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Abstract

Fulminant hepatic failure (FHF) is defined as rapid acute liver injury, often complicated with

spontaneous bacterial peritonitis (SBP). The precise onset of FHF with SBP is still unknown,

but it is thought that SBP closely correlates with a weakened intestinal barrier. Dendritic

cells (DCs) play a crucial role in forming the intestinal immune barrier, therefore the number,

maturity and chemotactic ability of intestinal DCs were studied in FHF. Mouse intestinal and

spleen DCs were isolated by magnetic-activated cell sorting (MACS) and surface markers

of DCs, namely CD11c, CD74, CD83 and CD86, were identified using flow cytometry.

Immunohistochemistry and Western blotting were performed to detect the distribution and

expression of CC-chemokine receptor 7 (CCR7) and CC-chemokine receptor 9 (CCR9), as

well as their ligands-CC-chemokine ligand 21 (CCL21) and CC-chemokine ligand 25

(CCL25). Real-time PCR was used to detect CCR7 and CCR9 mRNA, along with their

ligands-CCL21 and CCL25 mRNA. Flow cytometry analysis showed that the markers

CD74, CD83 and CD86 of CD11c+DCs were lower in the D-galactosamine (D-GalN) group

and were significantly decreased in the FHF group, while there were no significant changes

in the expression of these markers in the lipopolysaccharide (LPS) group. Immunohis-

tochemistry results showed that staining for CCR7 and CCR9, as well as their ligands

CCL21 and CCL25, was significantly weaker in the D-GalN and FHF groups compared with

the normal saline (NS) group or the LPS group; the FHF group even showed completely

unstained parts. Protein expression of CCR7 and CCR9, as well as their ligands- CCL21

and CCL25, was also lower in the D-GalN group and decreased even more significantly in

the FHF group. At the gene level, CCR7 and CCR9, along with CCL21 and CCL25 mRNA

expression, was lower in the D-GalN group and significantly decreased in the FHF group

compared to the NS and LPS groups, consisting with the protein expression. Our study indi-

cated that intestinal DCs were decreased in number, maturity and chemotactic ability in

FHF and might contribute to a decreased function of the intestinal immune barrier in FHF.
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Introduction

Fulminant hepatic failure (FHF) refers to sudden necrosis of liver cells and fast deterioration

of liver functions. Hepatic encephalopathy often occurs in patients with an outbreak with FHF

[1]. Multiple organ damage may be caused by FHF. Spontaneous bacterial peritonitis(SBP),

which is among the most severe complications arising in patients with FHF, is a frequent, life-

threatening bacterial infection in patients with liver cirrhosis and ascites [2]. Increased bacte-

rial translocation from the intestine caused by portal hypertension [2], and small-intestinal

bacterial overgrowth (SIBO) is highly prevalent in patients with cirrhosis [3]. SBP is recognized

as an important marker of liver disease progression, and could be the decisive turning point in

the management of advanced liver disease [4]. The mechanisms underlying FHF concurrent

with SBP are not yet fully understood. Decreased intestinal barrier functions have been proved

in animal models and humans in advanced liver disease [5, 6]. Previous studies have shown

that intestinal IgA, secretory component (SC) and secretory immunoglobulin A (SIgA) tend to

be markedly decreased in patients with FHF [7]. Dendritic cells (DCs) are sentinel immune

cells in the intestinal immune barrier and charging of initiating and polarizing adaptive

immune responses [8]. In steady-state conditions, resident DCs express low levels of the costi-

mulatory molecules-CD80 and CD86, as well as low levels of the major histocompatibility

complex (MHC) class II to become phagocytic cells. Upon activation by microbes, DCs upre-

gulate MHC and costimulatory molecules at the cell surface to downregulate phagocytic activ-

ity while increase processing capacity[9]. After loading with mucosal antigens, DCs migrate to

the mesenteric lymph nodes(MLNs) to present the processed antigen to naive T cells. CC-che-

mokine receptor 7 (CCR7) and its ligand CCL21 are widely recognized as the most important

driver of DC trafficking from peripheral tissues to draining lymph nodes [10, 11]. CC-chemo-

kine receptor 9 (CCR9) is another candidate chemokine receptor for the regulation of DCs

trafficking; the interaction between CCR9 and its ligand CCL25 contributes to the migration

of T cells and DCs into the small intestine and movement of T cells in the thymus [12].

The model of FHF or acute liver injury induced by lipopolysaccharide (LPS) and D-galac-

tosamine (D-GalN) has been widely used. Endotoxin is a gram-negative bacterial LPS and

releases a wide variety of inflammatory mediators, which lead to necrosis of liver cells and liver

injury. D-GalN is hepatotoxic agent that causes irreversible damage to liver cells by consuming

uridine nucleotides in hepatocytes. Combined administration LPS and D-GalN leads to acute

injury of liver cells and mimics the situations in FHF. We recently showed that CD11b/c,

CD83, CD86 and the MHCⅡ-associated invariant chain Ii (also known as CD74), the T cell

marker (CD3), and AKT/phosphorylated-AKT (p-AKT) were significantly altered in FHF[13].

The aim of our study was to investigate the changes in maturity and chemotaxis of DCs in

FHF to further reveal the dysfunction of the intestinal immune barrier and provide a theoreti-

cal basis for FHF complicated with SBP.

Material and Methods

All animals in this study were provided by the Animal Center of Shengjing Hospital of China Med-

ical University. Adult wild-type mice were anesthetized and killed by cervical dislocation. All stud-

ies were performed in accordance with the protocol approved by the Institutional Animal Care

and Use Committee of the China Medical University for Basic Research in Developmental Disabil-

ities. All surgery was performed under anesthesia, and all efforts were made to minimize suffering.

Animal model of FHF

A mouse model of FHF was established as described previously [7, 13, 14]. A total of 180 Male

BALB/c mice weighing 18–22 g were randomly divided into four groups, namely group 1 (20
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mice): normal saline (NS); group 2 (40 mice): LPS; group 3 (40 mice): D-GalN; and group 4

(80 mice): FHF (LPS and D-GalN; Sigma, USA). Mice were injected intraperitoneally with LPS

(10 μg/kg) and/or D-GalN (800 mg/kg). Mice were killed at 9 h after the injection. The study

was approved by the animal Ethics Committee of China Medical University.

Isolation of intestinal CD11c+DC

Mice were sacrificed by cervical dislocation, and the entire small intestine luminal contents

were flushed with PBS; the tissues were dissected longitudinally, cut into 1 cm pieces, and

washed extensively in HEPES-buffered HBSS (Hyclone Technologies, USA). The small intes-

tine pieces were incubations for 20 min at 37˚C with continuous agitation in Ca2+Mg2+-free

HBSS (Hyclone Technologies, USA) containing 10% FBS, 10 mM HEPES, and 5 mM EDTA

for removal of epithelial cells. Then the small intestine pieces were digested in RPMI 1640

(Hyclone Technologies, USA) supplemented with 1mg/ml collagenase type IV (Sigma Aldrich,

USA), 50μg/ml DNaseI, 10% FBS (Hyclone Technologies, USA), 2 mM-glutamine, 10mM

HEPES, and 100g/ml gentamicin (collagenase-supplemented RPMI 1640) for 50min at 37˚C

with continuous agitation. Single cell suspension was obtained by passing through 100-mesh

nylon sieve. 40%/70% Percoll (Amersham Biosciences, USA) density gradient centrifugation

was used for further purified. DC-enriched cell populations at the interface were collected,

washed with PBS and incubated with CD11c microbeads (Miltenyi Biotec, Germany) accord-

ing to the manufacturer’s instructions. CD11c+ cells purification were conducted by positive

selection using MACS separation columns (Miltenyi Biotec, Germany).

Isolation of spleen CD11c+DCs

Mice were sacrificed by cervical dislocation. Spleens were removed, any fatty tissue was

trimmed away and spleens were washed three times with PBS. Spleens were laid on a

100-mesh pore size cell strainer and, using the barrel from a 2mL syringe, the spleens were

pressed through the strainer until only a small amount of fibrous tissue remained in the

strainer. Spleen cells were collected and further purified using a mouse spleen lymphocyte iso-

lation kit (TBD Sciences, China). Spleen DCs were isolated by MACS in a manner similar to

isolation of small intestine DCs described above.

Flow cytometry analysis

CD11c+DCs were incubated at 4˚C for 30 minutes with the following fluorochrome-labeled

anti-mouse monoclonal antibodies: anti-CD11c-APC (Biolegend, USA), anti-CD74-FITC (BD

Biosciences, USA), anti-CD83-PE (Biolegend, USA) and anti-CD86-PE (Biolegend, USA).

Samples were acquired on a FACS Calibur flow cytometer (BD Biosciences, USA) and data

were analyzed with Flowjo software (BD Biosciences, USA).

Immunohistochemical analysis

Small intestine tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and cut into

3.5μm slices. Followed deparaffinized, rehydrated and antigen retrieval, endogenous peroxi-

dase activitywas blockedwith 3% H2O2. Primary antibodies of CCR7 (Abcam, USA), CCR9

(Abcam, USA), CCL21 (R&D Systems, USA), and CCL25 (R&D Systems, USA) were incu-

bated at 4˚C overnight. After washing, the slides were incubated with apporiate biotin-labeled

secondary antibodies followed by staining with 3, 3’-diaminobenzidine (DAB), and counter-

staining with hematoxylin. The stained slides were examined by light microscopy.
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Western blot assay

Small intestinal tissues were lysed in RIPA buffer. Equal amount of protein samples (40μg)

were separated by 10% and 12% SDS-PAGE, and then transferred to polyvinylidene fluoride

membranes (Millipore, USA). Membranes were blocked in 5% non-fat milk dissolved in

TBST-Tween 20, followed by incubated with specific primary antibodies-CCR7 (Abcam,

USA), CCR9 (Abcam, USA), CCL21 (R&D Systems, USA), CCL25 (R&D Systems, USA) and

GAPDH (Abcam, USA) overnight at 4˚C, respectively. The next day, membranes were incu-

bated with HRP-conjugated rabbit anti-mouse IgG (ZSGB-BIO, China) and goat anti-rabbit

IgG (ZSGB-BIO, China). All the immunoblots were visualized by using an ECL detection sys-

tem (Thermo, USA).

Real-time polymerase chain reaction (PCR) analysis

Total RNA from murine small intestines was extracted with TRIzolTM (Takara Biotechnology,

China) and cDNA (Takara Biotechnology, China) was synthesized using PrimeScript1 RT

reagent Kit (Takara Biotechnology, China) according to the manufacturer’s guidelines. Quanti-

tative real-time PCR was performed using the LightCycler1 480 Real-Time PCR System

(Roche Applied Science, Germany). The sequences of the forward and reverse primers were

used to amplify gene-specific regions:5’-CTCTCCTTGTCATTTTCCAGGTGTG-3’ and 5’-

ACACCGACTCGTACAGGGTG-3’ for CCR7, 5’-TGTAAGAAAAATAATGTCAGGCAGT-3’

and 5’-CAGAAGGGAAGAGTGGCAAG-3’ for CCR9, 5’-CGGCAATCCTGTTCTCACCC-3’

and 5’-GGAGCCCTTTCCTTTCTTTC-3’ for CCL21, 5’-TGGGTTACCAGCACAGGA-3’ and

5’-GGCGGAAGTAGAATCTCACA-3’ for CCL25, 5’-TGTGTCCGTCGTGGATCTGA-3’ and

5’-TTGCTGTTGAAGTCGCAGGAG-3’ for GAPDH. All primers were purchased from Takara

Biotechnology. Samples were run in triplicates, and the mRNA levels of each specific gene were

normalized to GAPDH using the comparative Ct method (44Ct).

Data analysis

Data are expressed as mean±standard deviation (SD). All statistical analyses were performed

using the Prism Graph 6.0 software. Statistical significance of the data was determined using

the unpaired, two-tailed Student’s t-test. Values of p<0.05 were considered statistically

significant.

Results

1. Intestinal DCs were altered in their number and maturity in FHF

CD86 and MHC II are major mature markers of DCs, and CD83 is a transmembrane protein,

mainly known as a marker of mature DCs (mDCs) [15]. CD74 is a transmembrane glycopro-

tein that associates with MHC class II α and β chains and is also known as MHC class II invari-

ant chain (Ii) [16]. The markers CD74, CD83 and CD86 of CD11c+DCs were lower in the

D-GalN group and significantly lower in the FHF group (p<0.05) (Fig 1). There was no signif-

icant change in CD74, CD83 and CD86 levels in the LPS group (Fig 1). Spleen DCs were iso-

lated to reveal any changes of peripheral DCs. Results demonstrated (Fig 2) that CD74, CD83

and CD86 of spleen CD11c+DCs were lower in the D-GalN group and significantly lower in

the FHF group (p<0.05), which was consistent with the intestinal DCs.

2. The chemotactic ability of intestinal CD11c+DCs was altered in FHF

2.1 Immunohistochemical staining of CCR7 and CCR9, along with their ligands CCL21

and CCL25. In the NS group and the LPS group, there was a high intensity of CCR7 (Fig 3A)
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Fig 1. Isolation and phenotypic characterization of intestinal CD11c+DCs. (A) Expression of surface markers in MACS-isolated CD11c+DCs. (B)

Percentage of CD74 in CD11c+DCs. (C) Percentage of CD83 in CD11c+DCs. (D) Percentage of CD86 in CD11c+DCs. Compared with the NS group,

expression of CD74, CD83 and CD86 was lower in the D-GalN group and significantly lower in the FHF group, but there was no significant difference

compared with the LPS group (*P<0.05 vs. the NS group, unpaired t-test; n�6).

doi:10.1371/journal.pone.0166165.g001
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Fig 2. Isolation and phenotypic characterization of spleen CD11c+DCs. (A) Expression of surface markers in MACS-isolated CD11c+DCs. (B)

Percentage of CD74 in spleen CD11c+DCs. (C) Percentage of CD83 in spleen CD11c+DCs. (D) Percentage of CD86 in spleen CD11c+DCs. Compare with

the NS group, expression of CD74, CD83 and CD86 in the FHF group was lower in the D-GalN group and significantly lower in the FHF group, but there was

no significant difference compared with the LPS group (*P<0.05 vs. the NS group, #P<0.05 vs. the FHF group unpaired t-test; n�6)

doi:10.1371/journal.pone.0166165.g002
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expressed in membranes of intestinal epithelium and lamina propria (LP) cells, indicated by a

strong brown. A reduced intensity of CCR7 was observed in the D-GalN group, and in the

FHF group there was a significant reduction in CCR7 (P<0.01). CCL21 (Fig 3B) was strongly

expressed in the cytoplasm of LP cells (indicated by brown staining). Expression of CCL21 was

lower in the D-GalN group and there was significantly lower in the FHF group compared with

the NS group or the LPS group (P<0.001). CCR9 (Fig 3C) was mainly distributed in the epi-

thelium and LP of the gut. Compared with the NS group and the LPS group, the brown was

less intense in the D-GalN group and significantly reduced in the FHF group (P<0.001).

CCL25 (Fig 3D), the ligand of CCR9, was mainly distributed in the intestinal epithelium and

its expression was correlated with CCR9, with differences between groups being statistically

significant (P< 0.001).

2.2 Protein expression of CCR7 and CCR9 as well as their ligands CCL21 and CCL25.

In the NS group, there were clear and specific bands of CCR7 (Fig 4A) and its ligand CCL21

(Fig 4C) as well as CCR9 (Fig 4E) and its ligand CCL25 (Fig 4G) at 43KD, 12KD, 45KD and

15KD, respectively. Expression of these proteins changed little in the LPS group. In the

D-GalN group, expression of these proteins was lower compared with the NS group and the

LPS group, while in the FHF group protein expression of CCR7, CCL21, CCR9 and CCL25

was significantly decreased (P<0.05).

2.3 mRNA expression of CCR7 and CCR9 along with their ligands CCL21 and

CCL25. Compared with the NS group, mRNA expression of CCR7 (Fig 5A), CCL21 (Fig

5B), CCR9 (Fig 5C) and CCL25 (Fig 5D) was lower in the D-GalN group and significantly

lower (P<0.05) in the FHF group. These findings were consistent with the results of immuno-

histochemical staining and western blot analysis.

Discussion

Spontaneous bacterial peritonitis (SBP) is a severe complication occurring in patients with

FHF. A great deal of intestinal bacterial translocation and over growth, concurrent with

increased intestinal epithelial permeability all contribute to SBP [17]. In addition, a dysfunc-

tional intestinal barrier, promoting the translocation of bacteria and bacterial products, plays a

key role in SBP.

DCs are efficient antigen-presenting cells (APCs) that stimulate innate and adaptive

immune reactions. By interacting with pathogens and presenting antigens to cells of the adap-

tive immune system, intestinal DCs are key regulators of the intestinal immune barrier and

may be involved in FHF complicated with SBP. DCs are distributed widely in the LP and in

organized lymphoid organs associated with the intestine, including the ileal Peyer’s patches

(PPs), colonic isolated lymphoid follicles (ILFs) and the more remote MLNs [18]. Different

DC subsets have been described in mice and human classified on the expression of their sur-

face makers. Generally, mouse DCs express CD11c, CD11b, the interdigitating DC marker

CD205, and the co-stimulator molecules CD80, CD86 and CD40 [19]. CD74, which is MHC

class II-associated invariant chain (Ii), parallels the tissue distribution of MHC class II [20].

CD74 has been reported to regulate DC migration [21]. In our study, CD11c, CD74, CD83

and CD86 in both intestinal DCs and spleen DCs were significantly reduced. This showed that

the number of DCs and their maturation process were disrupted in FHF.

Fig 3. Immunohistochemical staining of CCR7, CCR9, CCL21 and CCL25. A, B, C and D: Immunohistochemical staining of CCR7,

CCL21, CCR9 and CCL25; E, F, G and H: Integrated optical density of CCR7, CCL21, CCR9 and CCL25. Compared with the NS

group, the integrated optical density of CCR7, CCL21, CCR9 and CCL25 was reduced in the D-GalN group and notably reduced in the

FHF group, but there was no significant difference compared with the LPS group (**P< 0.01, ***P< 0.001 vs. the NS group; #P<0.05,

##P<0.01, ###P<0.001 vs. the FHF group, unpaired t-test; n�10).

doi:10.1371/journal.pone.0166165.g003
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Fig 4. Intestinal CCR7, CCL21, CCR9 and CCL25 protein expression. A, C, E and G: Electrophoresis banding of intestinal CCR7,

CCL21, CCR9 and CCL25. B, D, F and H: Densitometric analysis using the Image-Pro software. Compared with the NS group,

absorbance ratios of CCR7, CCL21, CCR9 and CCL25 to GAPDH were lower in the D-GalN group and notably decreased in the FHF

group, but there was no significant difference compared with the LPS group (*P< 0.05 vs. the NS group; #P<0.05 vs. the FHF group,

unpaired t-test; n�8).

doi:10.1371/journal.pone.0166165.g004
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Intestinal DCs can be divided into resident DCs and migratory DCs. Presenting antigens to

naïve T cells and initiation of adaptive immune responses are tightly associated with DC

migrating property. DC migration occurs constitutively but is markedly accelerated after infec-

tion or inflammation [22]. Gene targeting has shown that CCR7 is essential for DC mobiliza-

tion [23], and has been established as the critical receptor for entry of DCs into lymph nodes,

but is now also known to be important for the mobilization of DCs [24]. CCR7 is a G-protein-

coupled receptor and mediate signaling by seven trans-membrane segments [25, 26]. CCR7 is

expressed by various subtypes of immune cells including semi-mature and mature DCs[27], T

cells [28] and B cells [29]. CCL19 and CCL21, also known as EBI1-Ligand Chemokine/Macro-

phage Inflammatory Protein-3b (ELC/MIP-3b) and Secondary Lymphoid-tissue Chemokine

(SLC), are the only two well-characterized CCR7 ligands mainly expressed in secondary lym-

phoid tissues [30]. Recent evidence suggested that CCL19 and CCL21 were able to drive the

Fig 5. Relative mRNA levels of intestinal CCL21, CCR7, CCR9 and CCL25. (A): CCR7, (B): CCL21, (C): CCR9 and (D): CCL25. Levels of

intestinal CCL21, CCR7, CCR9 and CCL25 mRNAs in tissues from the FHF group and D-GalN were significantly decreased compared with the

NS group, but there were no significant differences compared with tissues from the LPS group of CCR7, CCR9, CCL21 and CCL25 (*P< 0.05,

**P< 0.01 vs. the NS group; #P<0.05, ##P<0.01 vs. the FHF group, unpaired t-test; n�8).

doi:10.1371/journal.pone.0166165.g005
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migration of DCs, as well as directly affecting their ability to prime T cells [31]. It had also

been shown that CCR7 ligands increased the antigen uptake of mature DCs [32]. Though

binding to CCR7 with similar affinity, CCL19 and CCL21 have distinct regulatory effects of

CCR7. CCL19 promotes the receptor phosphorylation and desensitization [33], while CCL21

has a unique C-terminal extension that binds glycosaminoglycans (GAGs) to trigger directed

migration [24]. Mirjam R et al. reported that CCL21 was sufficient to mediate DC migration,

maturation and T cell priming in the absence of CCL19 [34].

In order to further investigate the change of chemotactic ability in DCs with FHF, we

detected a CCR9/CCL25 axis in intestinal tissues. CCR9/CCL25 interaction is a critical chemo-

kine/receptor pairs involved in gut-specific migration of leukocytes and lymphocyte recruit-

ment to the intestine. CCL25 is expressed in thymus and small intestinal epithelium [35] and

regulates trafficking of gut tropic effect or T cells via upregulation of the integrin homing

receptor α4β7, which interacts with MadCAM-1 on intestinal microvascular endothelium [36,

37]. Accumulating evidence had shown that the CCR9/CCL25 axis participated in a variety of

disease processes [38, 39]. The levels of colonic CCL25 had been shown to increase in both

Crohn’s disease and ulcerative colitis, and pharmacological inhibitors of CCR9 prevented the

development of ulcerative colitis in an experimental model [40]. Our results confirmed that,

consistenting with CCR7 and its ligand CCL21, expression of CCR9 and its ligand CCL25

were reduced in intestinal tissues in the D-GalN group and significantly reduced in the FHF

group. Decreased expression of CCR7/CCL21 and CCR9/CCL25 demonstrated a reduced che-

motactic ability of intestinal DCs in FHF.

In conclusion, we had shown that CD11c+DCs not only decreased in number and maturity,

but also in chemotactic and migration ability in FHF. The maturation process of DCs in the

intestinal tract was obstructed, and the migration and homing property of DCs was restricted,

which affected the function of the intestinal immune barrier in FHF. These findings increase

our understanding of the mechanisms involved in FHF concurrent with SBP, and may open

up therapeutic opportunities for FHF complicated with SBP.

Supporting Information
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tochemistry, Western Blot and Real-time PCR analysis.

(RAR)

Acknowledgments

This study was supported by the National Natural Science Foundation of China (#30871158,

#81170604) and the Education Department Foundation of Liaoning Province (#LK201620)

and the Out standing Scientific Fund of Shengjing Hospital.

Author Contributions

Conceptualization: DYL.

Data curation: ML DYL.

Formal analysis: ML PW MZ.

Funding acquisition: DYL.

Investigation: ML DYL.

Methodology: ML DYL.

The Change of Intestinal DCs Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure

PLOS ONE | DOI:10.1371/journal.pone.0166165 November 10, 2016 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166165.s001


Project administration: DYL.

Resources: DYL.

Software: ML MZ.

Supervision: DYL.

Validation: DYL.

Visualization: DYL.

Writing – original draft: ML.

Writing – review & editing: DYL.

References
1. Younis BB, Arshad R, Khurhsid S, Masood J, Nazir F, Tahira M. Fulminant hepatic failure (FHF) due to

acute hepatitis C. Pakistan journal of medical sciences. 2015; 31(4):1009–11. doi: 10.12669/pjms.314.

7618 PMID: 26430449; PubMed Central PMCID: PMC4590397.

2. Lutz P, Nischalke HD, Strassburg CP, Spengler U. Spontaneous bacterial peritonitis: The clinical chal-

lenge of a leaky gut and a cirrhotic liver. World journal of hepatology. 2015; 7(3):304–14. doi: 10.4254/

wjh.v7.i3.304 PMID: 25848460; PubMed Central PMCID: PMC4381159.

3. Pande C, Kumar A, Sarin SK. Small-intestinal bacterial overgrowth in cirrhosis is related to the severity

of liver disease. Alimentary pharmacology & therapeutics. 2009; 29(12):1273–81. doi: 10.1111/j.1365-

2036.2009.03994.x PMID: 19302262.

4. Mandorfer M, Bota S, Schwabl P, Bucsics T, Pfisterer N, Kruzik M, et al. Nonselective beta blockers

increase risk for hepatorenal syndrome and death in patients with cirrhosis and spontaneous bacterial

peritonitis. Gastroenterology. 2014; 146(7):1680–90 e1. doi: 10.1053/j.gastro.2014.03.005 PMID:

24631577.

5. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the

intestinal microbiome in mouse models of liver disease. Journal of hepatology. 2012; 56(6):1283–92.

doi: 10.1016/j.jhep.2012.01.019 PMID: 22326468; PubMed Central PMCID: PMC3357486.

6. Reiberger T, Ferlitsch A, Payer BA, Mandorfer M, Heinisch BB, Hayden H, et al. Non-selective beta-

blocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cir-

rhosis. Journal of hepatology. 2013; 58(5):911–21. doi: 10.1016/j.jhep.2012.12.011 PMID: 23262249.

7. Dong-Yan L, Weiguo J, Pei L. Reduction of the amount of intestinal secretory IgA in fulminant hepatic

failure. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e

biologicas / Sociedade Brasileira de Biofisica [et al]. 2011; 44(5):477–82. doi: 10.1590/S0100-

879X2011007500051 PMID: 21519636.

8. Farache J, Zigmond E, Shakhar G, Jung S. Contributions of dendritic cells and macrophages to intesti-

nal homeostasis and immune defense. Immunology and cell biology. 2013; 91(3):232–9. doi: 10.1038/

icb.2012.79 PMID: 23399695.

9. Granucci F, Zanoni I, Ricciardi-Castagnoli P. Central role of dendritic cells in the regulation and deregu-

lation of immune responses. Cellular and molecular life sciences: CMLS. 2008; 65(11):1683–97. doi:

10.1007/s00018-008-8009-2 PMID: 18327662.

10. Johnson LA, Jackson DG. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key

regulator of integrin-mediated dendritic cell transmigration. International immunology. 2010; 22

(10):839–49. doi: 10.1093/intimm/dxq435 PMID: 20739459.

11. Ulvmar MH, Werth K, Braun A, Kelay P, Hub E, Eller K, et al. The atypical chemokine receptor CCRL1

shapes functional CCL21 gradients in lymph nodes. Nature immunology. 2014; 15(7):623–30. doi: 10.

1038/ni.2889 PMID: 24813163.

12. Wurbel MA, McIntire MG, Dwyer P, Fiebiger E. CCL25/CCR9 interactions regulate large intestinal

inflammation in a murine model of acute colitis. PloS one. 2011; 6(1):e16442. doi: 10.1371/journal.

pone.0016442 PMID: 21283540; PubMed Central PMCID: PMC3026821.

13. Cao X, Liu M, Wang P, Liu DY. Intestinal dendritic cells change in number in fulminant hepatic failure.

World journal of gastroenterology. 2015; 21(16):4883–93. doi: 10.3748/wjg.v21.i16.4883 PMID:

25945001; PubMed Central PMCID: PMC4408460.

The Change of Intestinal DCs Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure

PLOS ONE | DOI:10.1371/journal.pone.0166165 November 10, 2016 12 / 14

http://dx.doi.org/10.12669/pjms.314.7618
http://dx.doi.org/10.12669/pjms.314.7618
http://www.ncbi.nlm.nih.gov/pubmed/26430449
http://dx.doi.org/10.4254/wjh.v7.i3.304
http://dx.doi.org/10.4254/wjh.v7.i3.304
http://www.ncbi.nlm.nih.gov/pubmed/25848460
http://dx.doi.org/10.1111/j.1365-2036.2009.03994.x
http://dx.doi.org/10.1111/j.1365-2036.2009.03994.x
http://www.ncbi.nlm.nih.gov/pubmed/19302262
http://dx.doi.org/10.1053/j.gastro.2014.03.005
http://www.ncbi.nlm.nih.gov/pubmed/24631577
http://dx.doi.org/10.1016/j.jhep.2012.01.019
http://www.ncbi.nlm.nih.gov/pubmed/22326468
http://dx.doi.org/10.1016/j.jhep.2012.12.011
http://www.ncbi.nlm.nih.gov/pubmed/23262249
http://dx.doi.org/10.1590/S0100-879X2011007500051
http://dx.doi.org/10.1590/S0100-879X2011007500051
http://www.ncbi.nlm.nih.gov/pubmed/21519636
http://dx.doi.org/10.1038/icb.2012.79
http://dx.doi.org/10.1038/icb.2012.79
http://www.ncbi.nlm.nih.gov/pubmed/23399695
http://dx.doi.org/10.1007/s00018-008-8009-2
http://www.ncbi.nlm.nih.gov/pubmed/18327662
http://dx.doi.org/10.1093/intimm/dxq435
http://www.ncbi.nlm.nih.gov/pubmed/20739459
http://dx.doi.org/10.1038/ni.2889
http://dx.doi.org/10.1038/ni.2889
http://www.ncbi.nlm.nih.gov/pubmed/24813163
http://dx.doi.org/10.1371/journal.pone.0016442
http://dx.doi.org/10.1371/journal.pone.0016442
http://www.ncbi.nlm.nih.gov/pubmed/21283540
http://dx.doi.org/10.3748/wjg.v21.i16.4883
http://www.ncbi.nlm.nih.gov/pubmed/25945001


14. Li GZ, Wang ZH, Cui W, Fu JL, Wang YR, Liu P. Tumor necrosis factor alpha increases intestinal per-

meability in mice with fulminant hepatic failure. World journal of gastroenterology. 2012; 18(36):5042–

50. doi: 10.3748/wjg.v18.i36.5042 PMID: 23049212; PubMed Central PMCID: PMC3460330.

15. Breloer M, Fleischer B. CD83 regulates lymphocyte maturation, activation and homeostasis. Trends in

immunology. 2008; 29(4):186–94. doi: 10.1016/j.it.2008.01.009 PMID: 18329338.

16. Frolich D, Blassfeld D, Reiter K, Giesecke C, Daridon C, Mei HE, et al. The anti-CD74 humanized

monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell

proliferation, migration, and adhesion molecule expression. Arthritis research & therapy. 2012; 14(2):

R54. doi: 10.1186/ar3767 PMID: 22404985; PubMed Central PMCID: PMC3446420.

17. Giannelli V, Di Gregorio V, Iebba V, Giusto M, Schippa S, Merli M, et al. Microbiota and the gut-liver

axis: bacterial translocation, inflammation and infection in cirrhosis. World journal of gastroenterology.

2014; 20(45):16795–810. doi: 10.3748/wjg.v20.i45.16795 PMID: 25492994; PubMed Central PMCID:

PMC4258550.

18. Rescigno M. Intestinal dendritic cells. Advances in immunology. 2010; 107:109–38. doi: 10.1016/B978-

0-12-381300-8.00004–6 PMID: 21034972.

19. Rochereau N, Verrier B, Pin JJ, Genin C, Paul S. Phenotypic localization of distinct DC subsets in

mouse Peyer Patch. Vaccine. 2011; 29(20):3655–61. doi: 10.1016/j.vaccine.2011.03.012 PMID:

21439318.

20. Karakikes I, Morrison IE, O’Toole P, Metodieva G, Navarrete CV, Gomez J, et al. Interaction of HLA-DR

and CD74 at the cell surface of antigen-presenting cells by single particle image analysis. FASEB jour-

nal: official publication of the Federation of American Societies for Experimental Biology. 2012; 26

(12):4886–96. doi: 10.1096/fj.12-211466 PMID: 22889831.

21. Faure-Andre G, Vargas P, Yuseff MI, Heuze M, Diaz J, Lankar D, et al. Regulation of dendritic cell

migration by CD74, the MHC class II-associated invariant chain. Science. 2008; 322(5908):1705–10.

doi: 10.1126/science.1159894 PMID: 19074353.

22. Acton SE, Reis ESC. Dendritic cells in remodeling of lymph nodes during immune responses. Immuno-

logical reviews. 2016; 271(1):221–9. doi: 10.1111/imr.12414 PMID: 27088917

23. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nature

reviews Immunology. 2008; 8(5):362–71. doi: 10.1038/nri2297 PMID: 18379575.

24. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell

guidance by haptotactic chemokine gradients. Science. 2013; 339(6117):328–32. doi: 10.1126/

science.1228456 PMID: 23329049.

25. Noor S, Wilson EH. Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation.

Journal of neuroinflammation. 2012; 9:77. doi: 10.1186/1742-2094-9-77 PMID: 22533989; PubMed

Central PMCID: PMC3413568.

26. Rosenkilde MM, Smit MJ, Waldhoer M. Structure, function and physiological consequences of virally

encoded chemokine seven transmembrane receptors. British journal of pharmacology. 2008; 153

Suppl 1:S154–66. doi: 10.1038/sj.bjp.0707660 PMID: 18204488; PubMed Central PMCID:

PMC2268052.

27. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, et al. CCR7 governs skin dendritic cell

migration under inflammatory and steady-state conditions. Immunity. 2004; 21(2):279–88. doi: 10.

1016/j.immuni.2004.06.014 PMID: 15308107.

28. Moschovakis GL, Forster R. Multifaceted activities of CCR7 regulate T-cell homeostasis in health and

disease. European journal of immunology. 2012; 42(8):1949–55. doi: 10.1002/eji.201242614 PMID:

22700449.

29. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, et al. Balanced responsiveness to chemoattrac-

tants from adjacent zones determines B-cell position. Nature. 2002; 416(6876):94–9. doi: 10.1038/

416094a PMID: 11882900.

30. Raju R, Gadakh S, Gopal P, George B, Advani J, Soman S, et al. Differential ligand-signaling network

of CCL19/CCL21-CCR7 system. Database: the journal of biological databases and curation. 2015;

2015. doi: 10.1093/database/bav106 PMID: 26504105; PubMed Central PMCID: PMC4620938.

31. Marsland BJ, Battig P, Bauer M, Ruedl C, Lassing U, Beerli RR, et al. CCL19 and CCL21 induce a

potent proinflammatory differentiation program in licensed dendritic cells. Immunity. 2005; 22(4):493–

505. doi: 10.1016/j.immuni.2005.02.010 PMID: 15845453.

32. Yanagawa Y, Onoe K. CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomi-

tant up-regulation of Cdc42 and Rac activities. Blood. 2003; 101(12):4923–9. doi: 10.1182/blood-2002-

11-3474 PMID: 12609829.

33. Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS. Differential desensitization,

receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous

The Change of Intestinal DCs Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure

PLOS ONE | DOI:10.1371/journal.pone.0166165 November 10, 2016 13 / 14

http://dx.doi.org/10.3748/wjg.v18.i36.5042
http://www.ncbi.nlm.nih.gov/pubmed/23049212
http://dx.doi.org/10.1016/j.it.2008.01.009
http://www.ncbi.nlm.nih.gov/pubmed/18329338
http://dx.doi.org/10.1186/ar3767
http://www.ncbi.nlm.nih.gov/pubmed/22404985
http://dx.doi.org/10.3748/wjg.v20.i45.16795
http://www.ncbi.nlm.nih.gov/pubmed/25492994
http://dx.doi.org/10.1016/B978-0-12-381300-8.000046
http://dx.doi.org/10.1016/B978-0-12-381300-8.000046
http://www.ncbi.nlm.nih.gov/pubmed/21034972
http://dx.doi.org/10.1016/j.vaccine.2011.03.012
http://www.ncbi.nlm.nih.gov/pubmed/21439318
http://dx.doi.org/10.1096/fj.12-211466
http://www.ncbi.nlm.nih.gov/pubmed/22889831
http://dx.doi.org/10.1126/science.1159894
http://www.ncbi.nlm.nih.gov/pubmed/19074353
http://dx.doi.org/10.1111/imr.12414
http://www.ncbi.nlm.nih.gov/pubmed/27088917
http://dx.doi.org/10.1038/nri2297
http://www.ncbi.nlm.nih.gov/pubmed/18379575
http://dx.doi.org/10.1126/science.1228456
http://dx.doi.org/10.1126/science.1228456
http://www.ncbi.nlm.nih.gov/pubmed/23329049
http://dx.doi.org/10.1186/1742-2094-9-77
http://www.ncbi.nlm.nih.gov/pubmed/22533989
http://dx.doi.org/10.1038/sj.bjp.0707660
http://www.ncbi.nlm.nih.gov/pubmed/18204488
http://dx.doi.org/10.1016/j.immuni.2004.06.014
http://dx.doi.org/10.1016/j.immuni.2004.06.014
http://www.ncbi.nlm.nih.gov/pubmed/15308107
http://dx.doi.org/10.1002/eji.201242614
http://www.ncbi.nlm.nih.gov/pubmed/22700449
http://dx.doi.org/10.1038/416094a
http://dx.doi.org/10.1038/416094a
http://www.ncbi.nlm.nih.gov/pubmed/11882900
http://dx.doi.org/10.1093/database/bav106
http://www.ncbi.nlm.nih.gov/pubmed/26504105
http://dx.doi.org/10.1016/j.immuni.2005.02.010
http://www.ncbi.nlm.nih.gov/pubmed/15845453
http://dx.doi.org/10.1182/blood-2002-11-3474
http://dx.doi.org/10.1182/blood-2002-11-3474
http://www.ncbi.nlm.nih.gov/pubmed/12609829


ligands for the CC chemokine receptor 7. The Journal of biological chemistry. 2004; 279(22):23214–22.

doi: 10.1074/jbc.M402125200 PMID: 15054093.

34. Britschgi MR, Favre S, Luther SA. CCL21 is sufficient to mediate DC migration, maturation and function

in the absence of CCL19. European journal of immunology. 2010; 40(5):1266–71. doi: 10.1002/eji.

200939921 PMID: 20201039.

35. Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, et al. The role of thymus-

expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the muco-

sal immune system. Journal of immunology. 2000; 165(9):5069–76. PMID: 11046037.

36. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, et al. Selective imprinting

of gut-homing T cells by Peyer’s patch dendritic cells. Nature. 2003; 424(6944):88–93. doi: 10.1038/

nature01726 PMID: 12840763.

37. Ericsson A, Svensson M, Arya A, Agace WW. CCL25/CCR9 promotes the induction and function of

CD103 on intestinal intraepithelial lymphocytes. European journal of immunology. 2004; 34(10):2720–

9. doi: 10.1002/eji.200425125 PMID: 15368288.

38. Li J, Xiong T, Xiao R, Xiong A, Chen J, Altaf E, et al. Anti-CCL25 antibody prolongs skin allograft survival

by blocking CCR9 expression and impairing splenic T-cell function. Archivum immunologiae et thera-

piae experimentalis. 2013; 61(3):237–44. doi: 10.1007/s00005-013-0223-4 PMID: 23456208.

39. Gupta P, Sharma PK, Mir H, Singh R, Singh N, Kloecker GH, et al. CCR9/CCL25 expression in non-

small cell lung cancer correlates with aggressive disease and mediates key steps of metastasis. Onco-

target. 2014; 5(20):10170–9. doi: 10.18632/oncotarget.2526 PMID: 25296976; PubMed Central

PMCID: PMC4259413.

40. Bekker P, Ebsworth K, Walters MJ, Berahovich RD, Ertl LS, Charvat TT, et al. CCR9 Antagonists in the

Treatment of Ulcerative Colitis. Mediators of inflammation. 2015; 2015:628340. doi: 10.1155/2015/

628340 PMID: 26457007; PubMed Central PMCID: PMC4592714.

The Change of Intestinal DCs Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure

PLOS ONE | DOI:10.1371/journal.pone.0166165 November 10, 2016 14 / 14

http://dx.doi.org/10.1074/jbc.M402125200
http://www.ncbi.nlm.nih.gov/pubmed/15054093
http://dx.doi.org/10.1002/eji.200939921
http://dx.doi.org/10.1002/eji.200939921
http://www.ncbi.nlm.nih.gov/pubmed/20201039
http://www.ncbi.nlm.nih.gov/pubmed/11046037
http://dx.doi.org/10.1038/nature01726
http://dx.doi.org/10.1038/nature01726
http://www.ncbi.nlm.nih.gov/pubmed/12840763
http://dx.doi.org/10.1002/eji.200425125
http://www.ncbi.nlm.nih.gov/pubmed/15368288
http://dx.doi.org/10.1007/s00005-013-0223-4
http://www.ncbi.nlm.nih.gov/pubmed/23456208
http://dx.doi.org/10.18632/oncotarget.2526
http://www.ncbi.nlm.nih.gov/pubmed/25296976
http://dx.doi.org/10.1155/2015/628340
http://dx.doi.org/10.1155/2015/628340
http://www.ncbi.nlm.nih.gov/pubmed/26457007

