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Abstract: Eating behavior can have an important effect on, and be correlated with, obesity and
eating disorders. Eating behavior is usually estimated through self-reporting measures, despite their
limitations in reliability, based on ease of collection and analysis. A better and widely used alternative
is the objective analysis of eating during meals based on human annotations of in-meal behavioral
events (e.g., bites). However, this methodology is time-consuming and often affected by human
error, limiting its scalability and cost-effectiveness for large-scale research. To remedy the latter,
a novel “Rapid Automatic Bite Detection” (RABiD) algorithm that extracts and processes skeletal
features from videos was trained in a video meal dataset (59 individuals; 85 meals; three different
foods) to automatically measure meal duration and bites. In these settings, RABiD achieved near
perfect agreement between algorithmic and human annotations (Cohen’s kappa κ = 0.894; F1-score:
0.948). Moreover, RABiD was used to analyze an independent eating behavior experiment (18 female
participants; 45 meals; three different foods) and results showed excellent correlation between
algorithmic and human annotations. The analyses revealed that, despite the changes in food (hash vs.
meatballs), the total meal duration remained the same, while the number of bites were significantly
reduced. Finally, a descriptive meal-progress analysis revealed that different types of food affect bite
frequency, although overall bite patterns remain similar (the outcomes were the same for RABiD and
manual). Subjects took bites more frequently at the beginning and the end of meals but were slower
in-between. On a methodological level, RABiD offers a valid, fully automatic alternative to human
meal-video annotations for the experimental analysis of human eating behavior, at a fraction of the
cost and the required time, without any loss of information and data fidelity.

Keywords: eating behavior; meal analysis; meal duration; mouthfuls; bite-rate; eating patterns; deep
learning; skeletal feature extraction

1. Introduction

The analysis of eating-related behavioral characteristics during meals is well-established in the field
of microstructural analysis of human eating [1]. Such methodologies are mainly used in overweight and
obesity research for understanding and modifying the behavioral mechanisms involved in long-term
food intake (e.g., [2]). Similar interest exists in eating disorder research, where disturbed eating behavior
has been associated with reduced long-term energy intake [3]. Other fields where detailed analysis of
meal behaviors is important include disorder-specific eating behaviors [4], medicine-induced eating
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behavioral changes [5], dentistry research on temporomandibular disorders [6], the study of chewing
and eating capacity in relation to aging [7], and even consumer research guiding the development of
novel food products [8].

Traditionally, the estimation of meal behaviors has been based on self-rated measures, due to
the ease and comparatively low cost of data collection, despite the significant increase on participant
burden [9] and limited reliability, mostly due to erroneous reporting and reporting biases in many of
the targeted populations [10]. Improving on these techniques, various methodologies for the objective
quantification of eating behavior have been deployed, ranging from laboratory studies [11] to real life
data collection actions [12]. The employed technologies cover a wide range of sensory modalities [13],
with current advances supporting increasingly sophisticated data collection and analysis platforms.

Despite those developments, the most widespread methodology for objective eating behavior
analysis remains the analysis of meal videos, due to the advantages of the required data collection: (A)
It reduces the participation burden. (B) It does not require additional wearable equipment. (C) It is
appropriate for a range of conditions, from laboratory to pseudo-free-living settings. (D) It is becoming
scalable even in free-living conditions, due to the increase in smartphone use. On the other hand, the
large-scale meal video analysis also has disadvantages [14]: (i) Data collection is challenging without
the participation of researchers; (ii) eating under observation might affect the study outcomes; and (iii)
the analysis of the collected videos is time consuming and costly. Indeed, the manual annotation and
analysis of meal videos require trained personnel and significant time, with the process often lasting
significantly more than the data collection itself. Thus, methodological advancements improving
behavioral analyses of meal video recordings are often requested by researchers [15], in order to
standardize and optimize the required process.

The duration of meals is one of the main behavioral parameters that is routinely studied in such
settings, usually in parallel with total meal food intake [16]. Indeed, current evidence associates
the speed of eating with overweight and obesity, with increased speed of eating contributing to
higher energy intake [17], potentially being associated with the development [18] and maintenance of
obesity [19]. Another widely studied behavioral parameter is the number of bites individuals take
during meals, which has been previously associated with the portion size of a meal [2,20], with some
researchers proposing the quantification of bites as an alternative for energy intake measurements [21].
Overall, the behavioral analysis of meals with different foods has revealed that most individuals
maintain their eating profile in laboratory conditions [22], allowing meal characteristics to be used
to classify individuals [16]. Regarding the transferability of such measures beyond controlled
settings, real-life studies are certainly needed [23], but evidence shows that behavioral measures in
semi-controlled settings [24] can carry over to free-living settings [25].

Finally, the longitudinal analysis of meal progression previously led to the identification of
meal progress patterns (i.e., decelerated vs. linear eaters [26]) associated with eating disorders and
obesity [27]. However, such analyses are seldom, due to their inherent complexity and a lack of
appropriately annotated datasets to support them.

Our current effort focuses on the development of a tool that improves the already existing and
well-established video meal analysis methodology that can be used for the automation of the behavioral
meal annotation process, on the level of meal duration and meal bites. Our proposed methodology
is supported by recent advances in the fields of deep learning and image processing for skeletal
feature extraction that led to the detection and analysis of specific movements in videos [28] and has
been developed retrospectively on top of existing video meal datasets collected in controlled settings.
Thus, we designed and deployed the “Rapid Automatic Bite Detection system” (RABiD), attempting
to eliminate the need of human annotation for meal duration and total meal bites. We aimed at
achieving this without any information and fidelity loss, outputting behavioral information appropriate
for group-level and within individual analytics. Moreover, we are proposing a novel method for
meal-progress biting rate analysis that can be useful for more detailed behavioral meal analysis.
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The remainder of the paper is as follows: Section 2 presents the experimental setup, the training
of RABiD algorithm, the selected validation methodology, and the statistical methods used for the
analysis of results. Section 3 presents the experimental results of the validation of RABiD and the
comparison with the manual human annotation procedure. Finally, Section 4 discusses the findings of
this study, while Section 5 concludes the work.

2. Materials and Methods

2.1. Experimental Design

Two separate datasets of meal video recordings (Figure 1) were used for this study. RABiD was
initially trained on an independent training dataset (TD) of meal videos recorded from individuals
consuming three different food types under identical controlled conditions. These meals were
independently annotated by one trained human annotator, as the basis for RABiD’s creation/training.
Afterwards, a separate dataset of meal video recordings (behavioral analysis dataset; BD) was analyzed
and the behavioral outcomes of manual human annotation analysis were compared with those of
RABiD. In the TD, the majority (66%) of participants consumed only one food type, while the rest (44%)
consumed two different meals. However, in the BD, all subjects participated in all three meals. Both
datasets were collected earlier (2013–2015) and were later used for the development and evaluation of
the RABiD methodology (September 2019). In all the presented protocols, the data were collected in
accordance with the guidelines for human research in the Declaration of Helsinki and were approved
by the Stockholm Regional Ethics Board (Dnr. 2012/219-31/5, 2014/535-31/3 and 2015/2003-31). The
analyzed datasets include a mix of control measurements presented in [16], complemented with
additional, not previously analyzed, meals.

Figure 1. Schematic representation of the experimental design. The training dataset was used for the
design, training, and internal performance evaluation of Rapid Automatic Bite Detection (RABiD).
RABiD was later used to analyze the behavioral analysis dataset and the outcomes of this analysis were
compared with the analysis outcomes based on manual video annotations.

2.2. Recruitment

The recruitment process was identical both for the TD and BD meals. Overall, our studies focused
on the analysis of eating behavior in healthy individuals, with inclusion criteria being non-vegetarian
young adults (18–35 years old) with close-to-normal body weight (body mass index (BMI): 18–27 kg/m2).
Since the BD focused on individual responses inside a homogenous group of participants, only females
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were recruited for this study. The participants were recruited online and through poster advertisements.
Respondents attended an initial information meeting covering the protocol of the study and they
agreed in participation by signing an informed consent. Afterwards, the participant’s weight and
height were measured and information about their general health status was collected. For these
studies, pregnant women, as well as individuals with past diagnoses of eating disorders were excluded.
Similarly, we excluded individuals who had food-specific allergies or declared a strong dislike for the
experimental foods. Participants were aware that their meals were video recorded and analyzed but
were not aware of the specific outcome parameters (such as meal duration and bite analyses). All the
subjects were rewarded with one cinema ticket per meal for their participation.

2.3. Meal Session Procedure

All meals were provided to participants during typical Swedish lunch hours (11 a.m. to 13 p.m.)
and participants were instructed to abstain from vigorous physical activity before the meal sessions.
Additionally, the subjects were instructed to eat breakfasts at least 3 h prior to the recorded meal
sessions. In cases of repeated experimental meals (i.e., a subset of the TD and everyone in the BD), the
experimental sessions were scheduled at least a week apart and participants were asked to consume
similar breakfasts during experimental days (as reminded by messages on mobile phone the day
before). All meals took place in dedicated experimental rooms without windows where the subjects
ate alone, without access to other activities (e.g., listening to music, reading or using mobile phones).
Foods were presented in trays (or bowls in the case of soup and porridge in the TD) on the dining table,
in appropriate quantities in order to create a sense of ad libitum food availability. The participants
were informed that more food (on top of the amount presented on the table) was available, if desired,
and that they could eat as much as they wanted. No time limit was set for each meal, allowing subjects
to finish their meals at their own pace. The participants transferred food from the serving trays/bowls
to their own plate/eating bowl, placed directly in front of them, as many times as they wished. Water in
large glasses was served together with the food, without any restraints about frequency, volume, and
timing of drinking. After the initial instructions, the researcher exited the dining room and returned
only after the termination of the meal. This procedure, as well as the recording location, was identical
for TD and BD meals, and similar to practices that we previously published [3,16,29].

2.4. Served Foods

Three different food types were served for the meals included in the TD and one additional for
the BD (Figure 2). In short, for the TD we served porridge, soup, and hash meals. Similarly, in the BD
we served an identical hash meal twice (hash 1 and hash 2 in Figure 1) and a meatballs and potatoes
meal once, in order to facilitate the planned within-subject analysis. Thus, the two selected foods
were significantly different in food unit size and nutritional characteristics, in order to test the ability
of RABiD to reliably detect the (expected) behavioral differences due to differing food properties.
The nutritional characteristics of the served foods can be seen in Table 1 and additional information
about the food characteristics, preparation, and cooking can be found in the Supplementary Material
(Methods S1).

Figure 2. The foods served in the meals analyzed here: (A) porridge (served in the TD), (B) soup
(served in TD), (C) hash meal (served in TD and BD), (D) meatballs and potatoes (served in BD).
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Table 1. Nutritional characteristics of the foods served in the meals of the TD and BD.

Porridge Soup Hash Meatballs and Potatoes

Served (dataset, n of servings) TD, ×1 TD, ×1 TD, ×1/BD, ×2 BD, ×1
Protein (/100 g) 4.2 2.1 9.6 9.4

Carbohydrate (/100 g) 20.9 5.9 8.2 8.5
Fat (/100 g) 2.1 4.6 2.0 6.8

Energy (kJ/100 g) 496.4 327.6 383.3 585.6

2.5. Video Capturing and Data Handling

Since all the videos analyzed in this study were originally recorded to support manual behavioral
annotations only, no special attention was given to factors that would potentially affect the performance
of an automatic annotation algorithm, like the angle of recording, the occlusion of the subject’s skeleton,
and the lighting of the room. Thus, all the meals were videotaped using one digital camcorder
(Samsung, Suwon, Korea) that was placed on the left front side of the subject eating, at an angle of
40◦–45◦, at a distance of approximately 1.5 m from the eating position. The videos were recorded at
576 p resolution (720 × 576 pixels), at 25 frames per second. The camera was mounted on a shelf using
a “mini-gorilla” stand at a height of ~1.2 m. The camera positioning was maintained stable across
meal recordings, and the lighting of the room was never modified (i.e., typical soft white light from
incandescent bulbs placed on the ceiling of the room). Additionally, the subjects did not receive any
directions concerning their eating position, body stance, or movements during the meal. Similarly, the
placement of the serving trays/bowls and the water glasses was not restricted (Figure 3). The camera
was turned on before the entrance of the subject into the experimental room and turned off after their
exit. The video files were saved on flash memory cards in the camcorder and were later transferred to
PCs for further analysis. At this stage, two videos were excluded due to corrupt video files.

Figure 3. (A) Screenshot from an experimental meal video. (B) A schematic representation of the
experimental dining room. The subjects were free to change the placement of the items on the table at
will. There were no other restrictions for movements and positioning during the meal.

2.6. Manual Video Annotation

The meal videos were annotated using The Observer® XT v12.5 (Noldus Information Technology,
Wageningen, Netherlands) with the human annotator marking five behavioral events: (a) “meal-start”,
the timing of the initial “spoonful”; (b) “meal stop”, the timing of the last “bite”; (c) “spoonful”, the
moment that food leaves the personal eating plate (only if the food eventually reaches the mouth of
the individual, without the utensil returning to the plate; (d) “food addition”, the act of transferring
food from the serving tray into the personal eating plate; and (e) “bite”, the moment that food enters
the mouth of the individual. Plotting these events in time resulted in a timestamped behavioral log
for each meal. All of the analyzed meals were manually annotated by the same trained researcher,
minimizing the potential of intra-annotator errors in the behavioral meal logs. The human researcher
performed this task while the video file was played in half speed, in order to achieve more accurate
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annotations. Prior to the analysis of the BD, with the help of RABiD, another human annotator watched
all the BD videos and rated the video stream for visible occlusions of the mouth and hands of the
participants (not visible from the camera). The annotator evaluated potential occlusions due to sitting
position (e.g., individuals using their right hand for bites while facing away from the camera, resulting
in limited view of the “eating hand”) and placement of items on the table (e.g., serving tray placed
too close to the eating plate hiding it from the camera view). The videos were ranked with regards to
occlusion as: “minimal” (33 videos), “medium” (12 videos), and “significant” (7 videos).

2.7. Data Preparation for Automatic Behavioral Meal Analysis

There was no special preparation of the video files for the design and the deployment of RABiD
in the TD and BD. For the TD, the annotated behavioral logs, in full detail, were used for the training
RABiD. For the BD, the only information available before the RABiD analysis was the first and last
points when the research subject was alone in the room (i.e., when the researcher exited and re-entered
the room before and after the meal). Thus, no specific information for the actual meal duration and
timing of the bites was used, blinding the RABiD analyses of the BD.

2.8. Algorithm Training

RABiD is a deep learning-based algorithm for the processing of videos and classification of bite
instances. It consists of two data streams that receive upper body and mouth features, respectively
(Figure 4). Specifically, the first stream employs the two-dimensional (2D) coordinates of the nose and
hand skeletal joints and the distances between them (i.e., 0–7 numbered skeletal joints in Figure 5), while
the second stream employs the 2D coordinates and distances of three mouth points that correspond to
the middle of the upper and lower lips and the corner of mouth (i.e., B, D and A or C points based on
which side of the user is visible while eating in Figure 5). The algorithm was implemented in Python,
while the Keras-Tensorflow frontend-backend was also used for deep learning.

Figure 4. Schematic representation of the RABiD algorithm, for the parallel analysis of upper body
(including the head) and mouth movements in videotaped meals. The outcome of the algorithm is a
complete behavioral description of a single meal including meal duration, total number of meal bites,
as well as time series of bite instances across the meal. LSTM: called long short-term memory.

RABiD was designed based on the supposition that the movement of hands and the mouth are
the most significant motor indicators of bite instances. RABiD applies the same processing procedure
in the two streams’ input of upper body and mouth features. It initially extracts more discriminative
spatiotemporal information using two blocks of convolutional layers that are responsible for computing
interactions between neighboring features both in time and space. The max pooling operation between
the convolutional layers downsamples the feature space and improves the robustness of RABiD.
Afterwards, a series of recurrent neural network components, called long short-term memory (LSTM)
units are employed to extract new temporal information from the highly discriminative feature
sequences computed from the convolutional layers by learning long-term dependencies in the feature
sequences. Finally, the computed features from the two streams are concatenated and fused together,
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using a fully connected layer that combines the information from the hands, head, and mouth to
achieve more accurate and robust bite detection results.

Figure 5. Schematic representation on a researcher of the skeletal joint (0–7) and mouth (A–D) points
tracked and analyzed in the RABiD algorithm. Both two-dimensional (2D) coordinates and distances
are analyzed over the meal progression.

The TD meal videos were cropped into 12,121 video clips with a duration of 2 s and formed an
isolated dataset with 4149 bite instances and 7972 non-bite instances, based on the manual annotations
of the dataset. Initially, 90% of these video clips were used for training RABiD. For the extraction of
hand and mouth features, we used OpenPose, a previously developed deep learning algorithm [30,31]
that extracts skeletal features from images. The current version of the analysis processed videos for the
extraction of skeletal features in a much higher resolution than before [27], producing more accurate
hand and mouth features. The outcome measures are then processed to remove abnormal values
(i.e., outliers) or to fill out missing values (i.e., non-detected joints) with values of the previous time
frame containing a value for the specific feature. Finally, the movement is smoothed using spline
interpolation and the coordinates are normalized by transformation into a local coordinate system with
the neck and nose as origins for the upper body and mouth features, respectively. The last processing
step aims to diminish the influence of the location of a person in the video, as well as to provide
smoother skeletal joint/mouth point movements.

The remaining 10% of the clips (i.e., 1212 clips containing both bite and not-bite instances, not
used for the training of the algorithm) were used for performing internal (i.e., inside the TD dataset)
evaluation of the algorithm performance for iterative optimization of the RABiD parameters, until
sufficient accuracy was achieved.

2.9. Automatic Meal Analysis

During the automatic meal analysis, an entire meal video is fed as input to RABiD which is used
to detect the precise time frames during which bite instances occur. This is achieved by employing an
overlapping window of 2 s with a step of 1 frame, thus computing a bite probability for each frame
of the videos. The final output of RABiD is a continuous signal of bite detection probabilities. This
signal is then post-processed for the extraction of the exact time frames that correspond to true bite
instances and for the removal of false detections. This is achieved by using medial filter smoothing
for removing small and abrupt changes in the bite probability signal, as well as using the sum of the
mean and standard deviation of the bite probability as a threshold for removing false bite detections.
The post processing process is completed with the computation of local maxima and the removal of
maxima that are too close to each other. The remaining local maxima corresponds to the true bite
instances detected by RABiD.
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2.10. Statistical Analysis of Behavioral Outcomes

Initially, for the internal TD evaluation of RABiD, we calculated Cohen’s kappa (κ) to measure
the agreement among the human annotation and the RABiD outcome, on the level of “bite” and
“not bite” labeling of a video clip. The κ ranges from −1 to +1, with values κ ≤0 indicating lack of
agreement between human manual and RABiD annotations, whereas κ-value ranges between 0.60 and
0.80 indicate satisfactory agreement and κ >0.80 pointing to very high (near perfect) agreement [32].

After the completion of the automatic analysis of the BD, the behavioral meal logs produced by
RABiD were compared with the behavioral meal logs produced by the independent manual annotation
of the meals. In the subsequent analyses, these datasets are referred to as manual and RABiD. All
the presented analyses were performed twice, once for the whole BD (52 meals) and once with the
exclusion of seven meals ranked as having significant occlusions (45 meals). Here, since the overall
results were very similar, we present and comment on the latter analyses.

For comparisons across the meals of the same individual (hash 1 vs. hash 2 vs. meatballs) we used
a linear mixed effects model using the lme function of the nlme package in R 3.2.3. Condition-specific
comparisons were performed by Tukey post-hoc tests, using untransformed values, setting the
condition as the fixed effect and the subjects as the fixed effect, with random intercept and fixed slope.
Shapiro–Wilk tests and visual inspection of Q-Q plots and residuals vs. fitted value were used to test
the assumption of normality for the presented measurements. The agreement between total bites
per meal and meal duration (manual vs. RABiD) were evaluated through Pearson correlations, with
“medium”, “high”, and “very high” thresholds set at R2 ≥0.50, 0.75, and 0.90, respectively [33].

Finally, for the microstructural longitudinal analysis of bite rate progression as a meal is progressing,
we followed identical post-processing both for the manual and RABiD bite time series. Initially, the
bite occurrences per 10% of meal segment were calculated for all meals. Then an average value for
each time segment of an individuals’ hash meals 1 and 2 was calculated. Finally, the average rate of
change of bite rates as a meal progressed was modeled through a quadratic curve fit (Sigmaplot 12.5,
Systat Software, San Jose, CA, USA) for each meal type (hash vs. meatballs). In this case we did not
perform additional statistical testing between meal types, or manual vs. RABiD outcomes, due to lack
of statistical power resulting from multiple comparisons. Thus, we are presenting a descriptive visual
analysis of the resulting curves. The significance threshold of all the performed statistical tests was set
at 0.05 and all the values presented in the text are mean (SD), unless otherwise specified.

3. Results

3.1. Subjects

A total of 77 subjects contributed data for the study (Figure 1). Out of those, the meals of
59 males and females were included in the TD and the meals of 18 different females comprised the BD.
The characteristics of the subject samples for the TD and BD meals can be found below (Table 2).

Table 2. Group characteristics for the two assembled datasets.

Training Dataset (n = 59) Behavioral Analysis Dataset (n = 18)

Males/Females 21/38 -/18
Age, years 26.2 (5.1) 25.9 (4.7)
Height, cm 168.6 (8.8) 164.1 (5.4)
Weight, kg 64.9 (10.2) 60.6 (7.7)

Body Mass Index, kg/m2 22.7 (2.1) 22.5 (2.1)

Values are expressed as mean (SD).
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3.2. Internal RABiD Algorithm Performance Evaluation in the Training Dataset

The level of agreement between manual and RABiD annotations, based on the isolated subsample
of video clips from the TD, consisting of 1212 samples (10% of total), was near perfect (κ = 0.894).
The detailed results of the comparison of the RABiD outcomes vs. the manual annotations are presented
in Table 3, where each cell corresponds to the agreement/disagreement of results for manual vs. RABiD
video clip annotation (e.g., 374 out of 1212 video clips were identified as containing a bite both from
the manual and RABiD annotations).

Table 3. Confusion matrix, recall, specificity, and F1-score of the RABiD algorithm performance in the
evaluation subsample of video clips in the TD (n = 1212).

Clips Including Bites (RABiD) Clips Not Including Bites (RABiD)

Clips including bites (manual) 374 27

Clips not including bites (manual) 30 781

Recall: 0.933; Specificity: 0.963; F1-score: 0.948

3.3. Meal Duration and Total Meal Bites in the Behavioral Dataset

The analysis of the manual annotations revealed that individuals took significantly fewer bites
(p < 0.01) during the meatball meal in comparison to hash 1 meal. There were no significant differences
in the total number of bites between the two hash meals and no differences in meal duration either
between hash 1 vs. meatballs, or hash 1 vs. hash 2 meals (p > 0.05 in all cases). The results were
identical when the same analysis was performed based on the outcomes of the RABiD algorithm
(p < 0.01 for hash 1 vs. meatballs and p > 0.05 for all other comparisons). Table 4 presents these results
in detail.

Table 4. Meal duration and total number of bites for three repeated meals from the same individuals;
* p-value <0.05 from linear mixed model comparing hash 1 vs. meatball meals.

Hash 1 Hash 2 Meatballs

Manual Analysis Meal duration (min) 8.4 (3.2) 9.8 (6.2) 9.3 (6.6)
Total meal bites (n) 54.0 (25.2) 53.0 (18.2) 37.1 (14.6) *

RABiD Analysis Meal duration (min) 8.3 (3.2) 10.2 (5.7) 9.3 (6.6)
Total meal bites (n) 53.6 (23.7) 51.3 (19.3) 38.9 (17.0) *

3.4. Manual vs. RABiD Meal Duration and Total Meal Bites Correlations

The overall correlations between the manual and RABiD measures of meal durations were 1.00,
0.99, and 1.00 for hash 1, hash 2, and meatball meals, respectively, showing very high agreement
between manual, even when individual meals are considered (total correlation coefficient for meal
duration was 0.99). These results are presented in Figure 6.

Similarly (Figure 6), when considering the annotated (manual) vs. detected (RABiD) total meal
bites, the correlations were also very high, with coefficients of 0.96, 0.91, and 0.94 for the hash 1, hash
2, and meatball meals, respectively. As before, these results point towards very high agreement of
annotated vs. detected total meal bites, even on an individual level (total correlation coefficient for
number of bites is 0.94).
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Figure 6. Scatter plots of the meal durations and total meal bites for all the analyzed meals in the
behavioral dataset. Very high agreement is observed between manual and RABiD measures in all cases.

3.5. Meal Progress Analysis

Figure 7 depicts the changes in bite rate as a meal progresses (in 10% time segments), both for
the manual and RABiD analyses (function: y0 + ax + bx2; hash coefficients: y0 = 6.909, a = −0.7409,
b = 0.0683 for manual and y0 = 7.116, a =−0.7590, b = 0.0629 for RABiD; meatball coefficients: y0 = 5.797,
a = −0.8189, b = 0.0629 for manual and y0 = 6.407, a = −0.9849, b = 0.0753 for RABiD; p < 0.05 for all
model fits). Overall, the fitted quadratic curves reveal a similar pattern for hash and meatball meals,
where individuals take bites more frequently at the beginning and end of the meals, with slower biting
rates in between.

Figure 7. Changes in bite rates during hash and meatball meals, as revealed by manual annotations
and RABiD analysis outcomes. Bite rates per meal segment are calculated as bites during 10% of meal
duration (bites/s).

3.6. Time Efficiency of the Analyses

The precise time efficiency of the manual annotations of meals is a challenging measure to calculate,
since it is significantly influenced by many uncontrolled factors, including behavioral annotation
setup, annotator experience, rate of annotation errors and correction, complexity of annotated behavior,
and experimental subject behavioral profile. Probably the most important factor for the complete
annotation of such an extensive dataset of meal videos is the annotator fatigue and time availability.
Here we are estimating that the annotation of each video took approximately twice as long as the
duration of the meal (due to half-speed playback during annotations). We are also adding 35% on this
figure accounting for annotation setup, file management, and human error corrections. Based on the
above suppositions, the total duration for the manual annotation of the presented datasets was close to
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44.4 h for videos in the TD and 24.6 h for those in the BD. Obviously though, this effort was scattered
across a significantly broader time period, dependent on personnel availability and work load (close to
seven calendar months in our case).

In contrast to manual analysis, the time efficiency of RABiD can be computed with more precision.
Specifically, based on the available hardware (medium performance level Windows workstation
with a NVidia GTX980 video card), the extraction of the skeletal characteristics in OpenPose and the
subsequent processing steps lasted, on average, 37.7 (17.0) min per video. This calculation includes
both TD (55.1 h) and BD (34.5 h) videos, since the OpenPose component is required in all cases.
Additionally, training of the RABiD algorithm was performed only once and lasted 2.4 h. After the
OpenPose analysis was completed the trained RABiD algorithm was able to detect bite instances
on any video that was given as input. It should be noted that all the estimations above are heavily
dependent on the selected analysis resolution, the available hardware, and the duration of the analyzed
videos. While this is certainly a resource-heavy analysis, it should be also noted that it was completely
automatic and, for the presented dataset, all the steps were completed in approximately 10 consecutive
calendar days. This time period also accounts for intermediate data-control procedures, with the final
data retention rate being 100% (i.e., no data were corrupted or lost).

4. Discussion

This study evaluates a new methodology for the automatic behavioral analysis of meals on the level
of meal duration and bites, based on video meal data recorded in controlled environments. Self-rated
methodologies, which are predominantly used for estimating eating behavior, being cost effective and
easy to analyze, rely heavily on the participant’s input, but often suffer from reliability issues [10].
On the other hand, emerging objective methodologies for automatic meal analyses [29] are often based
on wearable technologies, which can affect the participants’ behavior, or on proprietary additional
equipment [34], affecting the scalability and the cost-effectiveness of the performed studies. Efforts
to use off-the-shelf wearable technologies (e.g., smartwatches) for meal analyses are promising [35],
but they are currently not widely available for large-scale use. Thus, the predominant methodology
for objective, non-invasive behavioral analysis of meals is the use of video observation, especially for
studies performed in controlled [16] and semi-controlled settings [36]. Further, video meal analysis is
usually the “ground truth” for the development of other objective analysis methodologies. However,
this methodology is still limited [15] by its dependency on time-consuming and error-prone manual
video annotations, with many studies resorting to the use of multiple human annotators, expertly
trained to achieve increased reliability.

In order to eliminate these shortcomings, we developed and trained RABiD using a training set
of meal videos, including three foods with significantly different textures. Using common algorithm
performance metrics, we initially performed an internal algorithm outcome validation, using a random
fraction (10%) of the video clips that were produced during the post-processing of the training
meals. Then we evaluated RABiD against traditionally performed analyses based on manual human
annotations on an independent set of meal videos, collected in the past, as part of our usual eating
behavioral research.

Regarding the internal RABiD outcome validation, we managed to increase our previously
published performance [28], using higher resolution images for the extraction of skeletal features.
These features were then used for even more accurate modeling of hand, head, and mouth movements
on a 2D plane. While our previous results already achieved a near-perfect agreement with manual
video-clip annotations (κ = 0.879) [28], our current results improve the rate of agreement (current κ
= 0.894), pointing to superb algorithm performance. On that level, RABiD outperforms all previous
comparable efforts of video-based and wrist-worn accelerometer meal analyses. Earlier video-based
methods employed spectral segmentation, random forest classification [37], and hidden Markov models
in order to quantify dependencies between hand gestures and bite instances [38], with satisfactory
agreement (0.60 < κ < 0.80) on bite detection results. More recent bite detection systems, using
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wrist-worn sensors, deploy deep learning methodologies [35,39] in order to propose more accurate
and robust solutions and produce promising results. Such research creates optimism about the future,
showing that parallel advancements in video-based and wrist-worn sensor solutions are en route to
significant advancements in the field of automated meal analysis.

While the internal validation of RABiD performance is important, a more real-life validation test
for the algorithm is its performance on independent meal videos is needed, as compared to the same
analysis performed by human annotators. When these analyses were compared against each other
(RABiD vs. manual), the outcomes were interchangeable (i.e., both methodologies detected similar
group effects; Table 4). Thus, both analyses pointed towards group maintenance of average meal
duration (8.4 vs. 8.3 min in hash 1 and 9.8 vs. 10.2 in hash 2 for manual vs. RABiD, respectively)
and mean total bites per meal (54 vs. 53.6 in hash 1 and 53 vs. 51.3 bites in hash 2 for manual vs.
RABiD, respectively) when the same food was consumed twice by the same individuals. When the
same individuals consumed a different food, both the manual and RABiD analyses detected significant
decreases on the mean total number of bites per meal (37.1 vs. 38.9 bites for manual vs. RABiD,
respectively), while the mean meal duration remained similar (9.3 for both manual and RABiD).
Similarly, the RABiD performance was good enough even for performance of within subject analyses,
as revealed by the very high nested correlation coefficients (Figure 6) for each type of recorded meal,
regarding both: (i) the quantification of meal duration (the lowest correlation coefficient was 0.99 for
hash 2) and (ii) the quantification of total meal bites (the lowest coefficient was 0.91 for hash 2). In effect,
using RABiD exclusively in the absence of any human behavioral meal annotation, would produce
equally valid behavioral outcomes as traditional analysis technics.

Regarding the behavioral outcomes of the present study (irrespective of using the RABiD or
manual methodologies, since they are similar), it should be noted that they are directly comparable, but
not identical, with our previously published results. Specifically, when subjects in the BD consumed
the same food served in identical settings (hash 1 vs. hash 2), no significant changes in meal duration
and the total meal bites were observed. This supports our [16] (and others [22]) argument that in a
stable setting, cumulative eating behavior remains constant, both on a group and an individual level.
On the other hand, the introduction of a food with larger food units resulted in a significant drop
of total meal bites, but did not affect the total meal duration, resulting in equally long meals, with
individuals taking fewer, but probably bigger, bites. These results support our past argument that food
type is an important modulator of eating behavior across a meal, despite fairly constant individual
eating styles [16]. It should be emphasized that our present experimental design did not control for
food differences on the level of texture, taste or nutritional characteristics. However, we remain hopeful
that the introduction of RABiD-like methodologies will make the performance of additional studies
easier, facilitating the proper evaluation of the behavioral effects of such parameters.

Finally, when we modeled the rate of change of the bite rate throughout the meal progression, the
results, again, appear identical for the manual vs. the RABiD analyses. We specifically observed higher
biting rates at the beginning and end of the meals, with lower biting rates during the meal mid-point.
This pattern repeated for both foods (mash and meatballs), despite the fact that the absolute recorded
rates were different (overall higher for hash vs. meatballs, Figure 7). The specific identified pattern is
moderately unexpected, since it does not agree with previously described food intake curves that point
either to a steady or a decelerated eating rate across meals [26]. This discrepancy reveals that biting
rate should not be regarded as equivalent with food intake rate as proposed before [21]. The observed
differences may point towards the fact that meals are initiated with larger and more frequent bites, are
followed by less frequent bites, and are concluded with frequent, but smaller, bites. The emergence
of more powerful analysis techniques, such as RABiD, will facilitate more detailed meal-progress
behavioral analytics producing more information about how different groups of individuals (e.g., lean
vs. obese groups) consume their foods.

Initially, it should be noted that the RABiD methodology was developed exclusively for the
analysis of meal videos recorded in controlled or semi-controlled environments. The selected deep
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learning algorithm module (i.e., OpenPose [30,31]) used for the extraction of the skeletal and mouth
characteristics is pre-existing and fairly computational-heavy, making its deployment and its time
efficiency dependent on the available hardware. However, we are foreseeing that further optimizations
of the deep learning module can maintain the performance of the algorithm, while significantly
improving its time efficiency. Also, even at the current time efficiency levels, the automatic nature of the
analysis allows it to be completed at a fraction of the time that would be required by a human annotator
(10 days vs. 7 months of real-time analysis period). Additionally, current hardware developments
(e.g., supporting Artificial Intelligence acceleration on dedicated mobile phone processors [40]) are
expected to allow such analyses to be performed even on videos captured by smartphone cameras,
potentially on a close to real-time speed, making them scalable and relevant even for real-life. Similarly,
it should be noted that in this effort, RABiD was trained and evaluated using meal videos captured at
an angle (40◦–45◦). This was necessitated by the availability of existing meal videos and it proves the
usefulness of RABiD for such retrospective analyses. However, the use of side-viewing videos affects
the performance of the algorithm, mostly due to potential occlusions of the skeleton of the subjects.
Thus, the next logical step would be the training of similar algorithms on frontal meal recordings,
in order to achieve improved algorithm performance. Finally, the current effort concentrated on the
analysis of eating plated food with utensils and does not necessarily translate well to the automatic
analysis of eating hand-held food items (e.g., sandwiches, burgers, etc.). In such cases, the successful
automatic annotation of behaviors should also work following an identical methodological approach,
but training another instance of RABiD, dedicated to hand-held foods, might be required in the future.

Concluding, the present study, together with parallel efforts in this area, reveal that automatic
analysis of meals, using wearables, video or other sensory equipment, is gaining ground, especially in
applications related to personal nutrition [41]. Indeed, the domain is rapidly reaching the point when
the need for manual human annotations will not be required for the detection and the analysis of food
intake and the related behavioral characteristics, allowing researchers to optimize their data collection
and data analysis methodologies.

5. Conclusions

In this work, we propose and analyze an automatic food bite detection algorithm, called RABiD,
that can eliminate the need for human annotations of video-based meal analysis. In short, our results
support the notion that fully automated deep-learning-driven methodologies can support behavioral
analyses of meal duration and meal bites as well as those based on human annotators. More specifically,
based on the outcomes of our study, we argue that we have managed to achieve a detailed behavioral
analysis of meals without any loss of information and fidelity, in a fraction of the time (and effort) that
would be required if the meal annotation was performed by trained human annotators.
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