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Inferring Infection Patterns Based 
on a Connectivity Map of Host 
Transcriptional Responses
Lu Han1,2, Haochen He1, Fei Li1, Xiuliang Cui1,3, Dafei Xie1, Yang Liu1, Xiaofei Zheng4, 
Hui Bai1,5, Shengqi Wang1 & Xiaochen Bo1

Host responses to infections represent an important pathogenicity determiner, and delineation 
of host responses can elucidate pathogenesis processes and inform the development of anti-
infection therapies. Low cost, high throughput, easy quantitation, and rich descriptions have made 
gene expression profiling generated by DNA microarrays an optimal approach for describing host 
transcriptional responses (HTRs). However, efforts to characterize the landscape of HTRs to diverse 
pathogens are far from offering a comprehensive view. Here, we developed an HTR Connectivity Map 
based on systematic assessment of pairwise similarities of HTRs to 50 clinically important human 
pathogens using 1353 gene-expression profiles generated from >60 human cells/tissues. These 50 
pathogens were further partitioned into eight robust “HTR communities” (i.e., groups with more 
consensus internal HTR similarities). These communities showed enrichment in specific infection 
attributes and differential gene expression patterns. Using query signatures of HTRs to external 
pathogens, we demonstrated four distinct modes of HTR associations among different pathogens 
types/class, and validated the reliability of the HTR community divisions for differentiating and 
categorizing pathogens from a host-oriented perspective. These findings provide a first-generation 
HTR Connectivity Map of 50 diverse pathogens, and demonstrate the potential for using annotated 
HTR community to detect functional associations among infectious pathogens.

In recent years, there has been a growing recognition of the importance of host responses to pathogenic 
infection in characterizing microbial pathogenesis, disease diagnosis, and prognosis, as well as for novel 
therapy development1. Host transcriptional responses (HTRs) depicted by gene expression profiles are 
practical technically and can provide a refined description of the complexity of pathogenic infection and 
disease states with wide coverage and excellent discrimination2.

In principle, systematic comparative analyses of host cell responses to a variety of pathogens have 
the potential to be a fruitful means of disentangling host-pathogen interactions3. Hierarchical clustering 
has been used extensively to integrate and analyze profile data with the aim of identifying novel genetic 
factors and complex host cellular defense mechanisms involved in particular types of infection4–8. Indeed, 
with this clustering method, common HTRs to microbial infections have been identified and the result-
ant data have been used to identify host-oriented broad-spectrum drug targets9. However, the approach 
yields a fairly limited and narrow slice of information. In most cases, only the most differentially 
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dysregulated genes (i.e., signature genes) are subjected to systematic annotation in a focal analysis. The 
overlaps between HTR signature genes identified in studies thus have been far too small to allow broad 
scale examination of HTRs across pathogens.

Inspired by the Connectivity Map10 developed to summarize functional connections among a variety 
of small-molecule drugs, we developed an HTR Connectivity Map (Fig.  1). Our aim was to establish 
landscape associations across various pathogens based on an objective assessment of HTR similarities 
using a combination of transcriptional bioinformatics methods. Briefly, we gathered 1,353 reference gene 
expression profiles from more than 60 human cells/tissues infected with 50 clinically important pathogen 
types and then implemented an unbiased HTR characterization strategy and rank-based expression pro-
file comparisons11,12 to evaluate 1,225 pairwise pathogen-pathogen HTR similarities (Fig. 1). We further 
divided these first 50 pathogens into groups with significant internal HTR similarity and characteristic 
modes of host gene expression patterns tagged with specific infection attributes, i.e., a reference resource 
known as HTR community. The annotations for community pathogens allowed us to propose, with an 
unprecedented host-oriented perspective, new associations for well-known pathogen taxonomy classes 
and novel associations for microenvironment-related and clinically relevant pathogens among these 50 
infectious pathogens (Fig. 1).

Using HTR signatures from external pathogens, we provided in the present study proof-of-concept 
evidence that HTR community scheme can be used to (i) recognize pathogen class related to common 
featured HTRs (e.g., proteobacteria), (ii) discern the pathogenicity of pathogens with close phylogenetic 
relations (e.g., Streptococcus species), (iii) identify HTRs that are representative of particular microbiota 
and reflect a degree of host adaptation (e.g., oral commensal vs. pathogenic bacteria), and (iv) discover 
unknown common and unique HTRs to pathogens whose infections produce similar clinical presenta-
tions (e.g., respiratory viruses).

Figure 1. HTR Connectivity Map development work flow. A group of 1,353 expression profiles generated 
from infection of cultured human cells with 50 clinically important pathogens were collected from Gene 
Expression Omnibus and used to populate a reference database. A single synthetic PRL (22,160 genes ranked 
according to their differential expression relative to the control) was computed to represent consensus 
and common HTRs to infection with a pathogen across different cell lines and from different laboratories. 
GSEA was used to score each reference profile for the direction and strength of enrichment with the query 
reference signature. The connectivity of HTRs between pathogen pairs was then presented in a map/matrix, 
with positive scores indicating functionally similar HTRs and negative scores indicating opposing HTRs. 
Through clustering, 50 pathogens were grouped into eight HTR communities (i.e., pathogens that induce 
more consensus HTRs). Characteristic infection attributes and gene expression patterns were identified for 
each HTR community. HTR community reliability for demonstrating associations among pathogens was 
tested with query signatures of HTRs to external pathogens.
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Results
First-generation HTR Connectivity Map. Reference profiles. After preliminary screening (see 
Methods), 82 gene expression datasets (including 1,353 gene expression profiles representing 893 
infection-control pairs) encompassing HTRs to 50 pathogens (21 bacterial, 23 viral, 5 protozoan, and 
1 fungal) were collected cumulatively (Supplementary Table S1). These 50 pathogens represent a broad 
range of clinically important pathogenic (sub)types and strains, and each was tested with its primary 
target tissue/cell tropism.

The HTRs of specific cell types to infection with particular pathogens were collated in a phenotype 
rank list (PRL) (infection-control matching strategy detailed in the Methods). And the Spearman cor-
relations between each PRLs were presented as a heat map (Supplementary Figure S1). The Spearman 
correlations (mean value =  0.1164) between PRLs of a specific pathogen type were significantly higher 
than those (mean value =  0.0108) across different pathogen types (P <  10−100, two-sample t-test), and 
the corresponding area under curve (AUC) in the receiver operating characteristic (ROC) curve was 
0.6625 (Supplementary Figures S2 and S3). The mean Spearman correlation coefficient for comparisons 
between PRLs of the same cell types across infections by different pathogens was 0.0349, with an AUC 
of 0.5614 (Supplementary Figures S2 and S4). Therefore, HTRs of a specific cell type had relatively weak 
correlations across different pathogens compared to HTRs of different cell types infected with the same 
pathogen (Supplementary Figures S1–S4 and Supplementary Data S1).

Employing a hierarchical majority-voting scheme12,13, we developed merged PRLs (mPRLs) 
(Supplementary Data S2) for each pathogen’s HTRs. We further proved that the mPRLs captured the 
consensus and common transcriptional responses to pathogens across settings (i.e., pathogen strain/
subtype, infected cell line and laboratory) (Supplementary Figure S5 and Supplementary Data S3).

Fifty-pathogen HTR Connectivity Map. The 250 top- and bottom-ranked genes of each PRL for the sig-
nature HTRs for each pathogenic infection were selected (Supplementary Figure S6 and Supplementary 
Data S4; size of 250 based on estimated influence of signature size as detailed in the Methods). The 
pathogen-to-pathogen HTR connections were represented as an “association score” and computed with 
a PRL comparing method based on gene set enrichment analysis (GSEA)10,11,14.

A heat map (Fig. 2a) was produced from 1,225 pairs of HTR connections among these 50 pathogens 
(Supplementary Data S5). The association scores had a Gaussian distribution with a mean value (0.0447) 
that differed significantly from zero (Fig.  2b; t-test P =  7.67 ×  10−52), indicating a tendency for similar 
HTRs across infections. Meanwhile, HTR similarity for non-viral pathogens (mean =  0.0711) was greater 
than that for viral pathogens (mean =  0.0278) (Fig. 2c,d; two-sample t-test P =  2.25 ×  10−7).

To identify infection attributes underlying HTR similarities across pathogen pairs, we collected the 
following four categories of information for each pathogen: (i) Medical Subject Headings (MeSH)15 bio-
logical classification code; (ii) infection-affected organ/tissues/cell(s); (iii) manifestation of infectious 
disease; and (iv) other literature-based laboratory and clinical characteristics (Supplementary Tables S1 
and S2). Infection attribute labeling uncovers crucial factors underlying HTR similarity, while validating 
its reliability. We found that HTR similarity was not simply closely related to the benchmarks for each 
of the above attribute categories (Supplementary Figure S7a).

To identify individual infection attributes that associate strongly with particular significant HTR 
similarities between pathogen pairs, we calculated HTR-attribute association scores (range, − 1 to 
+ 1), and obtained permutation P values through comparison with those in random trials using a 
Kolmogorov-Smirnov statistic-based approach. The association scores for the similarity features of tax-
onomy, cell tropism, infectious disease, and laboratory/clinical characteristics were 0.181, 0.167, 0.213 
and 0.240, respectively (permutation P =  0.06, 0.16, 1 ×  10−5, and 7 ×  10−5, respectively). Thus, disease 
manifestation and laboratory/clinical characteristic similarities associated significantly (P <  0.01) with 
HTR similarity. Calculation of each infection attribute’s HTR-association score and corresponding per-
mutation P value (minimum, five-pathogen commonality to assure the reliability; threshold false discov-
ery rate (FDR) <  0.01), revealed 23 highly HTR-associated infection attributes (Supplementary Table S3), 
including intracellular infection, commensalism, Gram-negative bacteria, droplet contact transmission, 
non-motile bacteria, and manifestation of lung diseases (Supplementary Figure S7b).

HTR communities. Application of an automated, parameter-free clustering algorithm16 yielded eight 
pathogen groups with prominent consensus internal HTR similarities. We distinguished each of these 
eight groups as an HTR community (Fig.  3). Our enrichment analysis identified significant (P <  0.05) 
enriched community-specific infection attributes for each HTR community (Fig. 3 and Supplementary 
Table S4). Notably, Communities 1, 2, 3, 4, and 5 were enriched with cryptosporidium, RNA viruses, 
chronic/oncogenic infection pathogens, enveloped DNA viruses, and DNA tumor viruses, respectively. 
Meanwhile, Communities 6 and 7 were enriched with proteobacteria, whereas Community 8 was 
enriched with Picornaviridae and commensal bacteria.

Community-specific infection attributes overlapped for 14 (60.9%) of the 23 highly HTR-associated 
infection attributes, including enrichment of intracellular pathogens in Community 3 and enrichment 
of commensal pathogens in Community 8 (Supplementary Figure S7, Supplementary Tables S3 and 
S4). These results indicated that HTR similarities between pathogens within an HTR community were 
indeed related to certain highly HTR-associated infection attributes shared by these pathogens. The HTR 
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Figure 2. HTR Connectivity Map of 50 pathogens. (a) Heat map representation of association scores for 
HTR connectivities among 50 pathogens (a heat map of association scores calculated based on individual 
pathogen strain is in Supplementary Figure S1). The association scores among these 50 mPRLs are reported 
with corresponding P values and FDR values in Supplementary Data S5. The color of each cell represents the 
HTR connectivity association score computed for the mPRLs of each pathogen pair, with red representing 
positive connectivity and blue representing negative connectivity. Distributions of association scores for 1,225 
pairs of HTRs among (b) all 50 mapped pathogens, (c) the 27 mapped non-viral pathogens (21 bacterial 
species, 5 protozoans, and 1 fungus), and (d) the 23 mapped viral pathogens, as approximated to normal 
distributions. All distribution patterns were in accordance with Gaussian distribution, and presented as means 
with standard deviations, i.e., 0.0447 ±  0.0987 (50 pathogens), 0.0711 ±  0.1153 (non-viral pathogens), and 
0.0278 ±  0.0931 (viral pathogens). All distributions deviated from their expected zero centers (P =  7.67 ×  10−52, 
1.07 ×  10−26, and 1.70 ×  10−6 for all 50, non-viral subset, and viral subset, respectively, two-sample t-tests).
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community-delineated infection attributes counts exceeded those of the random divisions significantly 
(Supplementary Figure S8), suggesting that the HTR similarities of community component pathogens 
were robust and reliable.

To examine whether genes in a designated Gene Ontology Biological Process (GO BP) were consist-
ently dysregulated to a significant extent in HTRs to pathogens within an HTR community, we calculated 

Figure 3. HTR communities. Each node represents a pathogen type. Pathogen pairs whose HTRs were 
significantly similar are connected with an edge, the thickness of which is proportional to the pair’s 
association score. A community is defined as a group of nodes that are closely interconnected with each 
other, with fewer connections to nodes outside the group. HTR communities were identified based on 
association scores and labeled numerically according to the alphabetical precedence of the exemplar 
pathogen. Enriched HTR-related biological classifications, along with laboratory and clinical characteristics, 
are summarized (detailed information in Supplementary Table S4).
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the enrichment scores of GO BPs in relation to pathogen mPRLs using GSEA (cutoff FDR <  0.01)11. 
We identified significantly dysregulated GO BPs in the HTRs to each pathogen as well as enriched 
GO BPs for particular HTR communities (Supplementary Data S6). In total, we identified 50 distinct 
community-specific GO BPs (Fig. 4a, Supplementary Table S5), some of which were functionallay related 
to corresponding infections. For example, catabolic process and intracellular protein transport are spe-
cifically activated in HTR Community 2, whereas mRNA metabolic process and intracellular transport 
are specifically inhibited in HTR Community 8; the immune/defense response, positive regulation of I 
KappaB/NF-KappaB cascade, and negative regulation of apoptosis/programmed cell death are highly 
activated in HTRs to oncogenic pathogens in Community 317,18, but not in HTRs to the DNA tumor 
viruses in Community 5, in which G protein-coupled receptor signaling and sensory perception are 
specifically down regulated19,20. Notably, the same G protein-coupled receptor signaling is specifically 
activated in both HTR Communities 6 and 721. However, pathogens in Community 6 cause additional 
diverse HTR dysregualtions, including specifically up regulated cell signaling and second messenger 
mediated signaling, as well as down regulated DNA metabolic process and repair, cell cycle (including 
M phase, mitosis), and response to DNA damage and endogenous stimulus. To some extent, these gene 
functional features helped distinguish proteobateria in Community 6 to those in Community 7. Together 
with annotated infection attributes, the gene expression pattern analysis validated our within-HTR com-
munity pathogen associations, further demonstrating the host response patterns to infections of different 
pathogen types are limited and differential.

Meanwhile, several GO BPs showed overlaps in dysregulated HTRs to multiple pathogen types 
(Fig. 4b), though not enriched in any particular HTR community. For example, genes involved in apopto-
sis are significantly up regulated in HTRs to pathogens in communities 2 (enriched of Mononegavirales) 
and 6 (enriched of respiratory flora bacteria), the pathogenicity of which have been reported to be highly 
related to this particular bioprocess22,23; genes involved in cell cycles are significantly down regulated in 
HTRs to pathogens in communities 6, 7, and 8 (enriched of proteobacteria and oral commensal bacte-
ria, respectively), the effectors of which have been observed to inhibit proliferation and cause atrophy of 
epithelial cells24,25 These consistently dysregulated processes may be common HTRs4 that may facilitate 
our understanding of associations among pathogens in distinct case types.

Associations among HTR community pathogens. Based on the categorization of 50 pathogens 
as HTR community components, we searched our annotated HTR community for: (i) genetically related 
pathogens with significant HTR similarity, (ii) genetically related pathogens with distinct HTRs, (iii) 
genetically unrelated pathogens with significant HTR similarities and underlying infection attributes/
mechanisms, and (iv) HTR features common/specific to genetically unrelated pathogens with similar 
clinical manifestations. We confirmed the reliability, accuracy, and sensitivity of identifying external 
pathogens sharing the same HTR features upon querying HTR community reference profiles.

Proteobacteria. Notably, 10 of the 21 bacterial pathogens in our HTR Connectivity Map are prote-
obacteria, which is a taxonomic class composed of a variety of Gram-negative (i.e., with outer mem-
brane) pathogenic genuses. These 10 proteobacteria species presented with significant HTR similarities 
(Supplementary Figure S7 and Supplementary Table S3), and all 10 are in HTR Community 6 or 7, with 
this classification pattern representing an enriched infection attribute (Supplementary Table S4).

To determine whether query signatures of HTRs to external proteobacteria (rough and simple gene 
sets) could be identified through HTR comparisons, we collected gene-expression profiles of cultured 
cells infected with wild-type and mutant Salmonella enterica subspecies typhimurium (Supplementary 
Signatures S1–5 and Supplementary Table S6), and analyzed in vivo gene-expression responses to 
Burkholderia cepacia infection (Supplementary Signature S6 and Supplementary Table S6).

Upon querying, we observed marked positive associations of B. cepacia with HTR Communities 6 and 
7 (Fig. 5a,c). Analogous results were seen for four out of the five S. typhimurium query signatures gen-
erated on four different microarray platforms (Fig. 5b,c). One S. typhimurium query signature (derived 
from an experiment using a phoP::Tn10 mutant strain that replicates intracellularly but is defective for 
killing cultured and primary human macrophages) was also associated strongly with HTR community 6 
(Fig. 5b,c), demonstrating the high sensitivity of HTR Community analysis for identifying characteristic 
HTRs to a specific pathogen class. As a whole, these results indicate that a query signature derived from 
a class of microorganisms with consensus HTRs can be used to pull up other taxonomically aligned 
microorganisms.

Streptococcus. The four spherical Gram-positive Streptococcus species in the HTR Connectivity Map—
S. gordonii, S. pneumonia, S. suis, and S. agalactiae—have varied pathogenicity related to their differing 
hemolytic properties26. S. agalactiae is a beta-hemolytic species that causes complete hemolysis, whereas 
the three others are alpha-hemolytic species that cause partial hemolysis. Herein, we tried to evaluate the 
ability of annotated HTR Community analysis to differentiate the pathogenicity of internal and external 
Streptococcus species.

The internal Streptococcus species S. gordonii, an oral commensal bacterium, and S. pneumonia, car-
ried asymptomatically in the nasopharynx, can be pathogenic in susceptible individuals27. Accordingly, 
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they were both classified into HTR Community 8 (Fig. 3), which is enriched with alpha-hemolytic and 
commensal bacteria. Formerly classified as part of the Group D Streptococcus system, Enterococcus faeca-
lis is an alpha-hemolytic commensal inhabitant in the human gastrointestinal tract28. When we queried 

Figure 4. Community-specific and common bioprocesses. Heat map representation of (a) community-
specific and (b) common GO BPs. GO BPs are colored according to calculated -log(FDR) values with red 
representing up regulation and green representing down-regulation. See Supplementary Table S5 for detailed 
information about community-enriched bioprocesses and Supplementary Data S6 for enrichment scores, P 
values, and FDR values.
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our HTR Community dataset with collected signatures from gene expression profiles generated from  
E. faecali-infected human urothelial cells (Supplementary Signatures S7 and Supplementary Table S6), 
we confirmed that indeed this external Streptococcus specie also showed strongest positive associations 
with HTR Community 8 (Fig. 6a,c).

Beta-hemolytic Streptococcus species are subdivided into 20 serotypes (Lancefield groups A to V) 
describing their cell-wall carbohydrates, with Lancefield groups A and B being the most clinically impor-
tant groups26. The internal species S. agalactiae, also known as Group B streptococcus (GBS), is an 
opportunistic pathogen of the normal gut and genital tract flora, with a polysaccharide antiphagocytic 
capsule being its main virulence factor29. Consequently, it was classified in HTR Community 6 (Fig. 3), 
which is enriched with encapsulated human flora bacteria.

S. pyogenes, an external Streptococcus also known as Group A streptococcus (GAS), causes many dis-
eases, ranging from mild superficial skin infections to life-threatening systemic diseases30. It also causes 
post infectious non-pyogenic syndromes, including rheumatic fever and acute post infectious glomer-
ulonephritis31. Its pathogenicity is associated with several GASs common (e.g., Streptolysin O and S) 
and specific (e.g., Streptococcal pyrogenic exotoxin A and C32, and Streptococcal chemokine protease33) 
virulence factors that enable the bacterium to attach to host tissues, evade immune responses, and spread 
by penetrating into tissue layers.

Given its distinct characteristics, we hypothesized that S. pyogenes would not co-segregate with S. 
agalactiae in HTR Community 6. Thus, we collected the only available gene expression profiles gener-
ated from samples of blood, saliva, and throat swabs from S. agalactiae-infected Cynomolgus macaques 
(Supplementary Signatures S8 and Table S6), queried the HTR Communities, and indeed found that 
S. pyogenes associated most strongly with Community 3 (permutation P =  0.0027, Fig.  6b,c), in which 
immune-related BPs are significantly activated. Collectively, these results show that HTR community 
analysis can identify distinguishable associations among phylogenetically related pathogens with differ-
ential underlying pathogenicity, at least in the present sample.

Oral commensal bacteria. To further test the capacity of the HTR community method for identifying 
distinct mode of functional associations among pathogens, we then explored genetically unrelated bac-
terial pathogens with significant HTR similarities.

Figure 5. Proteobacteria HTR associations. Subcommunities connected to the external proteobacteria (a) 
B. cepacia and (b) S. typhimurium when each was integrated in the HTR Community. (c) Permutation P 
values describing the significance of associations between external pathogen signatures and each of the eight 
HTR communities. Grey magnified nodes represent query signatures generated from host transcriptional 
expression profiles (detailed information in Supplementary Table S6). For clarity, only pathogen pairs with 
association scores >  0.5 are shown. Permutation P values <  0.05 are shown in bold. Community colors are 
consistent with Fig. 3 and edge thickness is likewise proportional to association score. For clarity, edges 
were connected for Salmonella typhimurium and internal pathogens only if the HTR community yielded a 
positive association score >  0.5 for at least 3 of 5 query signatures. HTR associations among the 10 internal 
proteobacteria in the HTR Connectivity Map are shown in Supplementary Figure S9 and reported in 
Supplementary Data S7. Association scores between external query signatures and mPRLs are reported in 
Supplementary Data S8.
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Oral commensal bacteria are highly diverse and inhabit the various surfaces of the mouth. Their abil-
ity to form biofilms on hard and soft oral tissues makes them important in periodontal disease34. Our 
50-pathogen HTR Connectivity Map includes one oral commensal species S. gordonii and two oppor-
tunistic oral commensal species, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum. 
Intriguingly, these three species showed significant HTR similarities (Fig. 3). Of note, the oral commensal 
bacterium characteristic is also an enriched infection attribute for bacteria in HTR Community 8.

Surprisingly however, Porphyromonas gingivalis, a periodontal pathogen found in the mouth, upper 
gastrointestinal tract, respiratory tract, and colon, did not positively associate with these three oral 
(opportunistic) commensal bacteria, but rather was classified into HTR Community 6, which is enriched 
with pathogenic respiratory flora and Gram-negative rod bacteria (Fig. 3). Further evidence from gene 
expression pattern analysis showed that P. gingivalis shared the GO BP of activated G protein-coupled 
receptor pathway with Community 6, a feature not enriched in Community 8 (Fig. 4a).

To validate the specificity of this highly oral microbiota related HTR, we selected another oral com-
mensal bacterium, Treponema denticola, with which to query the HTR Community. The only available 
T. denticola query signature was generated from a report documenting differentially expressed genes in a 
murine model of T. denticola head infection (Supplementary Signatures S9 and S10; Supplementary Table 
S6). The conditions used in that study differed sharply from those used to build the HTR Connectivity 
Map with respect to RNA source (calvarial bones and overlying soft tissues vs. cell lines) and species 
(mouse vs. human). Nonetheless, HTR community analysis yielded the strongest positive association 
with HTR Community 8 for the T. denticola query signature derived from calvarial overlying soft tissues, 
but not those from calvarial bones (Fig.  7b,c). This dissociation is likely due to the fact that the three 
reference profiles in the HTR Connectivity Map were not derived from calvarial bones (Supplementary 
Table S1), whose expressed transcripts are generally not shared with other cell or tissue types. These 
findings demonstrated again that human microbiota with distinguishable host gene expression patterns 
can be identified by HTR community analysis.

Respiratory viruses. Finally, we sought to use the HTR community method to generate hypotheses 
about a unique HTR characteristic within a group of pathogens whose infections have indistinguishable 
local and systemic manifestations, but differing prognoses. For this purpose, the respiratory viruses fall 
in our focus.

HTR Connectivity Map included five respiratory viruses from four distinct families, namely influenza 
A virus (IAV) and Dhori virus in the family Orthomyxoviridae, human respiratory syncytial virus (RSV) 
in the family Paramyxoviridae, Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) 
in the family Coronaviridae, and human rhinovirus (HRV) in the family Picornaviridae. All five viruses 
are associated with high morbidity and their infections cause similar minor (e.g., coughing, sore throat, 
runny nose, and fever) and severe symptoms (e.g., severe breathing problems, bronchiolitis, bronchitis, 
and pneumonia) in humans35,36. To our surprise, these five viruses were classified into three different 

Figure 6. Streptococcus HTR associations. Subcommunities connected to the external (formerly) 
streptococcal bacteria (a) E. faecalis and (b) S. pyogenes, when each was integrated in the HTR community. 
(c) Permutation P values for associations between external pathogen signatures and each HTR community. 
Grey magnified nodes represent the query signatures generated from host transcriptional expression profiles 
(detailed information in Supplementary Table S6). For clarity, only pathogen pairs whose association scores 
were >  0.5 are shown, and permutation P values <  0.05 are bolded. Color scheme is consistent with Figs 3 
and 5, and edge thickness is proportional to association score. Association scores between external query 
signatures and mPRLs are reported in Supplementary Data S8.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:15820 | DOi: 10.1038/srep15820

HTR Communities (Fig.  3): HRV was classified into HTR Community 6 (enriched with pathogenic 
respiratory flora), IAV into Community 3 (enriched with pathogens with oncogenic potential after 
chronic/persistent infection), and Dhori virus, SARS-CoV, and RSV into Community 2 (enriched with 
Mononegavirales order pathogens).

To validate the unique HTR to IAV, we first employed four IAV query signatures from a recent report 
in which human lung epithelial cells were infected with a novel avian-origin H7N9 strain, two highly 
pathogenic avian-origin H5N1 and H7N7 strains, and a human seasonal H3N2 strain (Supplementary 
Signatures S11–14 and Supplementary Table S6). For all four external IAV strains, the HTR community 
analysis yielded consistently strong positive associations with Community 3 (permutation P <  0.001) 
(Fig. 8a,d).

We then proceeded to investigate the HTR associations of two other clinical important respiratory 
viruses in the Paramyxoviridae family that were not included in the HTR Connectivity Map, namely 
human metapneumovirus (hMPV) and human parainfluenza virus (hPIV). Both query signatures 
were generated from expression profiles of human lung epithelial cells after time-course infections 
(Supplementary Signatures S15 and S16; Supplementary Table S6). HTR community analysis yielded 
the strongest positive associations for hMPV and wild-type hPIV-1 with Community 6 (permutation 
P <  10−4 and = 0.0062, respectively) (Fig. 8b,d), despite that they also showed positive associations with 
Community 3 (permutation P =  0.0236 and = 0.0018, respectively) (Fig. 8c,d).

Altogether, these results indicated that respiratory infections with indistinguishable clinical manifes-
tations may differ greatly in HTRs. This makes delicate HTR classification of individual infection type, 
especially the newly emerged viral strain(s), constantly needed to better understand the common and 
specific HTR features. Although in a preliminary stage, the findings about known respiratory viruses and 
especially IAV, which is uniquely responsible for the highly contagious influenza outbreaks, underscore 
the necessity for specific host-directed antiviral strategies in epidemic control.

Discussion
Resource projects such as the Connectivity Map10 and the subsequent Library of Integrated Network-based 
Cellular Signatures37, which provide an expansive library of post-drug treatment gene expression profiles, 
are of high operability. Development of a similar platform cataloguing gene expression profiles charac-
terizing HTRs to particular pathogenic infections is needed. The present work represents a pilot venture 
toward fulfilling that need.

An essential advantage of using transcriptional bioinformatics in drug discovery and repositioning 
lies in the fact that plentiful information—including chemical, pharmacological and pharmaceutical 
data, with comprehensive information about drug targeting (i.e. sequence, structure, and pathway)38 and 
adverse secondary effects39—has been curated for small-molecule drugs. This plentiful information has 

Figure 7. Oral commensal bacterium HTR associations. Subcommunities connected to the external 
bacterium T. denticola, whose infection HTR was derived from (a) soft tissues overlying calvarial bones 
and (b) calvarial bones when T. denticola was integrated in each HTR community. (c) Permutation P values 
for associations between external pathogen signatures and each HTR community. Grey magnified nodes 
represent query signatures generated from host transcriptional expression profiles (detailed information 
is provided in Supplementary Table S6). For clarity, we included only pathogen pairs with association 
scores >  0.5, and permutation P-values <  0.05 are shown in bold. Edge thicknesses are proportional to 
association scores; edge and node colors are consistent with Figs 3, 5 and 6. Association scores between the 
external query signatures and the mPRLs are reported in Supplementary Data S8.
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served as an excellent annotation resource and facilitated the elucidation of drug mechanisms, as well as 
the identification of new drug targets and new indications for old drugs40–42.

The HTR Connectivity Map scheme developed here was limited to publically accessible expression 
profiling data, therefore, our data collection was unavoidably at risk of bias. Recognizing the limited 
cell type diversity among our samples in our systematic assessment of HTR similarities, we combined 
PRLs of a specific pathogen computationally to represent the integral feature of HTRs to that patho-
gen. Through further clustering, we identified eight pathogen groups, that is, HTR Communities, with 
a discernible consensus of internal HTR similarities. The methodologies used in this study, including 
gene expression profile merging, comparison, and clustering, were first introduced by Iorio et al.12 and 
Subramanian et al.11 Previously, these methods performed very well in characterizing and predicting 
similarities in drug effect and mode of action across cell lines and dosages, and further in partitioning 
drugs into communities (i.e., compounds with similar modes of action). Moreover, it was our aim to 
complement this HTR Community as a resource and elucidate the HTR associations established among 
the 50 pathogens. To this end, we collected laboratory and clinical infection characteristics for individual 
pathogens, and then identified computationally HTR-related infection attributes, as well as differential 
gene expression patterns, for each HTR community. These annotations greatly facilitated the understand-
ing of correlations between pathogen types and significant HTR similarities, as well as the underlying 
infection mechanisms.

Overall, the associations established in our pilot 50-pathogen HTR Community are biologically 
revealing. We demonstrated that the HTR landscape of pathogenic infections is complex but composed 
of delimited and differential patterns. Using four cases, we illustrated that such resource and analysis 
provide for the first time: (1) the correspondence of pathogen taxonomy with HTR classifications, which 
makes external/new pathogen(s) and specific infection feature(s) identifiable upon signature querying of 
the reference profiles in HTR Communities (e.g., the proteobacteria and oral commensal bacteria cases); 
(2) the common and specific HTR community gene expression patterns, which empower the elucidation 
on shared and distinct molecular mechanisms of host cells in confrontation with individual pathogen 
types (e.g., the Streptococcus case); (3) HTR categorization and differentiation of clinically related path-
ogens, which generate new biological hypotheses, and inform experimental validation and host-directed 
anti-infection therapies (e.g., the respiratory viruses case). Importantly, we employed as many query 
signatures of HTRs to external pathogens as possible to challenge the proposed associations, and the 
positive results provided strong evidence confirming the robustness of the HTR community constitution 
and the reliability of our findings.

Figure 8. Respiratory virus HTR associations. Subcommunities connected to external respiratory viruses, 
including (a) IAV, (b) hMPV, and (c) hPIV (wild-type), when each was integrated into the HTR community. 
(d) Permutation P values for associations between external pathogen signatures and each HTR community. 
Grey magnified nodes represent query signatures generated from host transcriptional expression profiles 
(detailed information is provided in Supplementary Table S6). For clarity, we included only pathogen pairs 
with association scores >  0.5, and HTR communities with a permutation P value <  0.05 are shown in bold. 
Edge thicknesses are proportional to association scores; edge and node colors are consistent with Figs 3 and 
5–7. Association scores between external query signatures and mPRLs are reported in Supplementary Data 
S8.
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Nevertheless, due to limitations in pathogen type coverage, it was still challenging to accurately 
categorize HTRs to taxonomical class with our first-generation HTR community. For example, in 
the Streptococcus case, the internal species S. Suis was classified into HTR Community 5 rather than 
Community 8, where other alpha-hemolyte bacterial species reside (Fig.  3). This dissociation is likely 
related to the fact that S. Suis is primarily a commensal and opportunistic swine/pig pathogen, with 
human infections being infrequent but grave when an outbreak does occur43. Besides, the enriched 
GO BPs obtained for HTRs to S. Suis were divergent from those of the other four pathogens in HTR 
Community 5, which are DNA tumor viruses (Fig. 3).

Also in the proteobacteria case, the internal protebacteria A. actinomycetemcomitans showed negative 
associations with two of the nine other proteobacteria, i.e., Helicobacter pylori and Neisseria meningitidis 
(Supplementary Figure S9 and Supplementary Data S7). Besides, it was categorized in HTR Community 
8 as an oral commensal bacterium, rather than as a member of HTR Community 6 or 7, where the other 
examined proteobacteria were classified. We then found by the gene expression pattern analysis that HTR 
to A. actinomycetemcomitans infection was unusual among proteobacteria in that it did not include up 
regulated G protein coupled receptor protein signaling (Fig. 4a). This highly indicated that for pathogen 
type assigned with multiple enriched attributes, combined results from gene expression pattern analysis 
should be used to elucidate the essential and differential characteristics of host-pathogen interaction.

Another problem in full discovering HTR associations using the first-generation HTR Community 
lies in the fact that the host cell type diversity is limited, i.e., mostly blood cells, epithelial cells, and can-
cer cell lines. It compromises the ability of HTR community, as a resource of reference profiles, to find 
reliable associations with other diverse cell types (e.g., bone cells). This was exactly the case for querying 
T. denticola with internal oral commensal bacteria, in which we failed to observe positive associations 
for query signatures derived from calvarial bones (Fig. 7c). As suggested in cMap10, this particular event 
reminds again that, to maximize HTR community sensitivity in signature-based discovery of functional 
associations, reference profiles should be collected in as many cells/tissues as possible to assure appro-
priate, systemic exhibition of normal and extreme physiological contexts.

In addition, interpretation of HTR community results depends on the ability to identify associa-
tions with higher confidence, including deciphering the meaning of dual associations. In the respiratory 
viruses case, dual associations were observed for query signatures of hMPV and wild-type hPIV-1, rais-
ing questions about the reliability of pathogen-to-community associations. However, we learned from 
the literature that—similar to IAV—hPIV and hMPV also have hemagglutinin-neuraminidase and func-
tionally similar proteins (e.g., fusion protein F) on their surfaces that serve as antigenic and virulent 
markers44,45. Moreover, their dual community associations can be explained by the shared gene expres-
sion patterns in HTR communities 3 and 6. Specifically, HTRs to pathogens in Community 3 showed 
enrichment in positive regulation of NF-kappaB signaling and immune responses, as well as negative 
regulation of apoptosis, whereas HTRs to pathogens in Community 6 showed enrichment in decreasing 
host cell mitotic activity (Fig. 4). Consistent with these findings, NF-kappaB signaling is induced strongly 
by hMPV and hPIV infection46–48 and decreased cell mitotic activity has been reported to occur follow-
ing hPIV infection49. These findings highlight the necessity to increase the specificity of annotated HTR 
community enriched infection attributes and gene-expression patterns.

On the basis of the results of this pilot study, we propose that a sensible next step would be the gen-
eration of an expanded HTR Connectivity Map to be used as a public resource. Additional reference 
profiles incorporating a broader taxonomic representation of pathogens and cell-type diversity, together 
with in vivo data, should be incorporated into the expandable HTR Connectivity Map to improve com-
munity characterization and feature identification. More rigorous methods for determining statistical 
significance should improve annotation trustworthiness and strengthen the reliability of inter-pathogen 
HTR associations, especially as the size of the reference profile database grows.

A larger scale HTR community resource will enable HTRs to diverse pathogens to be analyzed with 
higher accuracy, sensitivity, and reliability. Moreover, researchers studying HTRs to an individual path-
ogenic species or a group of genetically-related or clinically-associated pathogens could compare tar-
get species signatures to reference profiles, This could lead to unexpected connections and biological 
hypotheses for in-depth experimental validations. Ultimately, the advanced HTR Connectivity Map will 
improve our understanding of pathogens of interest when their community affiliations are defined, and 
with the addition of further experimental evidence, propel discovery of molecular mechanisms mediated 
by multiple cell types in a coordinated response to infections, as well as the development of host-directed 
antimicrobials.

Methods
Reference profile collection. Resources containing expression profiles of host cellular responses to 
pathogenic infections were collected by manual searching and expert reviewing of dataset descriptions in 
the Gene Expression Omnibus database. To limit our analysis to genome-wide gene expression changes, 
the gene expression profile data were produced with only Affymetrix Human Genome U133A Array 
and U133 Plus 2.0 Array platforms. Our criteria for project inclusion were threefold: (1) at least one 
sample of untreated specific pathogen infection with infectious disease state or in vitro infection for at 
least 1 h; (2) at least one control sample (e.g. uninfected, mock-infected, healthy control or other blank 
control); (3) data processing methodology clearly defined in series matrix file, data values in series matrix 
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file distributed in a regular fashion (e.g., log-scale distribution for count values processed with MAS5; 
approximate normal distribution for log-transferred values processed with RMA), and no more than 1% 
of data values missing. And the original data collected were provided in our lab website(http://biotech.
bmi.ac.cn/papers/2015/luhan.html).

Generating PRLs. Each pair of samples containing one infection sample and one corresponding con-
trol sample was considered an instance. We paired infection samples and control samples in accordance 
with five principles:

(1) Very early infection sample measurements (< 1 h) were not taken.
(2) Pathogen infection samples were paired with control samples such that experiment conditions (i.e. 

cell type and culture time) were identical.
(3) Samples measured before infection or at infection time 0 were treated as controls if there were no 

control samples measured after time 0.
(4) If the number of control samples exceeded the number of infection samples, the excess control sam-

ples were omitted.
(5) If the number of infection samples exceeded the number of control samples, the excess infection 

samples were omitted unless they were designated as simple repeated measurements or replications 
of the same experimental condition. In such cases, the excess infection samples were paired with used 
control samples in a revolving fashion. For example, if there were two control samples c1 and c2 and 
five infection samples i1 to i5, then i1, i3, and i5 would be paired with c1, while i2 and i4 were paired 
with c2.

The intersection of probes for each dataset was generated to obtain the final probes shared by all 
datasets. Sample data values from series matrix files were transformed into count values if they had been 
log transformed. The probes were ranked according to the expression change produced by comparing 
corresponding infection and control samples. First, sub threshold instance values were set to a threshold 
value. The 25th percentile level of the instance was selected as the corresponding threshold value. Next, 
probe sets were ranked in descending order of the corresponding perturbation-to-control value ratios. 
For probe sets with a ratio that equaled one, a lower threshold (the 25th percentile divided by 10) was 
applied. Finally, the probe sets were subsorted in descending order of the new ratio calculated. The 
sorted probe lists constituted PRLs and represented regulation level that considered both fold-changes 
in expression and expression values. The probes with the most up- (or down-) regulated genes had top 
(or bottom) PRL rankings. A total of 893 PRLs, denoting infection by 50 pathogens across different cell 
lines and from different laboratories, were obtained.

Merging PRLs for an individual pathogen. Spearman’s Foot rule was used to measure inter-PRL 
distances. For given PRLs A and B, the ranking of probe identifiers P1, P2, P3,…, Pm (m =  22, 160 in our 
study) in PRL A and B are represented by A1, A2, A3,…, Am and B1, B2, B3,…, Bm, respectively. Spearman’s 
Foot rule correlations between PRL A and B were computed with the following formula:

∑= −
( ),

=

SF A B
1A B

i

m

i i
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Spearman correlation coefficients were calculated between each pair of PRLs (Supplementary Figure 
S1).

An iterative process was applied to merge PRLs of the same pathogen by building a minimum span-
ning tree in accordance with the Kruskal algorithm strategy50 and merging the PRLs of each pathogen 
with a minimum spanning tree in accordance with the Borda merging method12,13,51. In the iterative 
process, the two PRLs with the closest Spearman’s footrule values were combined and replaced by a single 
PRL. This iterative process was repeated until only one mPRL remained.

The Borda merging method is a consensus-based voting algorithm. For PRLs A and B, the ranking of 
all probe identifiers (P1, P2, P3,…, Pm) would be A1, A2, A3,…, Am and B1, B2, B3,…, Bm, respectively. The 
ranking weight of Pi was defined as follows:

= + ( )W A B 2i i i

A new ranked list, the mPRL of all probe identifiers, was obtained by sorting W1, W2, W3,…, Wm in 
increasing order.

PRLs for the same pathogen, across different host cell types and from different labs, were combined 
into a single PRL in R package GeneExpressionSignature software22 such that the HTRs of each individual 
pathogen were combined according to a hierarchical majority-voting scheme as described previously15,22. 
A single synthetic mPRL was computed by merging all the PRLs referring to the same pathogen, such 
that genes that were consistently up- or down-regulated across individual PRLs were placed at the top 
or bottom, respectively, of the mPRL. PRLs of different strains or subtypes of the same pathogen species 
were computationally merged if their expression profiles from centralized projects were similar to each 

http://biotech.bmi.ac.cn/papers/2015/luhan.html
http://biotech.bmi.ac.cn/papers/2015/luhan.html
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other. For example, the PRLs of several subtypes of oncogenic human papillomavirus (HPV), including 
HPV-16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-58, HPV-66, were merged for the HPV infection 
HTR profile.

We calculated Spearman correlation coefficients between the mPRL and individual component PRLs 
to see if the mPRL captured the infection features of the component PRLs. Theoretically, an mPRL for 
a specific pathogen should correlate strongly with the component PRLs for the same pathogen, and 
relatively more weakly with component PRLs for other pathogens. That is, in an ROC depicted with 
individual component PRLs as benchmarks, the AUC should approach 1. We found that the AUCs for 
38/50 component pathogens were 1, and 45/50 were > 0.9, with an average AUC of > 0.97 for all 50 
pathogens (Supplementary Figure S5).

Calculating HTR similarities across pathogen pairs. We represented pathogen-to-pathogen HTR 
relationships as association scores computed with a GSEA-based PRL comparing method10,11,14. A signa-
ture was extracted for each pathogen, where a signature refers to a group of genes that may serve as a 
synthetic descriptor of a particular biological action (e.g., a disease, cellular drug response, etc.). In our 
study, each signature was a subset of the most consistently differentially regulated genes in the general 
cellular responses to pathogen infections.

We selected the highest- and lowest-ranked 250 genes from each PRL as a pathogen signature. The 
GSEA-based PRL comparing method is a parameter-free algorithm, with the exception of signature size 
(recommended range, 15–500 per gene set, with lower size increasing randomness and large size decreas-
ing specificity). We estimated the size parameter influence by sampling from 50 to 450 in intervals of 50. 
Pearson correlation coefficients of the association scores between 1,225 pairs of HTR relations indicated 
that the association scores obtained within this tested signature size range correlated with one another 
robustly (Supplementary Figure S6). The strongest correlation (mean coefficient > 0.97) was obtained 
with a signature size of 250 genes (Supplementary Figure S6), demonstrating a limited influence of sig-
nature size. Therefore, we used a signature size of 250 for further analyses.

To evaluate HTR similarities across different pathogens, we used the GSEA11 method, which is based 
on the Kolmogorov-Smirnov statistic, to quantify whether signature genes tend to have similar ranks in 
the PRLs of two compared pathogens (i.e. top or bottom) and presented the outcome as an enrichment 
score. We used {upA, downA} to represent the signature of pathogen A, and the enrichment score of upA 
(or downA) in the PRL for pathogen B, which was represented by ESB

upA (or ESB
downA) and would be high 

if the corresponding genes tended to be placed at the top (or bottom) of the PRL for pathogen B. If the 
length of PRL is m, and the {upA} contains n probe identifiers ranked R1, R2, R3,…, Rn in PRL B, then 
ESB

u pA could be obtained as follows:
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The association score was top when >top bottom  or bottom otherwise.
HTR similarity between pathogens A and B was expressed by an association score between them 

drawn from the enrichment scores of their signatures in the opposing pathogen’s PRL. We defined the 
association score between HTRs of pathogen A and B as follows:
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To validate the significance of the association scores, we used the same algorithm to calculate the 
association score between two random PRLs of the same size as those used in our study (i.e., 22, 160) 
to obtain a control. We repeated this experiment one million times. We computed a P value for each 
pairwise pathogen association score by comparing the actual values to the distribution of values obtained 
for the random data comparison. The P value was estimated as the frequency that random control values 
exceeded the actual value. FDR values were estimated as described by Benjamini and Hochberg52.

Identification of HTR-associated pathogenic infection attributes. Pathogenic infection attrib-
utes were collected according to four major categories: (1) biological pathogen classification of MeSH; 
(2) tissues/cells affected by the infection according to MeSH and the literature; (3) infectious diseases or 
symptoms according to MeSH and the literature; (4) Other important clinical (e.g., staining, intracellu-
lar/extracellular, shape, capsulation, respiration, motility, envelopment, replication site) and laboratory 
characteristics (e.g., transmission and disease manifestation) of pathogenic infections, as represented in 
key words.

The infection attribute terms were hierarchical descriptors for the studied pathogens. The association 
scores between each pair of pathogens were sorted in descending order. We selected pathogen pairs that 
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shared the same descriptors and recorded their rankings. Supposing there are N pairs of pathogens, and n 
pairs of pathogens sharing the same descriptor X, the rankings of these pathogen pairs sharing the same 
descriptors were represented as R1, R2, R3 … Rn. We used the Kolmogorov–Smirnov statistic to generate 
an association score for each descriptor that represented the level of HTR similarity between the paired 
pathogens. The association score for each descriptor was generated by computing the following values:
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The association score was top when >top bottom  or bottom otherwise.
One million (M) random permutations of the pathogen pairs were generated to estimate the permu-

tation P value of each character term. For M random permutations, the quantity of association scores 
obtained was m; if the random permutation association score was not less than the actual association 
score of that character, the frequency of this event (m/M) was taken as the permutation P value. To 
improve association test reliability, only character terms shared by at least five pathogens were tested. 
FDR values were again estimated as described by Benjamini and Hochberg52. Character terms with an 
FDR value < 0.01 were accepted as characteristics significantly related to HTR.

Identifying HTR communities and component analysis. The parameter-free affinity propagation 
algorithm16 was used to identify pathogen clusters, that is, communities with significantly similar inter-
nal HTRs. With a hypergeometric distribution, the enrichment analysis results of infection attributes 
in each community were expressed as P values, representing the probability that an infection attribute 
occurrence number exceeds its actual number. When a total of N pathogens are clustered into several 
communities, and the target community is of size n, and m of N pathogens share the same infection 
attribute X, and k of them are assigned to the target community, then the P value used to check whether 
target infection attributes X is enriched in target community can be expressed as follows:
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Identifying community-common and -specific bioprocesses. GO BP signatures were down-
loaded from the Molecular Signature Database on May 18, 2015. Bioprocesses with a signature size in the 
range of 50–500 were selected to serve as a reference database, where fewer genes increases randomness 
and more genes reduces specificity. The enrichment score of each gene signature in each pathogen PRL 
was generated by GSEA. Supposing a PRL length of m and that a bioprocess signature contains genes 
corresponding to n probe identifiers, with the corresponding probe identifiers ranked R1, R2, R3,…, Rn 
in each pathogen’s PRL, then the enrichment score of the bioprocess signature in the PRL was computed 
as follows:
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The enrichment score was top when >top bottom  or bottom otherwise.
Ten thousand (M) trials (the corresponding values for random permutations of probe identifiers in 

each PRL) were used to estimate permutation P values for each enrichment score. The enrichment score 
of a bioprocess signature in a pathogen PRL was represented by ES, the corresponding trials by ESi (i =  1, 
2, 3…M), and the number of instances with ≥ES ESi  as m. The frequency (m/M) was taken as a 
two-sided P value. FDR values were estimated as above52. Bioprocess-pathogen relations with an FDR 
< 0.01 were designated as significant.

A positive or negative ES indicated that the bioprocess was significantly activated or inhibited, respec-
tively, during pathogen infection. Assuming a hypergeometric distribution, the enrichment analysis 
results of significantly activated or inhibited bioprocesses for each community were expressed as P val-
ues. If the total number of pathogens is N, and n of them are clustered in a community, and a bioprocess 
was considered to be significantly dysregulated in same direction in the infection of m of N pathogens, 
and k of them were in the target community, then the P value used to check whether the bioprocess was 
enriched in the target HTR community can be expressed as follows:
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The threshold for designation of a bioprocess being enriched within a community was P <  0.01. 
Bioprocesses were considered common if they were dysregulated in the mPRLs of at least 10 pathogens.

Generating query signatures of HTRs to external pathogenic infection from publicly availa-
ble gene expression profiles. We used the R-based web application GEO2R, which enables users 
to identify differentially expressed gene sets within individual samples in a Gene Expression Omnibus 
dataset53. Each pathogen’s signature consisted of the 500 most significantly regulated probes identified 
by GEO2R. The hPIV infection data were provided in fold-change form, rather than expression values; 
therefore, the hPIV PRLs were combined by the Borda merging method51, and genes correlating with 
the top and bottom 250 probes were selected to represent the signature.

Comparing query HTR signatures to those of external pathogenic infection with 50 pathogen 
reference profiles. GSEA was used to generate the enrichment scores for up- and down-regulated 
genes in the query signatures for each pathogen’s PRL. Supposing the enrichment scores for correspond-
ing gene sets are designated as ESup and ESdown, the enrichment score of the pathogen signature can be 
expressed as ES =  (ESup−ESdown)/2. For a total of N pathogens, where ESi is the enrichment score of 
pathogen i’s signature, = = , , ...maxscore ESmax i N i1 2 3 , and = = , , ...minscore ESmini N i1 2 3 , the association 
score of the signature for pathogen i was = /AS ES maxscorei i  if ≥ES 0i  or = /AS ES minscorei i  if 
<ES 0i .

Measuring associations between query signatures of HTRs to external pathogenic infec-
tion and HTR communities. The 50 pathogens used to produce our HTR community scheme were 
ranked by association score relative to a query signature in descending order. Supposing a community 
contains n of a total N pathogens, and their rankings are R1, R2, R3 … Rn, the association score between 
a gene signature and a community based on a Kolmogorov-Smirnov statistic was obtained as follows:
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The association score was top when >top bottom  or bottom otherwise.
We used one million (M) random trails, as above, to estimate the permutation P values for each 

association. Supposing the association score between a gene signature and a community is AS, the cor-
responding trials were ASi (i =  1, 2, 3…M). The number of instances with ≥AS ASi was counted as m, 
and the frequency (m/M) was taken as the P value.
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