
Major Shifts in the Spatio-Temporal Distribution of Lung
Antioxidant Enzymes during Influenza Pneumonia
Yoshiyuki Yamada1, Gino V. Limmon1, Dahai Zheng1, Na Li1,2, Liang Li1, Lu Yin1, Vincent T. K. Chow2,

Jianzhu Chen1,3, Bevin P. Engelward1,4*

1 Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore, 2 Department

of Microbiology, National University of Singapore, Singapore, 3 Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of

Technology, Cambridge, Massachusetts, United States of America, 4 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts, United States of America

Abstract

With the incessant challenge of exposure to the air we breathe, lung tissue suffers the highest levels of oxygen tension and thus
requires robust antioxidant defenses. Furthermore, following injury or infection, lung tissue faces the additional challenge of
inflammation-induced reactive oxygen and nitrogen species (ROS/RNS). Little is known about the identity or distribution of lung
antioxidant enzymes under normal conditions or during infection-induced inflammation. Using a mouse model of influenza
(H1N1 influenza virus A/PR/8/34 [PR8]) in combination with bioinformatics, we identified seven lung-abundant antioxidant
enzymes: Glutathione peroxidase 3 (Gpx3), Superoxide dismutase 3 (Sod3), Transferrin (Tf), peroxyredoxin6 (Prdx6), glutathione S-
transferase kappa 1 (Gstk1), Catalase (Cat), and Glutathione peroxidase 8 (Gpx8). Interestingly, despite the demand for
antioxidants during inflammation, influenza caused depletion in two key antioxidants: Cat and Prdx6. As Cat is highly expressed
in Clara cells, virus-induced Clara cell loss contributes to the depletion in Cat. Prdx6 is also reduced due to Clara cell loss, however
there is a coincident increase in Prdx6 levels in the alveoli, resulting in only a subtle reduction of Prdx6 overall. Analogously, Gpx3
shifts from the basement membranes underlying the bronchioles and blood vessels to the alveoli, thus maintaining balanced
expression. Taken together, these studies identify key lung antioxidants and reveal their distribution among specific cell types.
Furthermore, results show that influenza depletes key antioxidants, and that in some cases there is coincident increased
expression, consistent with compensatory expression. Given that oxidative stress is known to be a key risk factor during influenza
infection, knowledge about the antioxidant repertoire of lungs, and the spatio-temporal distribution of antioxidants, contributes
to our understanding of the underlying mechanisms of influenza-induced morbidity and mortality.
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Introduction

With its approximately 70 m2 of surface area in direct contact

with the air we breathe, lung tissue needs to have a particularly

robust antioxidant system. Furthermore, during inflammation

reactive oxygen and nitrogen species (ROS/RNS), such as

superoxide, hydrogen peroxide, nitric oxide (NO) and peroxyni-

trite, can cause additional stress by directly or indirectly breaking

covalent bonds in DNA, proteins and lipids [1]. To keep oxidative

and inflammation-driven stress in check, cells exploit both by non-

enzymatic antioxidants, including glutathione and ascorbic acid,

and enzymatic antioxidants, such as superoxide dismutase (Sod),

catalase (Cat), glutathione peroxidase (Gpx) and peroxiredoxin

(Prdx) [2]. While normally these defenses suffice to protect the

lungs against oxidative stress, during infections such as influenza,

there can be a loss of balance between pro-oxidants and

antioxidants, causing potentially lethal conditions [3,4]. Despite

the importance of oxidative stress in disease progression during

influenza, relatively little is known about the identities of the key

antioxidant enzymes in the lung, the cell types in which they are

expressed, or their dynamics following infection.

Superoxide is one of the most abundant ROS, being formed at high

levels by immune cells in response to infection. Superoxide and

hydrogen peroxide (a byproduct of superoxide), are effective toxicants

against invading microbes, but their levels must be kept in check in

order to suppress collateral damage to normal tissues. To defend

normal tissues against superoxide and hydrogen peroxide, several

antioxidant enzymes work in concert. Sod serves to catalyze a rapid

conversion of superoxide into hydrogen peroxide, which is then

detoxified by downstream antioxidant enzymes. There are two types

of intracellular Sod, Cu,Zn-SOD (Sod1) in the cytoplasm and Mn-

SOD (Sod2) in the mitochondrion. In addition, high levels of EC-SOD

(Sod3) are located on the external surfaces [5]. Hydrogen peroxide is

then decomposed into H2O by downstream antioxidant enzymes,

including Cat, Gpx, Prdx and many other peroxidases [2]. It is there-

fore the coordinated action of these enzymatic antioxidant enzymes

that is necessary in order to assure maintenance of a balance between

pro-oxidants and antioxidants, thus preventing oxidative stress.

During influenza-induced inflammation, immune cells produce

superoxide and NO by activation of xanthine oxidase and inducible

nitric oxide synthase (iNOS) as antimicrobial responses. The resulting

high levels of reactive oxygen and nitrogen species lead to a reduction
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in the levels of ascorbic acid and reduced glutathione [3,6]. In

response, enzymatic defenses including heme oxygenase 1 (Hmox1),

Gpx1, and thioredoxin reductase 1 can be induced during influenza

infection [7,8]. Nevertheless, pro-oxidants as well as antioxidants are

needed, since elevated levels of NO-producing macrophages and

dendritic cells ultimately help to control morbidity and mortality

associated with highly pathogenic influenza A viruses [4].

Influenza-induced oxidative stress can lead to catastrophic loss of

cell and tissue function. As little is known about that spatio-temporal

distribution of antioxidants, here, we identified and traced the levels of

the major lung antioxidants through the course of disease. Intere-

stingly, we observe that antioxidant levels not only rise for some

enzymes and fall for others, but furthermore there are significant shifts

in the regions and cell types in which they are expressed. Indeed, for

two antioxidants, viral-induced depletion in one cell type is associated

with increased expression in another, suggesting compensatory expre-

ssion. Given that appropriate antioxidant responses govern cell surv-

ival, knowledge of the coordinated action of antioxidant enzymes con-

tributes to our understanding of disease susceptibility and progression.

Results

Bioinformatic analysis reveals the spectrum of
antioxidants expressed at high levels in lung cells,
immune cells, and stem cells

Our first objective was to identify lung-abundant, and possibly

lung-specific, antioxidant enzymes. We therefore carried out a

bioinformatics analysis of published mouse gene expression data

(GNF Mouse GeneAtlas V3, GSE10246, [9]) using Gene Spring

GX software (Agilent Technologies). Gene expression of 34

antioxidant enzymes (Table 1) that are present in the lung were

compared to non-lung samples, which includes 90 different

organs, tissues and cells. Antioxidants with more than a 5-fold

increase in the lung relative to non-lung samples were classified to

be lung-abundant. Although there was no antioxidant proteins

exclusively expressed in the lung, we nevertheless identified seven

key lung-abundant antioxidant enzymes: Gpx3 (35.97-fold), Sod3

(32.04), transferrin (Tf, 17.58), Prdx6 (11.39), glutathione S-

transferase kappa 1 (Gstk1, 6.55), Cat (6.06) and Gpx8 (5.88)

(Table 1). Identification of lung-abundant antioxidants enables

more detailed studies of their spatio-temporal distribution

following infection.

A complicating factor when studying the prevalence of different

antioxidant enzymes is the potential contribution of antioxidants

present within infiltrated immune cells and progenitors during

inflammation and tissue repair, respectively. We therefore assessed

expression of antioxidant genes in key immune cells, including

macrophages, granulocytes, dendritic cells, NK cells, B cells, T

cells, thymocytes and mast cells, as well as progenitors and stem

cells. We found that immune cells, progenitors, and stem cells

express lower levels of the lung-abundant antioxidant transcripts

than lung tissue. For example, the range of expression was: Gpx3

(210.42 to 22.02 fold, except for 3.33 in bone marrow), Sod3

(23.52 to 21.68) and Tf (214.35 to 3.79, except for 4.55 in bone

Table 1. Summary of lung-, immune cell- and stem cell-abundant antioxidants elucidated from published gene expression data
GSE10246.

Abundant in Gene* Probe ID Fold increase** Subcellular localization***

Symbol Entrez ID

Lung Gpx3 14778 1449106_at 35.97 EC, PL

Sod3 20657 1417633_at 32.04 EC, PL

Tf 22041 1425546_a_at 17.58 EC, PL

Prdx6 11758 1423223_a_at 11.39 Cyt, Lys, Cv

Gstk1 76263 1452823_at 6.55 Mit

Cat 12359 1416430_at 6.06 Per

Gpx8 69590 1424099_at 5.88 Mem

Immune cells

LPS-activated macrophage Hmox1 15368 1448239_at 114.74 (24hrs post activation) ER, Mic

(Bone marrow) Ptgs2 19225 1417262_at 154.01 (6 hrs post activation) Mem

Sod2 20656 1417193_at 11.91 (6 hrs post activation) Mit

Mast cells Ptgs1 19224 1436448_a_at 75.01 (+IgE) Mem

Stem cells & Progenitors

Granurocytes Mpo 17523 1415960_at 363.11 (Progenitors) Lys

Dendritic cells Ptgs2 19225 1417262_at 18.83 (CD8-) Mem

Bone marrow Mpo 17523 1415960_at 299.11 Lys

Epx 13861 1449136_at 67.44 Cyt

Common myeloid progenitors Mpo 17523 1415960_at 203.73 Lys

Stem cells HSC Mpo 17523 1415960_at 75.96 Lys

Emryonic stem cell line V26 Ptgs2 19225 1417262_at 11.81 Mem

*Antioxidant genes that are not abundant in the above tissue and cells: Duox1, Gpx1, Gpx2, Gpx4, Gpx5, Gpx6, Gpx7, Gsr, Lpo, Prdx1, Prdx2, Prdx3, Prdx4, Prdx5, Prdx6-
rs1,Sod1, Srxn1, Tpo, Txnrd1, Txnrd2, Txnrd3.
**Fold increase against the base line of all other tissues and cells in GSE10246.
***Abbreviations: Cyt, cytoplasm; Cv, cytoplasmic vesicle; EC, extracellular; ER, endoplasmic reticulum; Lys, lysosome; Mit, mitochondrion matrix; Mem, membrane; Per,
peroxisome; PL, plasma.
doi:10.1371/journal.pone.0031494.t001
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marrow). These findings suggest that analysis of the seven lung-

abundant antioxidant enzymes during influenza infection will

reveal predominantly expression in somatic lung tissue.

Although analysis of normal immune cells did not reveal high

levels of expression of lung-abundant antioxidants, it was also

possible that cytokines and chemokines present during inflamma-

tion might cause macrophages, and other immune cells, to induce

antioxidants. Indeed, further analysis of previously published

microarray data revealed that some antioxidants, especially

prostaglandin-endoperoxide synthase 2 (Ptgs2) and Hmox1, are

transiently-expressed at very high levels in LPS-activated bone

marrow macrophages with the peaks at 6 and 24 h post-activation,

respectively (Table 1). Additionally, we found that myeloperoxi-

dase (Mpo) is expressed at high levels in neutrophil progenitors. In

contrast, all other differentiated immune cells, progenitors and

stem cells express antioxidants at baseline or lower levels

compared to lung tissue. Therefore, while there are several

noteworthy examples of antioxidants induced in immune cells, the

seven lung-abundant antioxidant enzymes are clearly enriched in

normal lung tissue.

Animal model for H1N1 infection
To study influenza in an animal infection model, mice were

infected with a sublethal dose of H1N1 influenza virus A/PR/8/

34 (PR8) and monitored over the course of several weeks. Key

markers of infection included weight loss, viral load and expression

of tumor necrosis factor (Tnf). Influenza-infected animals experi-

enced significant weight loss starting about 5 days after infection,

and animals reached their lowest weights at about 10 to 11 dpi,

after which, body weights recovered gradually (Fig. 1A). To

monitor viral proliferation, expression of influenza nucleoprotein

(NP) mRNA was investigated. Viral abundance rose quickly

between 1 and 5 dpi and then slowly declines, virtually

disappearing by day 13 (Fig. 1B). We also observed an increase

in the levels of Tnf, a pro-inflammatory cytokine produced

following virus infection with a peak between 5–7 dpi (which is

consistent with previous studies [10], Fig. 1B).

Kinetics of lung-abundant antioxidants following PR8
infection

To learn about the spatio-temporal dynamics of the seven lung-

abundant antioxidants during the course of influenza infection, we

first quantified transcript levels via real time RT-PCR (qRT-PCR).

Despite the increased demand for antioxidant activity during

inflammation, we observed a marked decrease in transcript levels at

7 dpi (immediately after the peak of viral load) for all lung-abundant

antioxidants, except for Gpx3 (Fig. 2A, blue box). In contrast, for

antioxidants induced in immune cells (red box, Fig. 2A), we

observed increased levels of transcripts. Specifically, at 5 dpi (Ptgs2)

and 13 dpi (Hmox1) increase, which is consistent with an increase in

the macrophage marker, EGF-like module containing, mucin-like,

hormone receptor-like 1 (Emr1), (Fig. 2A in red box).

Of particular interest is the observation that antioxidant levels are

apparently reduced during infection. To learn if there is also

suppression of lung-abundant antioxidants at the protein level, we

performed immunoblotting. Initial analysis of viral burden shows

that the influenza integral membrane protein M2 protein was

detectable 3–9 dpi, peaking on 5 dpi (Fig. 2B and supporting figure

S1). Analysis of two of the lung-abundant antioxidants, Cat and

Prdx6, revealed a decrease in protein levels (between 7 and 15 dpi),

which is consistent with the results for the transcript levels. However,

a more subtle reduction was observed for Prdx6 (Fig. 2B and S1). In

contrast, extracellular lung-abundant Gpx3 and Tf (but not Sod3),

were significantly increased, although transcript levels were not

(Fig. 2A). Finally, consistent with the presence of influenza-induced

inflammation, the levels of Hmox1 (abundant in LPS-activated

macrophage) also increased with a peak at 13 dpi, that is consistent

with the observed increase in transcript levels (Fig. 2B and S1).

Clara and AT2 cells are the major PR8-permissive cell
types in mouse lung

One possible explanation for the reduction in Cat and Prdx6 is

that cells that normally express these antioxidants are cleared due

to viral infection. To visualize how viral infection spread within the

mouse lungs, we first immunostained lung sections with antibodies

against viral-nonstructural protein 1 (NS1). Antibody against Clara

cell secretory protein (CCSP) was used to distinguish bronchioles

from alveoli. We observed that some bronchial cells are NS1-

positive at 1 dpi (arrows in Fig. 3A b) and that the majority of

Figure 1. Animal model for H1N1 infection. Mice were infected
with sub-lethal dose of PR8 by intra-tracheal inhalation. A. Influenza-
induced weight loss of the infected mice started from 4 dpi, reached to
the peak at 10 and 11 dpi, after which, body weight recovered
gradually. Body weights of all infected mice were measured daily. Data
of individual mouse and an average of each time point were plotted
with rhombus and line, respectively. B. mRNA of influenza nucleopro-
tein (NP) in the lung tissue reached to a maximum at 5 dpi, and
decreased by 13 dpi. In contrast, tumor necrosis factor (TNF) expression
was the highest around 5–7 dpi. mRNA expression in the lung tissue
was investigated by qRT-PCR. Beta-actin was used for normalization.
doi:10.1371/journal.pone.0031494.g001
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lungs are normal. At 3 dpi, viral replication sites spread to most of

the bronchial cells and also to several alveolar regions (c).

Subsequently, NS1-positive cells were mainly observed in the

alveoli (d, e) with a peak at 5 dpi and drastically reduced by 9 dpi

(f). These data are in agreement with expression kinetics of NP

mRNA (Fig. 1B) and M2 protein (Fig. 2B and S1).

To reveal which cell types are most susceptible to the PR8

infection, we further immunostained tissue sections with antibodies

that are specific for the two pneumocytes: alveolar epithelial type 1

(AT1) cells (podoplanin; Pdpn, Fig. 3B c) and alveolar epithelial

type 2 (AT2) cells (surfactant protein C; SPC, Fig. 3B b). Analysis

of lung tissue on 1 dpi revealed the presence of NS1 protein in

bronchial Clara cells (Fig. 3B d, e, f). Virus-infected Clara cells did

not change CCSP expression at this timing. The infected Clara

cell layer was subsequently destroyed by the virus (Fig. 3B g, h, i)

and the virus appears to then spread to cells to the alveoli (Fig. 3A

c). At 5 dpi, infected cells co-stained with NS1 and a marker for

AT2 cells (SPC; white arrows in j, k, l), indicating that AT2 cells

are infected after Clara cells. The widespread disappearance of the

AT2 marker indicates that Clara cells are cleared by the virus

(Fig. 3B j). In contrast to Clara and AT2 cells, we observed

relatively few virus-infected AT1 cells (white arrows in m, n, o) at

7 dpi. Taken together, viral infection primarily leads to rapid

clearance of Clara cells, followed by infection and destruction of

AT2 cells, which is consistent with previous studies [11].

To learn more about cell-level dynamics, we assessed the relative

abundance of key lung cell types using qRT-PCR. In addition to

quantifying transcripts specific for Clara, AT2 and AT1 (e.g.,

CCSP, SPC and Pdpn), thyroid transcription factor-1 (TTF-1) was

analyzed, as it is specifically highly expressed in both Clara and AT2

cells in the mouse lung [12], and it regulates CCSP and SPC

expression [13,14]. As shown in Fig. 3C, mRNA of CCSP, SPC and

TTF-1 (Clara and AT2 cells) were all significantly reduced during

the course of infection, which is consistent with the data showing

viral clearance of Clara and AT2 cells. In contrast, there was no

significant change in Pdpn (AT1 cells), as expected given the low

level of infection of AT1 cells. Consistent with the transcript levels,

immunoblotting shows a dramatic decline in the protein levels of

key Clara and AT2 cell markers (CCSP and TTF-1 [SPC was not

included because they detected as multiple cleaved bands]), but not

for AT1 cells (Pdpn), (Fig. 3D and S1). Taken together, Clara and

AT2 cells, which harbor the greatest viral load, are also the most

depleted from the infected lungs.

Lung-abundant Cat and Prdx6 are strongly expressed by
Clara and AT2 cells in the mouse lung

To test the possibility that depletion of PR8-permissive cells

leads to a change in antioxidant levels, we set out to identify

antioxidants that are differentially expressed in Clara and AT2

cells by immunohistochemistry. Cat was strongly detected in Clara

cells, with some expression in arterial blood vessels and cells

scattered around the alveoli (Fig. 4A a, b, c). Cat was also highly

expressed in AT2 cells in alveoli (positive for SPC; Fig. 4A d, e, f).

Thus, Cat expression is highest in the two cell types that are most

susceptible to viral infection. On the other hand, Prdx6 levels were

extremely high in Clara cells and detected in both nucleus and

cytoplasm (Fig. 4B a, b, c), whereas expression in AT1 (Pdpn

positive) alveolar cells was largely diffuse (thick arrows in d, e, f).

We also observed Prdx6-positive nuclei in the alveoli that could

potentially be nuclei of AT1 cells (thin arrows in g, h, i and S2A).

In rat, lung Prdx6 are strongly expressed in Clara (except for

major bronchi) and AT2 cells in the tissue sections and in the

cytoplasm of freshly isolated AT2 and alveolar macrophages [15].

However, cells with Prdx6-positive nucleus were not co-stained

with SPC in mice (AT2 cells, g, h, i). We also observed that CD68-

positive macrophages are scattering in the normal alveoli and

sometime at bronchiole (frozen sections were stained with CD68

antibody [Abcam ab53444], Data not shown), however, we unable

to detect macrophage like cells which are Prdx6-positive in both

nucleus and cytoplasm. Overall, these data show that both Clara

and AT2 cells express high levels of Cat, and Clara cells express

high levels of Prdx6, such that viral destruction of Clara and AT2

cells is expected to reduce the reserves of these two important

antioxidants, which was indeed observed (Fig. 2B).

Loss of Prdx6-expressing Clara cells coincides with
induction of Prdx6 in AT1 cells

Despite the high levels of Prdx6 expression in Clara cells and

their subsequent virus-induced clearance, we observed only a

slight reduction in the overall levels of Prdx6 (Fig. 2B). To address

the question as to why a large change in Clara cell abundance did

not result in a coincident large change in the overall levels of

Prdx6, we monitored the levels of Prdx6 by immunostaining over

the course of the infection. Surprisingly, our staining demonstrated

that Prdx6 expression in the lungs is indeed drastically changed

following the influenza infection (Fig. 5A). At 1 dpi, there was no

change in Prdx6 and CCSP expression in NS1-positive Clara cells

(Fig. 5B d, e, f), which suggests that influenza replication does not

directly impact the expression of these proteins. Subsequently,

however, there was a significant loss of Clara cells (see FIg. 3A),

and with a concomitant reduction in staining for bronchial Prdx6

(Fig. 5A c, d and 5B g, h, i, j, k, l). Regeneration of a layer of Clara

cells was relatively fast, and the expression level of bronchial

CCSP and Prdx6 started to recover after 9 dpi (Fig. 5A f, g, 5B m,

n, o and S2B).

In contrast to Clara cells, a very different picture emerges for

the alveolar spaces. As in un-infected mice (5A a and 5C a, b, c),

Prdx6 was weakly detected in the alveolar spaces at 1 dpi (5A b).

However, by 5 dpi, there is a significant increase in the overall

levels of Prdx6 expression (5A d and 5C d, e, f). Expression of

alveolar Prdx6 reached to the peak at 7 dpi (5A e and 5C g, h, i)

and diffused at 9 dpi (5A f and 5C j, k, l). Given that Prdx6 exactly

co-localized with Pdpn (Fig. 6 a, b, c), it appears that AT1 cells

account for a possible compensatory induction of Prdx6.

Interestingly, strong induction of Prdx6 in AT1 cells is a transient

event and AT1 cells in the inflamed alveoli were depleted after

9 dpi (Fig. 6 d, e, f, and S2B). At 11 dpi, Prdx6 in heavily inflamed

alveoli totally disappeared, but the marked regeneration of Prdx6

was observed in the bronchioles (Fig. 5A g). As we did not observe

Prdx6-positive nuclei in the area where Pdpn (AT1 cells) were

Figure 2. Kinetics of lung-abundant antioxidants following PR8 infection. Mice were infected with sub-lethal dose of PR8 by intra-tracheal
inhalation. A. Influenza-induced change of transcript levels of the seven lung-abundant antioxidants (in blue box), macrophage cell marker (Emr1 in
red box) and activated macrophage-abundant antioxidants (in red box) in the lung tissue was investigated by qRT-PCR. Beta-actin was used for
normalization. B. PR8 infection reduced lung-abundant Cat and Prdx6, while lung-abundant plasma antioxidants were increased (Gpx3 and Tf) or
consistent (Sod3) over the course of infection. Activated macrophage-abundant Hmox1 increased following the clearance of viruses. Lung protein
extracts from three mice were pooled, separated by SDS-PAGE and labeled with the indicated antibodies.
doi:10.1371/journal.pone.0031494.g002
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depleted (Fig. S2B), Prdx6 is generally expressed by Clara and

AT1 cells in the mouse lungs. Unlike Prdx6, Cat was not induced

in AT1 cells (see Fig. 7 f, g, h), which is consistent with the

observation of an overall decline in Cat. Together, these data

reveal a balancing act wherein Prdx6-expressing Clara cell loss is

followed by an increase in Prdx6 in alveolar AT1 cells, thus

minimizing the overall loss of Prdx6.

Lung Gpx3 shifts from the basement membrane to
alveoli following infection

In healthy mouse lungs, we observed that Gpx3 accumulates at

the basement membranes that underlie blood vessels and

bronchioles (which is consistent with previous studies [16]; Fig. 7

a and S3A). Additionally, we found a weak association of Gpx3

with other cell types, including AT2 cells, creating a fairly uniform

distribution on the surface of alveoli (Fig. 7 e and S3A). These data

are consistent with a model wherein Gpx3 is normally secreted

from AT2 cells (and other cell types) and targets basement

membranes or cell surfaces.

Following influenza infection, Gpx3 became diffuse by 5–7 dpi

(Fig. 7 b, c). Ultimately, as tissue recovered from influenza

infection, Gpx3 started to accumulate again at the basement

membranes 9 dpi (d). In contrast to the observed drop in basement

membrane associated Gpx3 during viral replication period (5–

7 dpi), the levels of alveolar Gpx3 gradually increased following

infection (Fig. 7 e, f, g, h). Alveolar Gpx3 rarely co-localized with

Prdx6 in AT1 cells (thick arrows in Fig. S3B a, b, c), showing that

Gpx3 is not bound uniformly to the surface of alveolar cells. Note

that we also observed the presence of intracellular Gpx3 within

infiltrated cells, but the specific cell type is not known (thin arrows

in Fig. S3B a, b, c). Thus, there is a significant shift in the

localization of Gpx3, from basement membranes to alveolar

spaces, which is consistent with compensatory expression and/or

movement of plasma. Together with Prdx6, these are two

independent examples in which a drop in antioxidants in one

cell type (either because of cell loss or because of changes in

affinity) is associated with an increase in the same antioxidant in

another location.

Discussion

It is widely recognized that imbalances in the lung antioxidant

system can lead to oxidative stress, which in its most severe form,

potentiates influenza-induced morbidity and even mortality [3].

Nevertheless, remarkably little is known about the nature of

antioxidant enzymes that are most prevalent in the lung, or about

how infection impacts the levels of antioxidant enzymes. Based

upon published expression profiles, we have identified seven

antioxidant proteins that are particularly abundant in the lung and

we have traced their spatio-temporal profiles during the course of

infection. Interestingly, we observed dramatic shifts in the levels of

antioxidants during infection, and we found that some of the most

significant changes are due to loss of influenza virus permissive

cells, including bronchial Clara cells and alveolar AT2 cells.

To learn about the roles of Clara and AT2 cells in modulating

the levels of antioxidant enzymes, we used immunohistochemistry

to analyze the antioxidant expression in these cells. Among the 7

key lung-abundant antioxidant enzymes, Clara cells strongly

express two intracellular antioxidants, Cat and Prdx6. Clara cells

have several functions, one of which is to protect bronchioles by

providing a lining of cells and by secreting a variety of proteins,

including CCSP and surfactant A (SPA) [17]. In addition, Clara

cells also able to break down harmful substances inhaled into the

lungs and to detoxify them in smooth endoplasmic reticulum via

cytochrome P450 enzymes, which generate ROS [18,19]. It is thus

reasonable to conjecture that high levels of intracellular antiox-

idant enzymes protect Clara cells against ROS stress that results

both from a high oxygen tension and from Clara cell-specific

cytochrome P450 enzymes.

Although Prdx6 is robustly expressed in Clara cells and Clara

cells become depleted, the overall levels of Prdx6 stay relatively

constant. Analysis of the dynamics of Prdx6 during disease

progression shows that the levels of Prdx6 rise significantly within

the alveolar spaces. These data are consistent with antioxidant

rebalancing, or compensatory expression. This response is not

driven by viral replication, since Prdx6 induction was observed in

both infected and uninfected cells. Importantly, Prdx6 levels rise in

AT1 cells, which cover more than 95% of the surface of alveoli

and account for gas exchange [20]. Therefore, even a relatively

small increase in the levels of Prdx6 when analyzed by

immunohistochemistry, can lead to a significant overall increase

in the levels of Prdx6 in the lung, thus compensating for the drop

in Prdx6 due to the loss of Clara cells. Rat AT1 is known to act not

only as a barrier for gas exchange but also as a barrier to oxidative

injury via secretion of apolipoprotein E and Tf [21]. Likewise,

induction of Prdx6 in mouse AT1 cells may also provide a critical

defense against infection-induced oxidative stress.

Prdx6 is a unique bifunctional enzyme with GSH peroxidase

activity (which reduces hydrogen peroxide and phospholipid

hydroperoxide to oxidized glutathione and water) and phospholi-

pase A2 (PLA2) activity, whose products signal a pro-inflammatory

response [22,23]. Its lipid peroxidation-reducing activity enables the

resolution of oxidized lipids in the cell membrane, which would

otherwise have the capacity to amplify damage through a chain

reaction of oxidation and lipid breakdown products. Therefore,

Prdx6 has direct protective effect against toxicity and apoptosis [24].

Interestingly, Prdx6 demonstrates lung-specific functions via the

interaction with SPA that translocates Prdx6 into lamellar body and

extracellular space [25]. In addition, SPA regulates PLA2 activity of

Prdx6 and alters its ability to degrade the major phospholipid of

Figure 3. Clara and AT2, but not AT1 cells, are the major PR8-permissive cell types in mouse lung. Mice were infected with sub-lethal
dose of PR8 by intra-tracheal inhalation. A. PR8 replication sites (viral nonstructural protein 1 [NS1]-positive cells) spread from bronchial cells to
alveoli with the peak at 5 dpi and almost completely disappeared by 9 dpi. Lung sections were immunostained with CCSP, NS1 and Prdx6. Slides
were scanned by MIRAX MIDI system with the exact same exposure times for DAPI, CCSP, Prdx6 and NS1, respectively, and images were shown with
the same adjustment of brightness and contrast. Scanned image for Prdx6 was shown in Fig. 5A. The scale bars represent 500 mm. Infected cells at
1 dpi were pointed with arrows. B. NS1 was mainly detected in bronchial (Br) Clara cells at 1 dpi (d, e, f), and then a layer of infected Clara cells lysed
at 3 dpi (g, h, i). Alveolar infected cells at 5 dpi were co-stained with SPC (white arrows in j, k, l). NS1-positive AT1 cells (white arrows in m, n, o) were
sometimes observed at mildly inflamed area at 7 dpi. Lung sections were immunostained with the indicated antibodies and observed at 660
magnification with confocal microscope. The scale bars represent 50 mm. C. Gene expression of CCSP, SPC and TTF-1, but not Pdpn, was reduced
following infection. mRNA expression in the lung tissue was investigated by qRT-PCR. Beta-actin was used for normalization. D. PR8 infection reduced
protein levels of CCSP and TTF-1, but not Pdpn. Lung protein extracts from three mice were pooled, and were subjected to immunoblotting analysis
with the indicated antibodies.
doi:10.1371/journal.pone.0031494.g003
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surfactant [25,26]. Finally, PLA2 activity of Prdx6 also plays a

critical role in oxidative stress- and TNF-induced apoptosis [27].

Further studies on the mechanism of Prdx6 induction in AT1 cells

and its potential role in suppressing influenza-induced apoptotic cell

death are in progress.

After infecting Clara cells, the virus moves deeper into the lung

and replicates in AT2 cells, which are found in the alveoli. AT2 cells

are known as secretory cells which release the components of

surfactant and extracellular matrix [28] and extracelluar antioxi-

dants Gpx3 and Sod3 [16,29]. These observations are consistent

with a role for AT2 cells in providing antioxidant protection to cells

coated with AT2-produced surfactant (e.g., AT1 cells). Thus, AT2

cells represent another target cell type that, when virally infected,

might lead to loss of extracellular antioxidant enzymes. Unexpect-

edly, however, we did not observe any effects of AT2 cell depletion

on antioxidant protein expression levels in the lungs. In particular,

GPX3 was increased at the time of drastic loss of AT2 cells.

Although both Sod3 and Gpx3 are secreted by AT2 cells in the

lungs, they are also secreted by kidney proximal tubule cells [30,31].

Immunostained lung sections demonstrated that Gpx3, which is

normally at the basement membrane of blood vessels, becomes

diffuse and is subsequently increased throughout the alveolar spaces.

Therefore, it is possible that plasma Gpx3 gains access to the lungs

due to increased permeability during infection. Thus, the reduction

in AT2-secreted Gpx3 is likely masked by the influx of antioxidants

in the plasma, thus providing alternative mechanism for maintain-

ing the balance of antioxidants during infection.

In summary, here we have identified novel lung-abundant

antioxidant enzymes and we have shown that influenza virus

infection impacts their spatio-temporal distribution. Both Clara

and AT2 cells are the major influenza-permissive cell types in the

lungs, and their loss lead to reduction of key lung antioxidants.

However, we present two examples wherein loss of expression of

antioxidants is balanced by expression by other cell types.

Specifically, both the Clara-enriched Prdx6 and the AT2-enriched

Gpx3 are maintained, possibly by compensatory expression system

during infection. Taken together, this work reveals several novel

lung-specific antioxidants and new mechanisms by which the lungs

maintain their levels of antioxidants during infection. Influenza

toxicity can be caused by oxidative stress, which can be

exacerbated by imbalances in the levels of lung-abundant

antioxidants. A deeper understanding of the biology and the

responses of lung-abundant antioxidants to influenza is therefore

fundamental to our understanding of influenza-induced morbidity

and mortality.

Materials and Methods

Mice and virus
The H1N1 influenza virus A/PR/8/34 strain (PR8) was

purchased from American Type Culture Collection (ATCC).

PR8 was propagated in embryonated chicken egg at 37uC for

72 h, and the allantoic fluid was harvested as a viral stock. Virus

titers were determined by the plaque assay via infection of Madin-

Darby Canine Kidney (MDCK) cells. Ten to twelve weeks old

female C57/BL6 mice were housed in BSL2 facilities, and infected

with sub-lethal dose of PR8 (30 PFU in 75 ml of phosphate

buffered saline [pH 7.4] per mouse) by intra-tracheal inhalation

after anesthetization. Lungs were harvested from anesthetized

mice at indicated time points and stored at 280uC until use.

Infected mice did not recover completely at the end of our

experiments (17 dpi) as we observed some infiltrated area in the

lung sections (Data not shown).

Ethics Statement
This study was carried out in strict accordance with the with the

National Advisory Committee for laboratory Animal Research

(NACLAR) Guidelines (Guidelines on the Care and Use of

Animals for Scientific Purposes) in facilities licensed by the Agri-

Food and Veterinary Authority of Singapore (AVA), the

regulatory body of the Singapore Animals and Birds Act. The

protocol was approved by the Institutional Animal Care and Use

Committee (IACUC), National University of Singapore (Permit

Number: IACUC 117/10).

Antiobodies
Primary antibodies used in this study were shown in supporting

table S1. Secondary antibodies were purchased from the following

sources: horseradish peroxidase (HRP)-conjugated anti-goat, -

mouse and -rabbit secondary antibodies from DAKO; Alexa Fluor

488-, 546 or 647-labeled anti-goat, -mouse, -rabbit and -rat

secondary antibodies from Invitrogen.

Quantitative real-time RT-PCR
Total RNA was extracted by using Qiagen RNeasy mini kit and

treated with DNaseI (Qiagen). RNA concentration was measured

by the ND-1000 spectrophotometer (NanoDrop Technologies)

and 1 mg of RNA were reverse-transcribed by using oligo(dT) and

iScript reverse transcriptase (Bio-rad). PCR was performed with

the Bio-Rad CFX-96 real-time system using Ssofast Evagreen

Supermix according to the manufacturer’s instructions (Bio-Rad).

Primers used in this study were listed in supporting information

(Table S2). Previously reported primer sequences were obtained

from PrimerBank (http://pga.mgh.harvard.edu/primerbank/in-

dex.html) and a literature [32]. PCR was carried out for 95uC for

30 s, 40 cycles at 95uC for 1 s and 60uC for 10 s. Data were

normalized with beta actin. Trends of the changes in gene

expression were confirmed by the two independent experiments.

Immunoblotting
Lungs were lysed with 26 Laemmli sample buffer without

bromophenol blue and the protein concentration was determined

by the Bio-rad Protein Assay kit. Five mg of protein (10 mg for

Hmox1) were separated by SDS-PAGE and transferred to

nitrocellulose membranes (Bio-rad). Membranes were incubated

with a primary antibody for overnight at 4uC, subsequently with

HRP-conjugated secondary antibody for 1 h at room temperature,

and detected using the enhanced chemiluminescence (ECL) prime

Figure 4. Lung-abundant Cat and Prdx6 are strongly expressed by Clara and AT2 cells in the mouse lung. Lung sections from
uninfected mice were immunostained with the indicated antibodies and observed at 660 magnification with confocal microscope. The scale bars
represent 50 mm. Abbreviation: Br; bronchioles, Bv; blood vessels. A. Cat was strongly expressed in Clara cells, arterial blood vessels and cells
scattered in alveoli (a, b, c). Cells with higher Cat expression at alveoli were co-stained with SPC (d, e, f). B. Prdx6 expression was extremely high in
bronchial Clara cells (a, b, c). Alveolar Prdx6 was detected in AT1 cells (thick arrows in d, e, f), unknown cell types with Prdx6-positive nuclei (thin
arrows in g, h, i) or weakly in AT2 cells (thick arrows in g, h, i). Different exposure settings for image capturing were used for Prdx6 here
(Corresponding Prdx6-positive nuclei were circled with dashed line in b, e, h).
doi:10.1371/journal.pone.0031494.g004
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Figure 5. Loss of Prdx6-expressing Clara cells coincides with induction of alveolar Prdx6. Lung sections were immunostained with CCSP,
NS1 and Prdx6 antibodies. Slides were scanned by MIRAX MIDI system with the exact same exposure times for DAPI, CCSP, Prdx6 and NS1,
respectively, and images were shown either with the same adjustment of brightness and contrast (A) or without any adjustments (B, C). The scale
bars represent 500 mm (A) or 50 mm (B, C), respectively. A. Loss of bronchial Prdx6 coincides with induction of alveolar Prdx6 in the mouse lungs
following influenza infection. Scanned image for CCSP and NS1 were shown in Fig. 3A. B. Prdx6 in CCSP-positive bronchial (Br) Clara cells drastically
decreased following infection (a to l), but started to regenerate at 9 dpi (m, n, o). C. Alveolar Prdx6 was increased when many Clara cells were
depleted from the lung at 5 dpi (d, e, f), and was strongly expressed at 7 dpi (g, h, i). Prdx6 was then diffused at heavily inflamed area of the alveoli (j,
k, l).
doi:10.1371/journal.pone.0031494.g005

Figure 6. AT1 cells account for a possible compensatory induction of Prdx6. Pdpn and alveolar Prdx6 were exactly co-localized at 7 dpi (a,
b, c). Pdpn and Prdx6 were both depleted at heavily inflamed alveoli at 9 dpi (d, e, f). White arrows indicate cells with Prdx6-positive nucleus.
Immunostained slides were observed at 660 magnification in the confocal microscope. The scale bars represent 50 mm.
doi:10.1371/journal.pone.0031494.g006

Figure 7. Lung Gpx3 shift from the basement membrane to the alveolar space following infection. Gpx3 at basement membrane of
blood vessels (Bv) and bronchioles (Br) was totally diffused at 5 and 7 dpi (a, b, c), but started to accumulate again at 9 dpi (d). In contrast, Gpx3
gradually increased and accumulated in the alveolar spaces (e, f, g, h). Mice were infected with sub-lethal dose of PR8 by intra-tracheal inhalation.
Lung sections from uninfected mice were immunostained with the indicated antibodies and observed at 660 magnification with confocal
microscope. The scale bars represent 50 mm.
doi:10.1371/journal.pone.0031494.g007
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detection reagents (GE healthcare). Trends of the changes in protein

expression were confirmed by the two independent experiments.

Immunofluorescent staining of paraffin sections
Lungs harvested from anesthetized mice were fixed in 10%

neutral buffered formalin solution (Sigma Aldrich) overnight,

followed by embedding in paraffin with tissue processor (Leica).

Five mm sections on poly-L-lysine coated slides (Thermal

Scientific) were de-waxed with xylene and rehydrated in water.

Antigen retrieval was processed with proteinase K (Sigma Aldrich,

20 mg/ml in 50 mM Tris-HCl, 1 mM EDTA, pH 8.0) at 37uC
for 30 min. The sections were incubated with appropriate

antibody overnight at 4uC, and stained with secondary antibody

for 1 h at room temperature. The slides were mounted with anti-

fade reagent with DAPI (Invitrogen) and then scanned by high-

resolution MIRAX MIDI system (Carl Zeiss). Images at 660

magnification were observed under the confocal microscope

FluoView FV1000 (Olympus).

Supporting Information

Figure S1 Immunoblotting results of the individual
mice. Lung protein extracts from three mice at 0, 7, 9 and

15 dpi were subjected to immunoblotting analysis with the

indicated antibodies.

(TIF)

Figure S2 Prdx6-positive nuclei are not observed in the
Pdpn (AT1cells)-negative inflamed area of alveoli.
Immunostained lung sections were scanned by MIRAX MIDI

system. A. A number of Prdx6-positive nuclei (in green) were

scattered in the normal alveoli. B. Prdx6-positive nuclei (arrows in

b, d, f, h) were not observed in Pdpn-negative inflamed area at

11 dpi (a, c, e). Bronchial Prdx6 started to express strongly at

11 dpi (a, c, e). The section was subsequently stained by H&E

staining (g, h). Cluster of five Prdx6-positive nuclei were circled

with dashed line. The scale bars represent 100 mm (a, c, e, g) and

50 mm (b, d, f, h), respectively.

(TIF)

Figure S3 Localization of Gpx3 in both uninfected and
infected mice lung. Mice were infected with sub-lethal dose of

PR8 by intra-tracheal inhalation. Immunostained lung sections

with the indicated antibodies and observed at 660 magnification

with confocal microscope. The scale bars represent 50 mm. A.
Gpx3 was abundantly located at the basement membrane of blood

vessels (Bv) and bronchioles (Br) in the normal lung. Gpx3 was also

weakly detected at alveolus, but did not always appear at the

surface of AT2 cells that express higher Cat (white arrows in d, e,

f). B. Alveolar GPX3 at 7 dpi did not co-localized with AT1 cells

that express higher level of Prdx6 (thick arrows in a, b, c). Gpx3

was also strongly detected within some infiltrated cells (thin arrows

in a, b, c).

(TIF)

Table S1 Primary antibodies used in this study.

(DOC)

Table S2 Primers used for qRT-PCR in this study.
*Primer sequences were obtained from PrimerBank (http://pga.

mgh.harvard.edu/primerbank/index.html).

(DOC)
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8. Stỳblo M, Walton FS, Harmon AW, Sheridan PA, Beck MA (2007) Activation of

superoxide dismutase in selenium-deficient mice infected with influenza virus.

J Trace Elem Med Biol 21: 52–62.

9. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, et al. (2008) Expression

analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome

Res 4: 5.

10. Buchweitz JP, Harkema JR, Kaminski NE (2007) Time-dependent airway

epithelial and inflammatory cell responses induced by influenza virus A/PR/8/

34 in C57BL/6 mice. Toxicol Pathol 35: 424–435.

11. Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, et al. (2006) Influenza

virus receptor specificity and cell tropism in mouse and human airway epithelial

cells. J Virol 80: 7469–7480.

12. Zhou L, Lim L, Costa RH, Whitsett JA (1996) Thyroid transcription factor-1,

hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory

protein in developing mouse lung. J Histochem Cytochem 44: 1183–1193.

13. Kelly SE, Bachurski CJ, Burhans MS, Glasser SW (1996) Transcription of the

lung-specific surfactant protein C gene is mediated by thyroid transcription

factor 1. J Biol Chem 271: 6881–6888.

14. Zhang L, Whitsett JA, Stripp BR (1997) Regulation of Clara cell secretory

protein gene transcription by thyroid transcription factor-1. Biochim Biophys

Acta 1350: 359–367.

15. Kim TS, Dodia C, Chen X, Hennigan BB, Jain M, et al. (1998) Cloning and

expression of rat lung acidic Ca(2+)-independent PLA2 and its organ

distribution. Am J Physiol 274: L750–761.

16. Burk RF, Olson GE, Winfrey VP, Hill KE, Yin D (2011) Glutathione

peroxidase-3 produced by the kidney binds to a population of basement

membranes in the gastrointestinal tract and in other tissues. Am J Physiol

Gastrointest Liver Physiol 301: G32–G38.

17. Reynolds SD, Malkinson AM (2010) Clara cell: progenitor for the bronchiolar

epithelium. Int J Biochem Cell Biol 42: 1–4.

18. Chichester CH, Philpot RM, Weir AJ, Buckpitt AR, Plopper CG (1991)

Characterization of the cytochrome P-450 monooxygenase system in nonciliated

bronchiolar epithelial (Clara) cells isolated from mouse lung. Am J Respir Cell

Mol Biol 4: 179–186.

19. Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate

production of reactive oxygen species by cytochrome P450. Toxicol Appl

Pharmacol 199: 316–331.

20. Williams MC (2003) Alveolar type I cells: molecular phenotype and

development. Annu Rev Physiol 65: 669–695.

21. Chen J, Chen Z, Chintagari NR, Bhaskaran M, Jin N, et al. (2006) Alveolar type

I cells protect rat lung epithelium from oxidative injury. J Physiol 572: 625–638.

22. Kang SW, Baines IC, Rhee SG (1998) Characterization of a mammalian

peroxiredoxin that contains one conserved cysteine. J Biol Chem 273:

6303–6311.

23. Kim TS, Sundaresh CS, Feinstein SI, Dodia C, Skach WR, et al. (1997)

Identification of a human cDNA clone for lysosomal type Ca2+-independent

phospholipase A2 and properties of the expressed protein. J Biol Chem 272:

2542–2550.

Spatio-Temporal Distribution of Lung Antioxidants

PLoS ONE | www.plosone.org 12 February 2012 | Volume 7 | Issue 2 | e31494



24. Wang Y, Feinstein SI, Fisher AB (2008) Peroxiredoxin 6 as an antioxidant

enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced
oxidative stress. J Cell Biochem 104: 1274–1285.

25. Wu YZ, Manevich Y, Baldwin JL, Dodia C, Yu K, et al. (2006) Interaction of

surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity.
J Biol Chem 281: 7515–7525.

26. Fisher AB, Dodia C, Feinstein SI, Ho YS (2005) Altered lung phospholipid
metabolism in mice with targeted deletion of lysosomal-type phospholipase A2.

J Lipid Res 46: 1248–1256.

27. Kim SY, Chun E, Lee KY (2011) Phospholipase A(2) of peroxiredoxin 6 has a
critical role in tumor necrosis factor-induced apoptosis. Cell Death Differ 18:

1573–1583.
28. Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus

revisited. Respir Res 2: 33–46.

29. Folz RJ, Guan J, Seldin MF, Oury TD, Enghild JJ, et al. (1997) Mouse

extracellular superoxide dismutase: primary structure, tissue-specific gene

expression, chromosomal localization, and lung in situ hybridization.

Am J Respir Cell Mol Biol 17: 393–403.

30. Suliman HB, Ali M, Piantadosi CA (2004) Superoxide dismutase-3 promotes full

expression of the EPO response to hypoxia. Blood 104: 43–50.

31. Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK, et al. (2009)

Extracellular glutathione peroxidase (Gpx3) binds specifically to basement

membranes of mouse renal cortex tubule cells. Am J Physiol Renal Physiol 298:

F1244–1253.

32. Alt JA, Bohnet S, Taishi P, Duricka D, Obal F, Jr., et al. (2007) Influenza virus-

induced glucocorticoid and hypothalamic and lung cytokine mRNA responses in

dwarf lit/lit mice. Brain Behav Immun 21: 60–67.

Spatio-Temporal Distribution of Lung Antioxidants

PLoS ONE | www.plosone.org 13 February 2012 | Volume 7 | Issue 2 | e31494


