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Abstract: High-fiber plant foods contain lignans that are converted to bioactive enterolignans, entero-
lactone (ENL) and enterodiol (END) by gut bacteria. Previously, we conducted an intervention study
to gain mechanistic insight into the potential chemoprotective effects of flaxseed lignan supplemen-
tation (secoisolariciresinol diglucoside; SDG) compared to a placebo in 42 men and women. Here,
we expand on these analyses to further probe the impact of the microbial metabolite phenotype on
host gene expression in response to lignan exposure. We defined metabolic phenotypes as high- or
low-ENL excretion based on the microbial metabolism of SDG. RNA-seq was used to assess host gene
expression in fecal exfoliated cells. Stratified by microbial ENL excretion, differentially expressed
(DE) genes in high- and low-ENL excreter groups were compared. Linear discriminant analysis using
the ENL phenotypes identified putative biomarker combinations of genes capable of discriminating
the lignan treatment from the placebo. Following lignan intervention, a total of 165 DE genes in
high-ENL excreters and 1450 DE genes in low-ENL excreters were detected. Functional analysis
identified four common upstream regulators (master genes): CD3, IFNG, IGF1 and TNFRSF1A.
Our findings suggest that the enhanced conversion of flaxseed lignan to ENL is associated with a
suppressed inflammatory status.

Keywords: human intervention; colon; lignan; enterolactone; secoisolariciresinol; gene expression;
exfoliome

1. Introduction

Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide
and is second in mortality [1] with an estimated 1.9 million new cases and 935,000 deaths
in 2020. Aspects of diet are important risk factors for CRC [1]. Higher intake of dietary
fiber-rich foods is associated with lower CRC risk [2–4]. While dietary fiber itself is strongly
linked to reduction of CRC [5], high-fiber foods also contain lignans that are converted to
bioactive enterolignans, enterodiol (END) and enterolactone (ENL) by gut bacteria. Higher
lignan exposure has also been associated with lower CRC risk in humans and reduced colon
tumorigenesis in animal models [6]. In humans, differences in ENL concentrations in blood
and urine reflect substantial heterogeneity in gut microbial metabolism and the capacity to
convert plant lignans to ENL, suggesting a possible microbial metabolic phenotype [7]. In
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observational studies, it has been difficult to ascertain whether ENL is an active mediator in
disease etiology or a marker of a healthier diet [8]; however, we have shown experimentally
in a controlled feeding study that the capacity to produce ENL in response to low and high
glycemic load diets results in differences in plasma proteome and metabolome pathways [9].
Our findings suggest that better characterization of ENL phenotypes and how they impact
host response may improve precision in optimizing diets for health.

Previously, we conducted a controlled dietary intervention in healthy men and women
to examine the effects of a flaxseed lignan extract on gene expression in colonic epithelium.
Differentially expressed (DE) genes in fecal exfoliated colonocyte RNA (exfoliome) were
detected and there was a significant difference in urinary enterolignan excretion in response
to the lignan intervention [6]. Differential gene expression was also seen between the
two different phenotypes (high and low urinary ENL excretion) without respect to the
intervention. The primary goal of this paper is to determine whether the conversion of
flaxseed lignan to ENL in adult humans is associated with a protective anti-inflammatory
phenotype. Thus, we extended the previous work and more formally evaluated the effects
of the flaxseed lignan supplement on gene expression in stool exfoliated cells in the context
of the high or low urinary ENL excretion phenotype. As a result of this effort, by stratifying
participants using their microbial metabolite phenotype, we noninvasively identified a
novel host gene expression signature that distinguishes host responses to flaxseed lignan
extract between the two ENL excretion phenotypes.

2. Materials and Methods
2.1. Data Source

The details of the study design and data collection procedures are described in
Lampe et al. [6]. Briefly, 42 healthy men and women participated in a 2-period randomized,
crossover intervention comparing a supplemental flaxseed lignan extract (50 mg/d secoiso-
lariciresinol diglucoside; Barlene’s Organic Oils) with a visually identical placebo. Each
intervention period lasted 60 days with a 60-day washout period between interventions.
Participants completed stool and 24-h urine samples at the end of each period. For stool
exfoliome samples, approximately 46 million 50-bp single-end reads were sequenced using
standard Illumina protocols on an Illumina HiSeq 2500 platform at Texas A&M. Urinary
lignans (secoisolariciresinol, END, ENL) were measured by gas chromatography–mass
spectrometry. The observed ENL excretion values at the end of the lignan extract period
were used to identify the participants with two distinct levels of ENL excretion. High
and low urinary ENL excretion phenotypes were defined as the 21 participants above
or the 21 below the median ENL excretion after the lignan extract intervention period
(23.4 µmol/24 h). Host fecal exfoliome samples available for DE analysis after collection, se-
quencing and quality control consisted of: (i) the group of high-ENL participants: 14 lignan
supplement and 13 placebo samples; and (ii) the group of low-ENL participants: 15 lignan
supplement and 12 placebo samples (Table S1).

2.2. Differential Gene Expression Analysis

The study was designed for paired treatment analysis with each participant being
their own control; however, 14 participants lacked either a lignan or placebo sample
after collection, sequencing and quality control (Table S1). Thus, an unpaired analysis
approach was utilized. Outlines of the data pipeline for pre-processing, normalization and
analyses are described in Figure S1. An iterative leave-one-out approach was used to detect
genes exhibiting extreme (outlier) counts [10]. The effect of any outliers was mitigated by
winsorzing the top and bottom 5% of values to the 5th and 95th percentiles, respectively.
RNA-seq data were normalized using the upper-quartile method with edgeR [11]. DE
genes were identified using edgeR-robust [12] in several contrasts. For comparison, lignan
supplement vs. placebo and high-ENL vs. low-ENL excreter contrasts were performed,
along with intervention contrasts (lignan supplement vs. placebo) in each of the ENL
excretion phenotypes. To account for multiple testing, the Benjamini-Hochberg (BH) [13]
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false discovery rate (FDR) procedure was utilized and genes were considered to be DE if
the corresponding corrected p-values were less than 0.05.

2.3. Linear Discriminant Analysis (LDA)

Given that genes interact within a complex regulatory system via their gene products,
it is expected that combinations of several genes could better discriminate phenotypes than
each one of those genes individually [14]. Therefore, we utilized a classification approach
based on LDA to identify multivariate discriminators (based on sets of genes) between
the placebo and lignan intervention, in the context of the ENL phenotypes (low- and
high-ENL excreters). For the purpose of LDA classification, we used a list of 840 a priori
identified genes that relate to the gene-regulatory processes in the human gut (Table S2) and
were also detected in the exfoliome samples [6]. Bolstered error estimation (bresub) was
used to estimate the LDA classification error. Bresub has been used to mitigate problems
associated with classification error estimation when the sample size is limited because error
estimators often have large variance and could be biased [15], and many gene sets may
have optimistically low re-substitution error estimates [16]. In addition, rather than only
counting incorrectly classified points, bresub places a Gaussian kernel at each data point
giving more weight to the points near the classification boundary [15,16]. This approach
provides a list of highly ranked gene sets with respect to bresub estimates of the classifiers
based on those gene sets [14].

Finally, a novel LDA-derived method to build a frequency signature of the two ENL
excretion phenotypes was applied. For the purpose of identifying phenotype-defining gene
signatures, we considered the top 500 performing (with respect to their bresub error) three-
gene LDA classifiers of lignan vs. placebo intervention in the context of each phenotype.
This frequency signature represents, in a condensed format, the importance of a particular
gene in the context of discrimination between the two types of dietary supplementation
(lignan or placebo) for each phenotype.

2.4. Ingenuity Pathway Analysis

To compare the different pathways and upstream regulators of each group, five
different sets of genes were used to generate enriched gene regulatory pathways using the
Ingenuity Pathway Analysis (IPA) software [17]: (1) 165 DE genes for the high-ENL group;
(2) 1450 DE genes for the low-ENL group; (3) 28 DE genes common for both the low and
high-ENL groups; (4) genes in the top ten three-gene LDA classifiers from the high-ENL
group; and (5) genes in the top ten three-gene LDA classifiers from the low-ENL group.

Relevant data sets containing gene identifiers and corresponding measurements were
uploaded into the application. Each gene identifier was mapped onto its corresponding
gene regulatory pathway in Ingenuity’s Knowledge Base. A threshold of 0.05 for the BH
FDR adjusted p-value was set to identify molecules whose expression was significantly
perturbed. These molecules, called Network Eligible molecules, were overlaid onto a
global molecular network developed from information contained in the Ingenuity Knowl-
edge Base. Networks of Network Eligible molecules were then generated based on their
connectivity [17]. IPA Upstream Regulator Analysis was used with relevant datasets to
identify upstream regulators (master genes) that may be responsible for the observed gene
expression changes. IPA uses a z-score algorithm to make predictions designed to reduce
the chance that random data generates significant predictions [17]. Typically, predictions of
activation are made only if the respective z-score is ≥2. Predictions of inhibition are only
made if the respective z-score ≤ −2.

3. Results

Urinary ENL values measured in the post-lignan period (mean ± SD) in the high- and
low-ENL phenotype groups were 61.75 ± 36.42 and 7.46 ± 6.97 µmol/24 h, respectively.
Urinary ENL excretion (24 h) was also statistically significantly higher in the high-ENL
excreters compared to the low-ENL excreters at the end of the placebo intervention (Table 1).
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Table 1. Urinary lignan excretion (over 24 h) of SECO, END and ENL at the end of the placebo and
flaxseed lignan extract period in low- and high-ENL excreters.

Low ENL
Placebo

High ENL
Placebo p Value * Low ENL

Flax
High ENL

Flax p Value *

SECO
(µmol/24 h)

0.48
(0.63)

0.30
(0.36) 0.28 4.37

(4.45)
7.16

(5.71) 0.007

END
(µmol/24 h)

1.27
(3.12)

1.12
(2.46) 0.12 10.83

(15.97)
17.77

(14.15) 0.002

ENL
(µmol/24 h)

3.29
(4.05)

11.83
(19.94) 0.002 7.46

(6.97)
61.75

(36.42) <0.001

Abbreviations: SECO, secoisolariciresinol; END, enterodiol; ENL, enterolactone. Mean (SD) urinary lignan
excretion after each intervention period, stratified by low and high ENL excretion (calculated by median excretion
after flaxseed lignan extract intervention = 23.36 µmol/24 h), n = 42. * t-test comparing log-transformed values
between low- and high-ENL excreters for each intervention (placebo and flaxseed).

3.1. Gene Expression in Stool Exfoliated Cells

Data preprocessing and filtering resulted in the identification of 11,557 genes from
the exfoliated epithelial cell samples that were subsequently used to test for differential
gene expression. Testing for intervention effects in the exfoliated samples based on an
adjusted p < 0.05 identified 165 DE genes (71 downregulated and 94 upregulated) in high-
ENL excreters (Table S3) and 1450 DE genes (1140 downregulated and 310 upregulated)
in low-ENL excreters (Table S4). There were 28 genes in common between the high- and
low-ENL DE genes with the same fold-change directionality (Figure 1); these are identified
in Tables S3 and S4.

Figure 1. Venn diagram of differentially expressed genes following flaxseed lignan extract supple-
mentation in participants exhibiting high and low ENL phenotypes.

3.2. LDA Classification

Our complementary LDA classification focused on finding sets of genes that could
discriminate between the flaxseed lignan extract and placebo intervention diets. We only
considered classifiers based on one gene, two genes, or three genes. This restriction
avoids the potential peaking phenomenon [16], which manifests itself in the increase of the
expected classification rate if larger and larger sets of genes are used to build the respective
classifiers.

Without regard to the ENL phenotype, (i) the top 500 single-gene classifiers exhibited
misclassification errors of 0.4650 or less; (ii) the top 500 two-gene LDA classifiers had
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misclassification errors of 0.2556 or less; and (iii) the top 500 three-gene LDA classifiers had
misclassification errors of 0.223 or less when discriminating between lignan and placebo
intervention (Tables S5–S7).

Within the high-ENL excretion group (Table S1), (i) the top 500 single-gene classifiers
exhibited misclassification errors of 0.4562 or less; (ii) the top two-gene LDA classifiers had
misclassification errors of 0.2272 or less; and (iii) the top 500 three-gene LDA classifiers had
misclassification errors of 0.1675 or less when discriminating between lignan and placebo
intervention (Tables S8–S10).

Within the low-ENL excretion group (Table S1), (i) the top 500 single-gene classifiers
exhibited misclassification errors of 0.4562 or less; (ii) the top 500 two-gene LDA classifiers
had misclassification errors of 0.2208 or less; and (iii) the top 500 three-gene LDA classifiers
had misclassification errors of 0.1770 or less when discriminating between lignan and
placebo intervention (Tables S11–S13).

The top 10 performing one-, two- and three-gene classifiers that discriminated lignan
from placebo intervention in the context of either high- or low-ENL phenotypes are listed
in Table 2; Table 3, respectively. Interestingly, both prostaglandin I2 receptor (PTGIR)
and matrix metallopeptidase 1 (MMP1) participated in the top two high-ENL performing
three-gene classifiers but provided poor classification when considered individually (mis-
classification errors of 0.2626 and 0.3287, respectively) (Table 2). When these two genes
were combined in a two-gene classifier, the misclassification error improved to 0.1568.
Furthermore, with the addition of a third gene, delta-like canonical notch ligand 1 (DLL1),
Wnt family member 5A (WNT5A) or cytochrome P450 family 4 subfamily F member 3
(CYP4F3) error rates dropped to 0.1342, 0.1346 and 0.1375, respectively.

Table 2. Top ten one-, two- and three-gene linear discriminant analysis classifiers in high-ENL
excreters are shown. Highlighted genes were also differentially expressed after flaxseed lignan extract
vs. placebo treatment in high-ENL excreters. “bresub error” indicates the bolstered resubstitution
error for the respective classifier (classifiers are ranked according to that error measurement); “∆ε
bolstered” represents the decrease in error for each gene set relative to its highest ranked subset
of genes.

Gene 1 Gene 2 Gene 3 Bresub Error ∆ε Bolstered

ANXA3 0.2454

NR6A1 0.2498

KCTD12 0.2521

EPHB1 0.2557

PRKCH 0.2573

GCM1 0.2597

PTGIR 0.2626

PROX1 0.2662

DLL1 0.2681

PAX6 0.2687

MMP1 PTGIR 0.1568 0.1058

CYP4F3 PTGIR 0.1721 0.0905

DLL1 PTGIR 0.1729 0.0897

PLS3 PTGIR 0.1741 0.0885

FOXA1 KCTD12 0.1770 0.0751

COX4I1 SLC39A4 0.1785 0.1179

KCTD12 MAPK13 0.1788 0.0733

KCTD12 RBL2 0.1846 0.0675
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Table 2. Cont.

Gene 1 Gene 2 Gene 3 Bresub Error ∆ε Bolstered

NR6A1 PTGIR 0.1847 0.0651

VDR KCTD12 0.1848 0.0674

NRCAM GCM1 MMP1 0.1157 0.1066

NRCAM MMP1 PLD3 0.1282 0.0920

CA14 GCM1 MMP1 0.1291 0.0932

OTUB1 CYP4F3 PTGIR 0.1296 0.0425

GCM1 MMP1 PECAM1 0.1298 0.0924

BMP4 GCM1 MMP1 0.1331 0.0740

COX4I1 FOXO3 SLC39A4 0.1340 0.0445

DLL1 MMP1 PTGIR 0.1342 0.0226

MMP1 PTGIR WNT5A 0.1346 0.0222

CYP4F3 MMP1 PTGIR 0.1375 0.0193
Highlights indicate differentially expressed genes following flaxseed lignan extract vs. placebo treatment in
high-ENL excreters.

Within the low-ENL phenotype, GDP-L-fructose synthase (TSTA3) and septin 4
(SEPTIN4) were in the top three-gene classifiers but performed poorly as single-gene
classifiers with misclassification errors of 0.4744 and 0.4457, respectively (Table 3). When
combined into a two-gene classifier, the error improved to 0.1773 and with the addition of
cadherin 3 (CDH3), niban apoptosis regulator 1 (FAM129A) or RELA proto-oncogene, NF-
kB subunit (RELA) error rates decreased to 0.1427, 0.1450 and 0.1537, respectively. Figure 2;
Figure 3 show the top performing three-gene classifiers for both ENL phenotypes used for
classification within the entire data set and within only the samples of the respective ENL
excretion phenotype.

The LDA classifiers based on three genes contained 304 distinct genes, with 122 unique
to high-ENL excreters and 97 unique to low-ENL excreters (Figure 4).

Within the top three-gene classifiers for the high-ENL group, PTGIR was present in
56%, MMP1 was present in 29%, potassium channel tetramerization domain containing 12
(KCTD12) was present in 23% and CYP4F3 was present in 11% of the gene sets, but none
of these classifiers were significantly DE (FDR adjusted p-value < 0.05). Within the top
three-gene classifiers for the low-ENL group, SEPTIN4 was present in 18% and RELA was
present in 16% of the top classifiers but neither gene was significantly DE (FDR adjusted
p-value < 0.05). The frequency of occurrence of genes in the top 500 classifiers is listed in
Table S14. We subsequently constructed a histogram of the gene frequencies, including
signatures specific to each ENL phenotype in response to the lignan intervention (Figure 5).
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Table 3. Top ten one-, two- and three-gene linear discriminant analysis classifiers in low-ENL excreters
are shown. Highlighted genes were also differentially expressed after flaxseed lignan extract vs.
placebo treatment in low-ENL excreters. “bresub error” indicates the bolstered resubstitution error for
the respective classifier (classifiers are ranked according to that error measurement); “∆ε bolstered”
represents the decrease in error for each gene set relative to its highest ranked subset of genes.

Gene 1 Gene 2 Gene 3 Bresub Error ∆ε Bolstered

ANXA3 0.2454

NR6A1 0.2498

KCTD12 0.2521

EPHB1 0.2557

PRKCH 0.2573

GCM1 0.2597

PTGIR 0.2626

PROX1 0.2662

DLL1 0.2681

PAX6 0.2687

ANGPTL4 RELA 0.1702 0.0164

SEPTIN4 TSTA3 0.1773 0.1020

ISL1 TSTA3 0.1799 0.1111

ANGPTL4 GJB1 0.1803 0.0063

NFKB1 TRAFD1 0.1824 0.1428

NFKB1 TSTA3 0.1835 0.1076

ANGPTL4 TSTA3 0.1861 0.0005

PECAM1 TSTA3 0.1862 0.0990

BCL2 ANGPTL4 0.1871 0.2701

NFKB1 PROX1 0.1906 0.1360

CDH3 SEPTIN4 TSTA3 0.1427 0.0346

PLA2G10 HOXA13 ULK1 0.1429 0.0779

PLA2G10 HOXA13 MAML1 0.1429 0.0779

FAM129A SEPTIN4 TSTA3 0.1450 0.0323

CACNB4 RELA TSTA3 0.1465 0.0708

NANOG RELA TSTA3 0.1468 0.0639

CYP4F3 HOXA13 KCTD17 0.1523 0.0685

POR NFKB1 TRAFD1 0.1537 0.0288

RELA SEPTIN4 TSTA3 0.1537 0.0237

WNT4 RELA TSTA3 0.1540 0.0565
Highlights indicate differentially expressed genes following flaxseed lignan extract vs. placebo treatment in
high-ENL excreters.
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Figure 2. The top performing high-ENL phenotype three-gene classifier based on MMP1, GCM1
and NRCAM expression: (a) high-ENL participants only (13 placebo, 14 lignan); (b) all participants
(25 placebo, 29 lignan).
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Figure 3. The top performing low-ENL phenotype three-gene classifier based on TSTA3, SEPTIN4
and CDH3 expression: (a) low-ENL participants only (12 placebo, 15 lignan); (b) all participants
(25 placebo, 29 lignan).
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Figure 4. Venn diagram representing individual genes used to generate the top 500 LDA three-gene
classifiers for each ENL phenotype.

Figure 5. Genes with a frequency of 5% or higher in the top 500 LDA classifiers from flaxseed lignan
vs. placebo intervention in each of the two ENL phenotypes. Gene frequencies were determined by
their appearance in the top (with respect to their bresub error) 500 LDA three-gene classifiers.

3.3. IPA Functional Analysis

IPA analysis was used to identify upstream regulators. The high-ENL exfoliome
phenotype exhibited predicted activation of one upstream regulator and inhibition of
2 of 119 potential upstream regulators. The low-ENL exfoliome phenotype exhibited
predicted activation of 50 upstream regulators and inhibition of 20 of 327 potential upstream
regulators. Out of the 119 high-ENL and 327 low-ENL potential upstream regulators,
there were only 14 common potential upstream regulators identified for both phenotypes.
Eight of the common potential upstream regulators did not have z-score values listed for
one or both ENL phenotypes, three had z-scores indicating the same directionality and
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the remaining three had z-scores indicating different directionality. Following flaxseed
intervention, only four common upstream regulators had z-scores that predicted activation
(z-score ≥ 2) or inhibition (z-score ≤ −2) (Table 4), e.g., interferon gamma (IFNG), tumor
necrosis factor receptor superfamily member 1A (TNFRSF1A), insulin-like growth factor 1
(IGF1) and cluster of differentiation 3 (CD3) (Figures 6–9 and S2 and Table 4).

Table 4. Putative upstream regulators showing activation or inhibition in high- ENL and/or low-ENL
excreters. The upstream regulators are ordered by difference in the high-ENL activation z-score and
low-ENL activation z-score.

Upstream
Regulator Molecule Type Phenotype Predicted

Activation State
Activation

z-Score
Target Molecules

in Dataset

IFNG cytokine High ENL Inhibited −2.094 CD63, DPP4, F11R, GLDN, IFNGR2,
MYH10, NOTCH3, RARRES1, RHOB

IFNG cytokine Low ENL Activated 3.343

ACE, ADCY5, ADGRG2, ADRA2A, AGER,
ANGPTL4, APOBEC3G, APOL1, ATM,
ATP2A2, BLNK, CASP4, CCL3, CDH5,
CDK2, CFB, CFLAR, CHRNG, CIITA,

COL1A1, COL1A2, CRIM1, CSF1, CSF2RB,
CTSC, CXCL1, CXCL11, CYRIA, DEPP1,

DUOX2, EDN1, EGR3, ELK1, ETV7,
FANCF, FCGR3A/FCGR3B, FKBP5, FTX,

GAL3ST1, GBP2, GNAO1, GNG7, HDAC9,
HERC6, HLADMA, ICAM1, IFI16, IGF1,

IGF1R, IL1R1, IL1RN, IL3RA, IL4R, IREB2,
ISL1, ITPR1, JAG1, JAK3, KYNU, LCP2,
LY75, LYN, MAP2, MITF, MMP1, MSH2,

MX2, MYH10, NEURL3, NFE2L3, NFKB1,
NLRP3, NOS2, P2RY14, PAPPA, PECAM1,
PHF11, PIM2, PLA2G7, PLAAT3, PSME2,

PTAFR, QPRT, RAE1, RUNX3, SCIMP,
SCLY, SCNN1B, SCUBE1, SEPTIN4,

SLC1A2, SNAP25, SOCS3, TIMP3, TLR2,
TNFAIP2, TNFRSF12A, TSC22D3, UBA2,

VRK2

CD3 complex High ENL −1.342 AARS1, DPP4, GDI2, IGFBP5, PTPRC,
RHOH, RNF103, SMS, TXNRD1

CD3 complex Low ENL Activated 2.802

ANAPC1, ATM, ATP8A2, CCL3, CD28,
CDK2, CFLAR, CRB1, EGR3, EIF4A3,
FHIP2A, FYB1, FYN, GFUS, HSPE1,

HUWE1, ICAM1, IGF1, IL1R1, IL4R, ITPR1,
JAK3, KATNA1, LONP1, LYN, NAIP,
NFKB1, NKTR, NOS2, NPM1, PDE4B,

PREP, PTPN7, PTPRC, REL, RPS3A,
SLC26A5, SLC7A1, SOCS3, SRSF1, TGM2,

TLR2, TNFRSF9, TXNRD1, ZNF140

TNFRSF1A trans- membrane
receptor High ENL 1.091 KNTC1, POU2AF1, SAA1, TLCD4

TNFRSF1A trans- membrane
receptor Low ENL Activated 2.758 CFLAR, CXCL1, ICAM1, IGF1, MMP1,

NOS2, RGS7, SOCS3, TLCD4

IGF1 growth
factor High ENL Activated 2.172 CATSPER2, GRIN2B, IFNGR2, IGFBP5,

PPP3CA, PTPRC

IGF1 growth
factor Low ENL 1.828

AKR1B1, APH1A, ATM, CDK2, CFLAR,
CNN1, COL16A1, COL1A1, COL1A2,
CSF1, EDN1, GRIN2B, ICAM1, IGF1,

IGF1R, IGF2, IL1R1, IL3RA, IL4R, LOXL2,
MGA, MMP1, NOS2, PAPPA, PTPRC,

RTKN2, RYR2, SLC12A4, SLC12A5, SOCS3,
TGM2, TNFRSF12A, TTF2, WNT4, XBP1
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Figure 6. Differentially expressed genes (FDR adjusted p-value < 0.05) contributing to the identifi-
cation of the upstream regulator, interferon gamma (IFNG), following lignan flaxseed intervention:
(a) predicted inhibition of IFNG in high-ENL excreters (z-score −2.094); (b) predicted activation of
IFNG in low-ENL excreters (z-score 3.343). The full network of genes contributing to activation of
IFNG in low-ENL excreters is described in Supplemental Figure S2.

IFNG, CD3 and TNFRSF1A exhibited predicted activation in low-ENL excreters with
z-scores of 3.317, 2.802 and 2.758, respectively. In contrast, IFNG exhibited predicted inhibi-
tion (z-score −2.094) in high-ENL and IGF1 exhibited predicted activation (z-score 2.172)
in the context of high-ENL phenotype. In addition, there was no statistically significant
effect of lignan supplementation on CD3 status in low-ENL excreters (z-score −1.342). Each
upstream regulator was associated with different sets of genes in each phenotype that
contributed to the IPA predictions. In the case of IFNG, both phenotypes shared increased
expression of myosin heavy chain 10 (MYH10). In TNFSF1A, both phenotypes shared
decreased expression of TLC domain containing 4 (TLCD4). In IGF1, both phenotypes
shared increased expression of glutamate ionotropic receptor NMDA type subunit 2B
(GRIN2B) and protein tyrosine phosphatase receptor type C (PTPRC), and in CD3 both
phenotypes also shared decreased expression of PTPRC.
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Figure 7. Differentially expressed genes (FDR adjusted p-value < 0.05) contributing to the identifica-
tion of the upstream regulator, cluster of differentiation 3 (CD3) following lignan flaxseed intervention:
(a) no statistically significant effect in high-ENL excreters (z-score −1.342); (b) predicted activation of
CD3 in low-ENL excreters (z-score 2.802).

Figure 8. Differentially expressed genes (FDR adjusted p-value < 0.05) contributing to the identifi-
cation of upstream regulator, TNF superfamily receptor 1A (TNFRSF1A) following lignan flaxseed
intervention: (a) no statistically significant effect in high-ENL excreters (z-score 1.091); (b) predicted
activation of TNFSF1A in low-ENL excreters (z-score 2.758).



Nutrients 2022, 14, 2377 14 of 17

Figure 9. Differentially expressed genes (FDR adjusted p-value < 0.05) contributing to the identifica-
tion of upstream regulator, Insulin like growth factor 1 (IGF1) following lignan flaxseed intervention:
(a) predicted activation of IGF1 in high-ENL excreters (z-score 2.172); (b) no statistically significant
effect in low-ENL excreters (z-score 1.828).

4. Discussion

Our current findings indicate that systematic analysis of the effects of dietary flaxseed
lignan intervention stratified by ENL-excretion yields additional insight into the contri-
butions of the microbial metabolite phenotype with respect to host gene expression. In
our previous analysis [6], we computed the effects of flaxseed lignan on gene expression
in all 42 participants, regardless of their ENL phenotype, and subsequently compared
gene expression between the two ENL phenotypes without consideration of the lignan
intervention. Overall, that analysis showed that in response to lignan intervention, there
were 973 genes in the exfoliome that exhibited a significant difference (DE with FDR ad-
justed p-value < 0.05); 32 passed the variance filter and were also identified by 2-gene
LDA with a bolstered resubstitution error < 0.227. Gene ontology analysis indicated the
enrichment of several genes involved in mucosal barrier function and/or cancer—for
example, translocation-associated membrane protein 1 (TRAM1), interleukin 18 (IL-18),
homeobox A10 (HOXA10), hes family bHLH transcription factor 1 (HES1), ATP binding
cassette subfamily A member 5 (ABCA5), ASXL transcriptional regulator 2 (ASXL2), cAMP
responsive element binding protein 3 like 3 (CREB3L3), eukaryotic translation initiation
factor 5 (EIF5), iron responsive element binding protein 2 (IREB2) and nuclear receptor
coactivator 2 (NCOA2). Examination of differences between the low- and high-ENL pheno-
types, without consideration of intervention period, suggested that low-ENL excreters were
predisposed to proinflammatory events due to the upregulation of nuclear factor kappa
B (NF-κB) [18] and nitric oxide synthase 2 (NOS2) [19] and inhibition of the peroxisome
proliferator-activated receptor-gamma (PPARγ) [20] network.

In contrast, herein we examined the effect of lignan intervention in the context of
the ENL-phenotype and observed that ABCA5, CREB3L3, HES1, PPARγ, ASXL2 and
NCOA2 were not DE (FDR adjusted p-value < 0.05), while EIF5, HOXA10, TRAM1, IREB2
were downregulated and NFKB1 and NOS2 were upregulated in response to the lignan



Nutrients 2022, 14, 2377 15 of 17

intervention for low-ENL excreters only. Overall, low-ENL excreters had approximately
9-fold as many DE genes in response to the lignan extract. This finding suggests that there
was a more pronounced effect of the dietary intervention on host gene expression within
the group of low-ENL excreters. Few DE genes (n = 24) with the same directionality in
response to the intervention were shared by the two phenotypes, suggesting this phenotype
could be important in determining if a dietary intervention is beneficial to an individual
(Figure 1). The differences in upstream regulators identified by the IPA analysis further
support important differences between the phenotypes. On several levels, the exfoliome
RNA-seq data suggest that key pathways important to cell proliferation, apoptosis and
immunomodulation are differentially regulated. For example, high-ENL excreters exhibited
activation of the upstream regulator IGF1 and inhibition of IFNG, while low-ENL excreters
exhibited activation of IFNG, TNFRSF1A and CD3. For each of these upstream regulators,
different gene sets contributed to the predicted activation/inhibition in the two phenotypes
(Table 4). Gene ontology analysis also indicated that IFNG, TNFRSF1A and CD3 are
involved in the positive regulation of tyrosine phosphorylation of STAT proteins, which are
known to be involved in cancer and inflammation [21]. In addition, IPA identified IFNG as
an upstream regulator for the genes participating in the top LDA classifiers DLL1, KCTD12,
WNT5A, MMP1 in high-ENL and RELA and SEPTIN4 in low-ENL excreters. This striking
pattern indicates that IFNG regulates sets of genes that can discriminate between the two
phenotypes following lignan intervention, with low-ENL excreters exhibiting activation of
this upstream regulator (Figures 6 and S2). This is noteworthy because interferon gamma,
in part produced by CD3 positive T cells and TNFRSF1A, are proinflammatory mediators
that play a regulatory role in inflammation and immune response [22,23].

The results of the LDA classification (Tables S5–S13) underscore the difference in
response to lignan extract supplementation within each ENL excretion phenotype. In
general, comparison of LDA classification to DE analysis identified a significant number of
genes that perform very well when participating in the multivariate LDA analysis while
not being significantly DE. Thus, our novel analysis based on the frequency distribution of
exfoliome-derived genes in the top LDA three-gene classifiers provides additional insight
into the host response to specific ENL phenotypes. The unique frequency signature of each
ENL phenotype emphasizes the importance of considering ENL-excretion status when
attempting to discriminate between host responsiveness to placebo and lignan treatments
(Table S14). Importantly, the frequency distributions show that there is no overlap between
the set of the top five genes that were present in at least 10% of the top 500 three-gene
LDA classifiers in the low- and high-ENL phenotypes. Finally, the LDA gene frequency
signatures allowed us to detect potentially important genes not detected by the traditional
univariate DE analysis.

In our study population, there were no baseline differences in demographic and
lifestyle factors between individuals classified as low- and high-ENL excreters [6,24]. Gen-
erally, in cross-sectional, observational studies, factors that affect ENL measures include
intake of lignan-rich foods, antibiotic use, body mass index, smoking, sex and age [7].
Interpretation of cross-sectional data is difficult insofar as intake of plant lignans, the
ENL-precursors, varies considerably across individuals, often influenced by food choices
based on ethnicity, sex and socioeconomic status. If exposure to plant lignans is low, the
production and excretion of ENL is likely to be low. Consequently, higher ENL excretion
is often associated with a high-fiber diet because it reflects exposure to the plant lignans
in the high-fiber foods. Here, by phenotyping the participants using a dose of SDG that
far exceeds habitual intake, we were able to characterize the capacity of the microbiome
to produce ENL. We detected significant associations between ENL excretion at the end
of lignan intervention and fecal microbial community composition at baseline and the
end of both placebo and lignan intervention periods [6], reflecting the known role of the
microbiome in ENL production [7].

Gut microbial community metabolism strongly contributes to heterogeneity of metabo-
lite exposure experienced by the host and is an important factor in refining precision nutri-



Nutrients 2022, 14, 2377 16 of 17

tion [25]. Our consideration of a microbial metabolite phenotype, i.e., low- and high-ENL
excreter, demonstrates the importance of applying metabolite-based stratification to studies
of response to diet. In the context of tailoring dietary recommendations to individuals,
the strengths of this study include the use of non-invasive-transcriptomic analyses in the
context of a randomized, placebo-controlled crossover design in the parent study and
supplementation with a high dose of SDG, which allowed for identification of differences in
ENL production. The small sample size somewhat limits power for the stratified analysis.
Nonetheless, the robust differences (adjusted for multiple comparisons) in intervention
response between ENL phenotypes suggest that differences in exposure of the host to ENL
and/or the associated microbial metabolism have measurable effects on the modulation of
pathways important in immune function and inflammation.

5. Conclusions

We have demonstrated that the conversion of flaxseed lignan to ENL in adult humans
is associated with a protective anti-inflammatory phenotype. This finding suggests that
lignan-derived microbial metabolites are more biologically active than their precursors.
Further characterization of the ENL phenotype is required to determine how phenotypic
differences in biologic responses mediate risk of CRC and other diseases and will provide
further insight for precision nutrition initiatives.
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