-
tory (BPI), one of the most widely used mea-
surement tools for assessing clinical pain [29].

Table 1 continued

Variables All patients Discovery sample Replication sample p
(N = 858) (N = 572) (N = 286)

Number of adjuvant analgesics 0.782 ± 0.749 0.762 ± 0.741 0.822 ± 0.763 0.273

SDS score 42.668 ± 8.891 42.710 ± 8.874 42.584 ± 8.939 0.845

ALT (U/l) 32.457 ± 45.268 32.280 ± 47.483 32.811 ± 40.553 0.871

AST (U/l) 39.152 ± 49.740 40.224 ± 54.887 37.007 ± 37.375 0.372

LDH (U/l) 344.867 ± 480.500

(n = 850)

348.863 ± 447.911

(n = 569)

336.776 ± 541.280

(n = 281)

0.643

Creatinine serum concentration

(lmol/l)

67.707 ± 26.548 67.713 ± 23.202 67.695 ± 32.261 0.993

Opioid

Oxycodone 704 (82.051) 471 (82.343) 233 (81.468) 0.199

Morphine 15 (1.748) 9 (1.573) 6 (2.098)

Fentanyl 161 (18.765) 106 (18.531) 55 (19.231)

Time since onset of pain symptoms

(months)

2.568 ± 4.023 2.518 ± 3.968 2.669 ± 4.136 0.604

Time since start of opioid treatment

(months)

1.469 ± 3.015 1.424 ± 3.098 1.558 ± 2.844 0.542

Opioid dose (OEDD, mg) 40.026 ± 36.312 40.162 ± 36.303 39.755 ± 36.391 0.877

Pain relief (%) 77.528 ± 15.158 77.124 ± 15.218 78.336 ± 15.031 0.270

Constipation 521 (60.723) 355 (62.063) 166 (58.042) 0.267

P was calculated by SPSS (version 17.00); For continuous variables (marked mean ± SD) using independent sample t test;
Chi-square test was used for categorical variables (marked as number (%) and Fisher’s exact test was used for values less than
5
BMI body mass index, PS performance status, CNS central nervous system, NRS2002 nutritional risk screening scoring,
SDS Self-Rating Depression Scale, ALT alanine aminotransferase, AST aspartate transaminase, LDH lactate dehydrogenase,
OEDD oral oxycodone equivalent daily dose
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Pain relief was scored on an 11-point numerical
rating scale that ranged from 0% (no relief) to
100%. Constipation is one of the most common
adverse effects of opioids and was used as an
indicator for safety in this study. The relevance
of constipation for opioids was determined by
combining patients’ current therapeutic agents
and medical history and using the five princi-
ples of adverse event analysis, developed by the
Chinese State Food and Drug Administration
[30]. Severity was graded according to the
National Cancer Institute Common Toxicity
Criteria (NCI-CTCAE) Version 4.0, which clas-
sifies ADR as grade 0 or other.

Genotyping Procedures

In order to make the candidate genotypes more
clinically significant, only SNP loci with clinical
research support for the association with cancer
pain or opioid drug response will be selected.
First, by using available information in the
Human Pain Genetics Database (http://hpgl.ca/
hpgdb), we had screened 82 SNP loci related to
cancer pain or analgesic. Then we conducted a
systematic search for genetic loci affecting can-
cer pain or opioid response to check the SNP
loci screened in the first step and fill in the gaps.
Finally, 136 candidate SNP loci were identified.
Genomic DNA was extracted from all subjects
using a blood genomic DNA extraction kit
(DNP-348, Beijing Tiangen Biochemical Tech-
nology Co., Ltd.) and stored at - 80 �C until
further analysis. The quality of all DNA samples
was verified using agarose gel electrophoresis.
Genotyping analysis was performed by Capi-
talBio Technology using the Mass ARRAY� DNA
mass spectrometry system (Agena Bioscience,
San Diego, CA).

Of the 136 candidate SNPs, seven failed for
establishment of the detection method, five had
a typing missing rate greater than 10%, 13 SNPs
had a minor allele frequency (MAF)\ 1%, and
one SNP was not in Hardy–Weinberg equilib-
rium. After excluding these 26 SNPs, 110 were
included in the final analysis. Chromosomal
location, genotype frequencies, and gene func-
tion of the 136 SNPs are listed in the Supple-
mentary Material Table 1. The MAFs in this

study were similar to those reported in previous
studies.

Statistical Analysis

Continuous variables are expressed as means ±
SDs, and categorical variables are expressed as
percentages (%). Before analysis, quality control
was performed for the raw genetic data to
exclude DNA samples with[10% typing miss-
ing rate and candidate SNP loci that had[ 10%
typing missing rate, had MAF\1%, or were not
in the Hardy–Weinberg equilibrium (v2 test,
p\0.01). Because OEDD was not normally
distributed, it was log-transformed (log OEDD)
for analysis when used as a phenotypic variable.
To better explore the effects of non-genetic
factors on different phenotypes, age, BMI, and
time since start of opioid treatment were used as
both continuous and categorical variables
(Supplementary Material Table 2). Significant
(p\ 0.05) non-genetic factors for each pheno-
type were identified using the lm function in R,
which were included as covariates in the sub-
sequent SNP association and paired gene–gene
interaction analyses. Collinearity diagnostics
were also performed.

Single SNP Association Analysis

PLINK1.90 software was used for the association
analysis of SNPs [31]. Spearman test and Wil-
coxon test were used for continuous variables
and dichotomous variables, respectively. The
dominant model was prespecified for the pri-
mary analyses (additive and recessive models
were used for secondary and exploratory) to
investigate which SNPs were associated with the
three phenotypes. Opioid dose and pain relief
were used as both continuous and dichotomous
variables (bound by the mean, opioid dose
[logarithm] B 1.5 vs.[1.5; pain relief B 78%
vs.[ 78%) for the analyses. The analysis was
also repeated without the inclusion of covari-
ates as a sensitivity check.

To explore whether the lack of significant
relationship between candidate SNPs and each
phenotype may have been due to case mixing,
we also performed subgroup analyses.
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Subgroups were grouped by age: young
(B 57 years) and old ([ 57 years) (grouped by
the mean value); by opioids: oxycodone, mor-
phine and fentanyl, and by time since start of
opioid treatment: patients receiving short-term
(B 1 month) opioid treatment, and patients
receiving long-term ([ 1 month) opioid
treatment.

Construction of Haplotypes
and Association Analysis

The Haploview software (https://www.
broadinstitute.org/haploview/haploview) [32]
was employed and Lewontin’s D value was used
as criteria for the haplotype prediction and
association analysis of 110 SNPs that were
screened at quality control. A total of 12 hap-
lotype blocks were successfully constructed in
both the discovery and replication samples; the
frequency of each haplotype is detailed in the
Supplementary Material Table 4. v2 test was
used for the haplotype association analysis, all
phenotypes were analyzed as dichotomous
variables (continuous phenotypes were con-
verted into dichotomous variables according to
their mean values; opioid dose [loga-
rithm] B 1.5 vs.[1.5, pain relief B 78%
vs.[ 78%).

Gene–gene and Gene–environment
Interaction Analyses

Similar to haplotype association analysis, all
phenotypes were analyzed as dichotomous
variables in the gene–gene and gene–environ-
ment interaction. PLINK1.90 and generalized
multifactor dimensionality reduction (GMDR)
software [33] were used to explore the effects of
gene–gene and gene–environment interactions
on the three phenotypes. False-positive and
true-positive rates were used to evaluate model
prediction accuracy. Cross-validation consis-
tency was used to assess the quality of the
model, and the sign test was used to evaluate
statistical significance of the model. Models
with the highest testing accuracy and cross-
validation consistency were regarded as the best
interaction models.

All analyses were two-tailed, and p\0.05
was considered statistically significant. For the
different genetic models, the following approa-
ches were implemented to alleviate the problem
of multiplicity. First, a two-step analysis was
performed for all three phenotypes. The dis-
covery samples were used for the initial
screening of SNPs, haplotypes, and models, and
replication samples were then used to validate
the statistically significant results that were
obtained from the discovery samples. Second,
for the association analyses of SNPs and haplo-
types and for the paired gene–gene interaction
analysis, the Benjamini–Hochberg (BH) method
[34], based on the false discovery rate (FDR)
criterion, was used for multiple comparison
correction to reduce the falsity of the associa-
tion analysis. The flow diagram of the analysis is
shown in Fig. 1.

RESULTS

Clinical Information of Enrolled Patients

A total of 695 patients were included in this
study in the discovery stage. However, blood
samples of 114 patients were not collected and
thus could not be used for further genetic
analysis. In addition, seven patients had
incomplete information, and genotyping
results of two patients failed the quality control
test, which resulted in 572 patients in the final
analysis. Details are shown in Table 1. To
examine the credibility of the results obtained
in the discovery stage, we established a replica-
tion sample comprising 332 patients, of which
286 had complete clinical information and
blood samples. There were no significant dif-
ferences between the discovery and replication
samples in demographic characteristics
(Table 1).

Univariate analysis showed that 15 factors
such as age, tumor diagnosis, PS score, and
tumor metastasis status were associated with
opioid response (Supplementary Material
Table 2).
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Single SNP Association Analysis

The association analysis of the 110 SNPs with
the three phenotypes showed that variation at
rs5275 in the prostaglandin-endoperoxide syn-
thase 2 (PTGS2) gene was significantly associ-
ated with constipation in the dominant model
and that carrying the minor allele G signifi-
cantly reduced the incidence of constipation.
Although this result failed to meet the Ben-
jamini–Hochberg FDR criteria, this association
was verified in the replication sample. As shown
in Table 2, the risk of constipation in patients
carrying the GG/GA genotype was significantly
lower in both the discovery and replication

groups (50.838 and 49.485%, respectively) than
that in patients carrying the AA genotype
(66.492 and 62.567%, respectively; odds ratio
[OR] = 0.528 [0.363-0.768], p = 0.001), and the
additive model showed that for each additional
mutation in allele G, the risk of constipation
decreased by 43.76% (p = 0.001). When we tes-
ted for sensitivity by not adding the covariates
in the association analysis, variation at rs5275
remained significantly associated with consti-
pation following multiple comparison correc-
tion (pFDR_BH = 0.032). Similar results were
obtained when analyses were performed using
the additive or recessive models.

Fig. 1 Flow diagram of the data analysis in the study. We
firstly explored the association between 45 candidate genes
and opioid response in SNP or haplotype association
analysis. In SNP association analysis, only one SNP was
significantly associated with constipation. Although this
result failed to meet the Benjamini–Hochberg FDR
criterion, this association was verified in the validation
sample. Then we studied the association of gene–gene with
opioid response. In haplotype association analysis, six
haplotypes were significantly associated with opioid
response in the development stage (p\ 0.05). However,
none of them met Benjamini–Hochberg FDR criteria, or

were verified in the validation sample. There were
280–304 SNP–SNP pairs that were significantly associated
with opioid dose, pain relief, or constipation. However,
only seven SNP–SNP pairs associated with opioid dose,
and three with pain relief or constipation passed validation
in the validation stage. At last, we explored the influence of
multi-dimensional gene–gene and gene–environment
interactions on opioid response. We found one multi-
dimensional gene–gene model and six multi-dimensional
gene–environment models in the development stage, and 0
gene–gene models and six gene–environment models were
verified in the validation sample, respectively
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Haplotype Association Analysis

Twelve distinct haplotype blocks were identified
in the linkage disequilibrium analysis of all 110
SNPs based on gene location (Supplementary
Material Table 4). Three haplotypes were sig-
nificantly associated with opioid response in
the discovery stage (p\0.05). However, none of
them met Benjamini–Hochberg FDR criteria, or
were verified in the replication sample. Notably,
different haplotypes of OPRM1 (rs6912029,
rs1799971, rs589046, and rs563649) showed
significant differences in opioid dose and con-
stipation. Patients with GATC haplotype were
more likely to use lower doses of opioids
(v2 = 5.083, p = 0.024) and patients with GACC
haplotype had a relatively low risk of constipa-
tion (v2 = 3.883, p = 0.049). In contrast,
patients with the GGCC haplotype had a higher
risk of constipation (v2 = 4.291, p = 0.038).
However, these associations did not pass vali-
dation (Table 3). Supplementary Material Fig. 1
shows the linkage disequilibrium (LD) of the
five haplotypes and locuszoom plot of associa-
tion results of SNPs in different phenotypes.

Influence of Gene–gene
and Gene–environment Interactions
on Opioid Response and Side Effects

We first analyzed the association between
paired gene–gene interactions and phenotypes.
All 110 SNPs were found to be involved in the
interaction in the discovery samples, which
resulted in the presence of a large number of
SNP–SNP interaction pairs. There were 280–304
SNP–SNP interaction pairs that were signifi-
cantly associated with opioid dose, pain relief,
or constipation. However, all of them failed to
meet the Benjamini–Hochberg FDR criteria, and
only seven SNP–SNP pairs associated with opi-
oid dose, and three with pain relief or consti-
pation passed validation in the replication
stage. As shown in Fig. 2, polymorphic loci
(rs419335, rs2234918, rs2236857, and
rs581111) located on the OPRD1 gene were
present in multiple pairs of the gene–gene
interaction models, which affected phenotypes,
such as opioid dose and constipation. We
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suggest that the action mode of these mutated
loci on the OPRD1 gene on opioid effects are
predominantly coactivation with other
mutations.

Subsequently, we predicted multidimen-
sional SNP–SNP interactions using GMDR.
Because of the limitation of sample size, the
number of dimensions was set to 3–5. Of all the
phenotypes, only one statistically significant
three-dimensional model was constructed,
which was for the pain relief phenotype. This
model contained rs2020917, rs2952768, and
rs8904 and had a test accuracy of 0.592, a CV
consistency of 9/10, and a significance test of
p = 0.011. However, we failed in replicating this
in the replication stage (p = 0.989) (Table 4).

Next, we investigated whether environmen-
tal factors were significant in the univariate
analysis and were involved in modulating the
effect of gene–gene interactions on opioid drug
efficacy or adverse effects. Because of the limi-
tation of sample size, the number of dimensions
was set to 2–5. As shown in Table 5, the two best
models related to opioid dose were the opioid
tolerance-opioid two-dimensional model

(testing accuracy = 0.707, CV of consis-
tency = 10/10, p = 0.001, OR = 11.248), and the
opioid tolerance-rs2110726-rs9524885-
rs2952768 four-dimensional model (testing
accuracy = 0.684, CV of consistency = 7/10,
p = 0.001, OR = 10.159). In the pain relief phe-
notype, only the NRS2002 score-rs2834167-
rs2952768-rs6269-rs1202170 five-dimensional
model had a critical statistical significance
(testing accuracy = 0.539, CV of consis-
tency = 4/10, p = 0.054, OR = 27.961). Only
one three-dimensional model, diagnosis-
rs5275-rs2835914, was significantly associated
with the constipation phenotype (testing accu-
racy = 0.596, CV of consistency = 8/10,
p = 0.001, OR = 4.364). All of the above models
were validated in the replication stage.

DISCUSSION

In general, most candidate gene association
studies assessing the association between
genetic polymorphisms and pain perception
and/or analgesic efficacy of opioids examined

Fig. 2 The paired gene–gene interactions associated with
opioid response. The paired gene–gene interactions were
identified in opioid utilized patients of three different
phenotypes associated with opioid response: A opioid dose,
B pain relief, and C constipation. There were 280–304
SNP–SNP pairs that were significantly associated with
opioid dose, pain relief or constipation. In order to show
the interactions between different genes more clearly, only
SNP–SNP pairs with p\ 0.05 in the discovery stage and
p\ 0.1 in the replication stage were shown. The red line
in the circle indicates that the OR value of this gene–gene

interaction pair is over 1 in both of the discovery stage and
the replication stage, while the blue line indicates that the
OR value of this gene–gene interaction pair is below 1 in
two stages. The gray lines indicate that these gene–gene
interactions were only found to be significant in the
discovery stage, or the OR values were contradictory in the
replication stage. The color of these genes indicates the
chromosome location of these genes, and the same color of
two genes indicates that these two genes locate in the same
chromosome
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the association of SNPs or were limited to
exploring the interaction between two specific
genes, with limited data on haplotypes of mul-
tiple genes and especially interactions between
different genes. No further studies have ana-
lyzed gene–environment interactions [14–20].

In this two-stage study, we analyzed the
effects of individual genetic loci using different
genetic models (dominant, additive, and reces-
sive models) of opioid treatment in patients
with cancer pain and comprehensively explored
association between 110 SNPs in 45 genes and
opioid response from the perspectives of

haplotypes, gene–gene interactions, and
gene–environment interactions. Similar to
other researchers, we were unable to demon-
strate the association between 45 candidate
genes and opioid response in Chinese Han adult
cancer pain in SNP or haplotype association
analysis [12, 35, 36]. However, in the follow-up
analysis of gene–gene and gene–environment
interactions analysis, we have found novel
results. The results highlight the necessity to
detect gene–gene and gene–environment inter-
actions between different genes for complex
traits (e.g., pain and opioid response). The

Table 3 Haplotypes with an initial significant association with the opioid response

Phenotype Gene SNPs Haplotype Discovery sample Replication sample

Case,
control
frequencies

v2 p Case,
control
frequencies

v2 p

Opioid dose OPRD1 rs529520,

rs581111

AA 0.049,

0.086

4.192 0.041 0.071,

0.085

0.236 0.627

OPRM1 rs6912029,

rs1799971,

rs589046,

rs563649

GATC 0.031,

0.067

5.083 0.024 0.048,

0.052

0.036 0.850

ARRB2 rs3786047,

rs16954146,

rs1045280,

rs2271167,

rs2036657

GGTGA 0.761,

0.822

5.243 0.022 0.802,

0.811

0.054 0.816

Constipation UGT2B7 rs4296738,

rs4235108,

rs4587017,

rs7438135,

rs7668282,

rs7439366,

rs10028494,

rs6851533,

rs12645107

GAGATCACG 0.054,

0.029

3.969 0.046 0.025,

0.016

0.381 0.537

OPRM1 rs6912029,

rs1799971,

rs589046,

rs563649

GACC 0.487,

0.547

3.883 0.049 0.467,

0.487

0.234 0.628

GGCC 0.362,

0.303

4.291 0.038 0.380,

0.374

0.018 0.892
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Table 4 Multi-dimensional gene–gene interaction in discovery and replication stage

Study
component

Phenotype Model Training
Bal. Acc

Testing
Bal. Acc

Sign test
(p)

CV
consistency

OR value
(95% CI)

Discovery Opioid dose

rs2110726-rs2952768-

rs1045046

0.644 0.437 0 (1.000) 1/10 3.071

(1.476,

6.389)

rs2110726-rs9524885-

rs2952768-rs1045046

0.710 0.483 5 (0.623) 2/10 6.097

(2.820,

13.186)

rs2284017-rs1202170-

rs1143627-rs1042713-

rs2835914

0.796 0.498 5 (0.623) 2/10 23.737

(9.144,

61.678)

Pain relief

rs2020917-rs2952768-rs8904 0.655 0.592 9 (0.011) 9/10 3.921

(2.244,

6.852)

rs2834167-rs2952768-

rs1202170-rs10770367

0.722 0.550 7 (0.172) 3/10 6.775

(3.837,

11.961)

rs2952768-rs8129919-rs8904-

rs618027-rs841718

0.809 0.527 7 (0.172) 2/10 18.744

(9.711,

36.177)

Constipation

rs1799971-rs222747-

rs2284015

0.654 0.480 5 (0.623) 3/10 3.723

(2.169,

6.392)

rs1799971-rs222747-

rs2835914-rs2284015

0.717 0.477 3 (0.945) 3/10 6.523

(3.713,

11.458)

rs2834167-rs2952768-rs6269-

rs1143627-rs13229143

0.807 0.486 6 (0.377) 2/10 18.297

(9.543,

35.082)

Replication Pain relief

rs2020917-rs2952768-rs8904 0.612 0.465 2 (0.989) 10/10 N.A

CV cross validation, OR odd ratio, CI confidence interval, N.A. not applicable
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Table 5 Multi-dimensional gene–environment interaction in development sample and validation sample

Study
component

Phenotype Model Training
Bal. Acc

Testing
Bal. Acc

Sign
test (p)

CV
consistency

OR value
(95% CI)

Discovery Opioid dose Opioid tolerance-Opioid 0.711 0.707 10

(0.001)

10/10 11.248

(5.506,

22.978)

Opioid tolerance-Opioid-

rs841718

0.727 0.680 10

(0.001)

5/10 14.732

(6.931,

31.314)

Opioid tolerance-rs2110726-

rs9524885-rs2952768

0.756 0.684 10

(0.001)

7/10 10.159

(5.658,

18.242)

Opioid tolerance-rs2110726-

rs9524885-rs2952768-

rs8904

0.806 0.602 10

(0.001)

2/10 18.195

(9.666,

34.253)

Pain relief NRS2002 score-rs8904 0.607 0.502 6 (0.377) 5/10 2.537

(1.484,

4.337)

NRS2002 score-rs8904-

rs1202170

0.662 0.477 3 (0.945) 3/10 3.929

(2.285,

6.756)

NRS2002 score-rs2952768-

rs6269-rs1143627

0.741 0.514 5 (0.623) 6/10 8.347

(4.652,

14.977)

NRS2002 score-rs2834167-

rs2952768-rs6269-

rs1202170

0.836 0.539 8 (0.054) 4/10 27.961

(13.765,

56.799)

Constipation Opioid dose -Tumor

diagnosis

0.623 0.538 7 (0.172) 7/10 3.318

(1.862,

5.912)

Tumor diagnosis-rs5275-

rs2835914

0.675 0.596 10

(0.001)

8/10 4.364

(2.541,

7.495)

Tumor diagnosis-rs1295686-

rs6473799-rs7574878

0.745 0.502 5 (0.623) 2/10 8.752

(4.881,

15.692)

Tumor diagnosis-rs6269-

rs8904-rs1042713-

rs2835914

0.835 0.501 4 (0.828) 2/10 27.717

(13.752,

55.861)
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current findings, if they can be further con-
firmed in larger and ethnically diverse cohorts,
may provide additional possibilities for the
advancement of individualized treatments for
cancer pain.

In the SNP association analysis, we found
that variation at rs5275 in the PTGS2 gene was
associated with opioid constipation. Although
it did not meet Benjamini–Hochberg FDR cri-
teria, this result was validated in the replication
stage (Table 2). Rs5275 is located in the 3’UTR of
the PTGS2 gene that encodes the cyclooxyge-
nase-2 (COX-2) protein. It has previously been
reported that the G allele can significantly
increase COX-2 protein levels and increases the
risk of constipation [37–39], which is inconsis-
tent with the 43.76% decrease in risk of con-
stipation for each additional mutant allele G in
this study (p = 0.001). We first consider whether
this inconsistency was related to the use of
selective COX-2 inhibitors. However, there was
no significant difference between the GG/GA
and AA genotype groups in the use of selective
COX-2 inhibitors (11.518 vs. 11.732%). The
possible explanation for this is that the gene

may not be the primary affecting factor [40],
and the effect of variation at rs5275 is suscep-
tible to interference by other factors. This is
supported by other studies that showed that
preoperative administration of a selective COX-
2 inhibitor significantly improves postoperative
ileus [41]. However, the combination of opioids
with COX-2 inhibitors did not affect the inci-
dence of constipation in patients with cancer
pain [42].

Pain perception and response to analgesics is
a complex process that involves multiple bio-
chemical pathways. There may be genetic vari-
ants that have a small or insignificant effect in
the single SNP association analysis. However,
such effects may become important in the
presence of another genetic or environmental
variant [35]. Association studies focusing on
individual variants may yield inconclusive
results and miss clinically relevant genetic
variants [43]. On the other hand, individual
SNP associations are not necessarily responsible
for phenotype; causal SNPs could be in linkage
disequilibrium with those studied [15]. There
have been several studies on SNP–SNP

Table 5 continued

Study
component

Phenotype Model Training
Bal. Acc

Testing
Bal. Acc

Sign
test (p)

CV
consistency

OR value
(95% CI)

Replication Opioid dose Opioid tolerance-Opioid 0.687 0.662 9 (0.011) 10/10 N.A

Opioid tolerance-Opioid-

rs841718

0.699 0.673 9 (0.011) 10/10 N.A

Opioid tolerance-rs2110726-

rs9524885-rs2952768

0.730 0.635 10

(0.001)

10/10 N.A

Opioid tolerance-rs2110726-

rs9524885-rs2952768-

rs8904

0.793 0.626 9 (0.011) 10/10 N.A

Pain relief NRS2002 score-rs2834167-

rs2952768-rs6269-

rs1202170

0.866 0.582 8 (0.055) 10/10 N.A

Constipation Tumor diagnosis-rs5275-

rs2835914

0.641 0.558 8 (0.055) 10/10 N.A

CV cross validation, OR odd ratio, CI confidence interval, N.A. not applicable
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interactions in patients with cancer pain.
However, apart from the haplotype studies,
they have been limited to investigating inter-
actions of up to two SNPs at a time [17, 18, 36].
In the present study, we analyzed haplotypes,
paired SNPs, and multidimensional gene–gene
interactions of all genes using PLINK and
GMDR software to explore the interactions
between SNPs in the same and different genes.
In this part of the analysis, we found that some
SNPs that were identified as ‘negative’ in the
previous SNP association analyses were in fact,
significantly associated with the phenotype in
the form of SNP–SNP interactions.

In the haplotype association analysis, we
identified six haplotypes that were associated
with opioid dose or constipation (p\0.05).
However, none of these met Ben-
jamini–Hochberg FDR criteria, or were verified
in the replication sample (Table 3). It is worth
noting that although no association with opioid
dose was found for individual SNP in the
OPRM1 gene, the OPRM1 haplotypes showed
weak associations (0.01\ p\0.05) with opioid
dose and constipation phenotypes, although
these were not validated in the replication
group. Moreover, all patients with the
rs1799971 haplotype carrying the A allele
required lower opioid doses, whereas only
patients with the rs1799971 haplotype carrying
the G allele had a higher frequency in the high
dose group (not significant). The same finding
was reported in the study by Manuela et al. [16].
This result confirmed the data in a recent meta-
analysis by Yu et al., which demonstrated that
carriers of the G allele (AG ? GG) of the OPRM1
rs1799971 (A118G) polymorphism require more
opioid analgesics for cancer pain treatment [12].

Among the paired SNP–SNP interactions,
280–304 pairs of SNP–SNP interaction were sig-
nificantly associated with each phenotype in
the discovery stage, but all of them failed to
meet the Benjamini–Hochberg FDR criteria, and
only 3–7 pairs passed validation in the replica-
tion stage (Fig. 2). These SNP–SNP pairs were
derived from 16 different genes and were
involved in pathways and links, such as opioid
receptors, drug transporters, signaling path-
ways, and inflammatory factors. This demon-
strated the complexity of pain and opioid drug

responses and supported the necessity for
extensive analysis of interactions between dif-
ferent genes, with the most notable being
OPRD1 rs2234918-COMT rs6267. The interac-
tion between these two SNPs significantly
increased the risk of constipation, with an OR of
4.953 (p = 0.017) in the discovery group and
6.441 (p = 0.034) in the replication group. This
is the first study to identify such an interaction.
When dimensionality of the analysis was
increased to examine SNP–SNP interactions in
3–5 dimensions, statistically significant SNP
interactions became obviously fewer. Of all the
phenotypes, only one three-dimensional model
showed an association with pain relief, and this
model contained COMT rs2020917-cyclic ade-
nosine monophosphate (cAMP) responsive ele-
ment binding protein 1 (CREB1) rs2952768-
NFKBIA rs8904 (OR = 3.921, p = 0.011). How-
ever, the result was not replicated in the repli-
cation group (p = 0.989) (Table 4).

For such outcomes, we believe that in addi-
tion to genes, environmental factors also play
an important role. As previously mentioned,
pain perception and analgesic response is a
complex clinical feature that may be influenced
by numerous different clinical and environ-
mental factors [43]. The extent to which genes
explain phenotypic variation may be limited,
with genes explaining only 5–24.2% of the
variation in morphine dose, as reported in the
literature [15, 16]. Therefore, we used environ-
mental factors as markers to explore whether
the combination of environmental factors and
genes improve predictive results. Results
showed that statistically significant optimal
gene–environment interaction models were
generated successfully for each of the three
phenotypes (Table 5).

It should be noted that variation at rs5257
was negatively correlated with constipation risk
in the SNPs association analysis (Table 2), while
the gene–environment interaction model sug-
gested that there was an interaction among
PTGS2 rs5275, diagnosis and KCNJ6 rs2835914.
This interaction significantly increased the risk
of constipation, which verifies our inference in
SNPs association analysis. Stronger associations
with phenotypes were observed from the OR
values of these gene–environment models than
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the associations of the gene–gene or paired
SNP–SNP interaction models, which suggested
that environmental factors play an important
role in opioid response. Opioid tolerance is
defined as a predictable physiological decrease
in the analgesic effect of opioids over time that
requires an increase in opioid dose to achieve
the same analgesic effect [44]. It is not surpris-
ing that opioid tolerance is a factor in the
optimal model of the opioid dose phenotype.
The model constructed above showed that the
NRS2002 score was associated with pain relief.
The NRS2002 score is a tool used to assess the
nutritional risk of patients, and is positively
correlated with the pain intensity in patients
with cancer pain (r = 0.273, p = 0.001) [45].
Poor nutritional status can decrease the efficacy
of fentanyl transdermal patches and increase
pain scores [46], and may increase the incidence
of adverse effects [47]. Cancer diagnosis is a
factor in constipation, and one study examin-
ing genetic and non-genetic factors affecting
opioid constipation found that tumors in
female genitals and gastrointestinal tracts
increase the risk of constipation [40], which was
similar to our findings. In this study, the inci-
dence of constipation in patients with geni-
tourinary was 78.947%, which was higher than
that in patients with other tumors.

In terms of genetic factors, several genes
were identified as having a negative effect on
the individual SNP and haplotype association,
and the gene–gene interactions. CREB1 inter-
acted with other genes for opioid dose and pain
relief. The CREB1 and cAMP pathways are
involved in the analgesic and rewarding effects
of opioids, and mRNA expression levels of the
CREB1 gene have been found to be higher in
subjects with the rs2952768 CC genotype in a
GWAS, with increased postoperative opioid
analgesic requirements and reduced depen-
dence on other drugs [48]. In the present study,
opioid dose was also higher in patients with the
rs2952768 CC genotype than those with the
CT ? TT type (44.410 vs. 39.072 mg), whereas
pain relief was slightly lower than that of the
latter genotype (76.000 vs. 77.333%).

In this study, independent discovery and
replication samples were analyzed in a stepwise
manner to reduce the FDR of multiple testing.

However, such a necessary precaution some-
what reduced statistical power. The CaTS V0.0.2
software (http://csg.sph.umich.edu//abecasis/
CaTS/index.html) [49] was used to calculate
the statistical power. Due to the high propor-
tion of case groups of opioid dose, pain relief
and constipation (46.153, 34.732, and 68.687%,
respectively), even under the condition of small
sample size, when the MAF = 0.05, all pheno-
types have more than 80% confidence in
detecting an association with an OR of 1.5. In
this study, only four SNPs (rs2069845, rs6853,
rs1143634 and rs11931604) have MAF less than
0.05. Thus, the sample size of this study can
meet the statistical requirements of most SNPs
to detect the effect of genetic variation on opi-
oid drug response.

We acknowledge that there are some limita-
tions in this study. (1) Opioid pharmacology
and pain perception involve multiple complex
biological systems, and more than 400 genes
have been identified in the NCBI Gene Data-
base. The 110 candidate SNPs included in this
study did not cover every relevant gene. (2) The
present study was a cross-sectional study that
was conducted at only one time point, which
did not allow for a comprehensive assessment of
changes in pain and opioid response. (3) In the
analysis, the other concomitant medications
received by patients were not accounted for,
which may have had an impact on pain inten-
sity and constipation. (4) This study was a sin-
gle-center study, and the subjects were all from
a Chinese Han population. It remains to be
verified whether the findings are applicable to
other ethnic groups.

CONCLUSIONS

In conclusion, this exploratory cross-sectional
study demonstrated that genetic variability
affects the efficacy and adverse effects of opioids
in patients with cancer pain. By expanding on
the analysis of individual SNPs to the con-
struction gene–gene interactions and gene–en-
vironment interactions, this study enhances our
understanding of how genetic variation impacts
the response of opioids in patients with cancer
pain. Understanding the complexity of opioid
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responses will be an ongoing challenge, and
continued advances in data mining and mod-
eling techniques will promote the integration of
generated information toward achieving the
ultimate goal of individualized opioid therapy.
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