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Driven by the recent advances of next generation sequencing (NGS) technologies and an urgent need to
decode complex human diseases, a multitude of large-scale studies were conducted recently that have
resulted in an unprecedented volume of whole transcriptome sequencing (RNA-seq) data, such as the
Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA). While these data offer
new opportunities to identify the mechanisms underlying disease, the comparison of data from different
sources remains challenging, due to differences in sample and data processing. Here, we developed a
pipeline that processes and unifies RNA-seq data from different studies, which includes uniform
realignment, gene expression quantification, and batch effect removal. We find that uniform alignment and
quantification is not sufficient when combining RNA-seq data from different sources and that the removal
of other batch effects is essential to facilitate data comparison. We have processed data from GTEx and
TCGA and successfully corrected for study-specific biases, enabling comparative analysis between TCGA
and GTEx. The normalized datasets are available for download on figshare.

Design Type(s)
data integration objective • source-based data analysis objective • gene
expression analysis objective

Measurement Type(s) Tissue-Specific Gene Expression

Technology Type(s) computational analysis of gene expression

Factor Type(s) Data Source • animal body part

Sample Characteristic(s)
Homo sapiens • breast • cortex of kidney • esophagus • liver • lung •
prostate gland • saliva-secreting gland • sigmoid colon • stomach •
thyroid gland • transverse colon • urinary bladder • uterine cervix • uterus
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Background & Summary
RNA sequencing (RNA-seq) is an important tool for understanding the genetic mechanisms underlying
human diseases. Large-scale sequencing studies have recently generated a great wealth of RNA-seq data.
For example, The Cancer Genome Atlas (TCGA) has quantified gene expression levels in >8000 samples
from >30 cancer types. On a similar scale, the Genotype Tissue Expression (GTEx) project1,2, has
catalogued gene expression in >9,000 samples across 53 tissues from 544 healthy individuals.

These resources offer a unique opportunity to gain better insight into complex human diseases.
However, the integrative analysis of these data across studies poses great challenges, due to differences in
sample handling and processing, such as sequencing platform and chemistry, personnel, details in the
analysis pipeline, etc. For example, the RNA-seq expression levels of the majority of genes quantified are
in the range of 4-10 (log2 of normalized_count) for TCGA, and 0-4 (log2 of RPKM) for GTEx
(Supplementary Fig. S1A), a consequence of the use of different analysis pipelines. This makes gene
expression levels from the two projects not directly comparable.

To facilitate research on abnormal gene expression in human diseases, a variety of databases and
pipelines have been developed to combine RNA-seq from different studies3–10. However, these databases
or pipelines either directly incorporated expression data from the literature, retaining unwanted batch
effects in the data7,8, or only combined and reanalyzed samples from smaller studies, hence, not taking
advantage of the power provided by the recent large data sets3–6,10. A recently published pipeline, the Toil
RNA-seq Pipeline11, attempts to unify RNA-seq data from different sources by uniformly processing raw
sequencing reads. However, Toil does not remove batch effects that are introduced by sources other than
the differences in read alignment and quantification. To take full advantage of the large volume of
available RNA-seq data, an integrative RNA-seq resource is necessary.

Here, we developed a pipeline for processing and unifying RNA-seq data from different studies. By
unifying data from GTEx and TCGA, we provide reference expression levels across the human body for
comparison with the expression levels found in human cancer. Our method removes batch effects by
uniformly reprocessing RNA-seq data. Specifically, we used raw sequencing reads of the RNA-seq
samples downloaded from GTEx and TCGA, realigned them, re-quantified gene expression, and then
removed biases specific to each study.

Methods
RNA-seq data
Raw paired-end reads of the RNA-seq samples for the TCGA project were retrieved from the Cancer
Genomics Hub (CGHub, https://cghub.ucsc.edu). When FASTQ files were not available, e.g., for stomach
adenocarcinoma, we downloaded aligned sequence reads (in BAM format) and extracted reads from
BAM files with the Java program ubu.jar (https://github.com/mozack/ubu) before processing samples
using our pipeline. GTEx samples were downloaded from the Database of Genotypes and Phenotypes
(dbGaP, http://www.ncbi.nlm.nih.gov/gap), which hosts >9,000 RNA-seq samples (in SRA format) for
the GTEx study.

Analysis pipeline
Our analysis pipeline included realignment of raw reads, removal of degraded samples, expression
quantification, and batch effect processing (Fig. 1).

We employed STAR aligner12, a fast accurate alignment software used widely in the NGS community,
to map reads to UCSC human reference genome hg19 and reference transcriptome GENCODE (v19),
using recommended parameters, e.g., ‘—outFilterType BySJout’ and ‘—outFilterMultimapNmax 20’, etc.,
which are also standard options of the ENCODE project for long RNA-seq pipeline. Samples with
alignment rates less than 40% were excluded from further analysis.

The software tools FastQC, Picard (http://picard.sourceforge.net/index.shtml), RseQC13, and mRIN14

were used to evaluate sample quality. RNA degradation, as detected by mRNA, was present in some
GTEx and TCGA samples. Since degradation can bias expression level measurements and cause data
misinterpretation, we decided to exclude samples with evidence for degradation. To determine an
appropriate degradation cutoff for mRIN, we used prostate cancer samples from the TCGA project,
which had undergone extensive pathological, analytical, and quality control review and which had been
shown to include a significant portion of degraded samples15. We used -0.11 as the degradation threshold
for mRIN: samples with mRINo�0.11 were regarded as degraded and, thus, excluded from further
analysis.

To verify mRIN’s performance on other tissues, we manually examined coverage uniformity over gene
bodies for other tissues using the tool RseQC13 and compared it with mRIN scores. We calculated the
number of reads covering each nucleotide position and the average coverage for all long genes (>4000 nt).
Supplementary Fig. S3 shows the average coverage for TCGA prostate and bladder samples, each curve
representing gene body coverage of a sample. In Supplementary Fig. S3A, the 4 samples with the most
uneven coverage are the ones deemed degraded. We made similar observations in the other tissues
examined, e.g., bladder in Supplementary Fig. S3B, where the samples with the most imbalanced gene
body coverage were the ones with the lowest mRIN scores. These results confirmed that mRIN is capable
of measuring degradation for other tissues.
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When running STAR, we specified an option ‘—quantMode TranscriptomeSAM’ to make STAR
output a file, Aligned.toTranscriptome.out.bam, which contains alignments translated into transcript
coordinates. This file was then used with RSEM16 to quantify gene expression. The program ‘rsem-
calculate-expression’ in the RSEM package requires strand specificity of the RNA-seq sample, which is
estimated using RseQC13.

We also used the transcript quantification tool FeatureCounts17 to generate integer-based read counts.
Overall, the output of FeatureCounts was highly consistent with that of RSEM (Spearman correlation >
0.95). However, for genes with multi-mapping reads (i.e., reads mapped to multiple genes),
FeatureCounts differs from RSEM and tends to underestimate expression levels in comparison with
RSEM (because it discards multi-mapping reads). For example, the transcript of the PGA3 gene, which
encodes the human pepsinogen A enzyme, which is highly abundant in the stomach, is identical to the
transcripts of two other genes, PGA4 and PGA5. Its measurement in stomach by FeatureCounts (in
default settings) is generally lower than that by RSEM (see Supplementary Fig. S4). In the section
Technical Validation below, we primarily used results by RSEM.

We ran ComBat in the R package SVAseq18,19 to correct for non-biological variation accounting for
unwanted differences between GTEx and TCGA samples of a particular tissue type. To ensure that TCGA
normal samples remain comparable with TCGA tumors after removing batch biases from the normal
samples, we processed TCGA tumors in the same way as the normal samples using our pipeline from raw
sequencing reads. Both TCGA tumors and normal samples were adjusted together by including them in
the same sample-gene matrix. In Supplementary Table S2, we used bladder and lung as examples to show
the parameters we used to run ComBat (parameters used for other tissues are provided in a configuration
file at https://github.com/mskcc/RNAseqDB/blob/master/configuration/tissue-conf.txt). As indicated in
Supplementary Table S2, we treated all TCGA samples, both tumors and normal samples (of the same
tissue type), as one batch. ComBat requires the creation of a model matrix to indicate the variables to be
adjusted and variables of interest. In our model matrix, as shown in Supplementary Table S2, batch is
treated as an adjustable variable and tumor / normal indicator a variable of interest.

Principal component analysis
To perform principal component analysis, we first remove genes with invariant expression levels and then
log2-transformed the sample-gene matrix. Next, we utilized the R function ‘prcomp’ (with the ‘center’
option set to TRUE) to perform principal component analysis. The two-dimensional PCA plot was
created using the R function ‘autoplot’.

Hierarchical clustering
For hierarchical clustering of expression data, we used the R function Heatmap.3 using default
parameters (e.g., distance: Euclidean, hierarchical clustering method: Ward, etc.) as well as the 1000 most
variable genes in the data matrix.

Code availability
The detailed parameters we used to run STAR, RSEM and other tools and the codes of our pipeline are
available at GitHub (https://github.com/mskcc/RNAseqDB). The versions of the tools, e.g., STAR and
RSEM, are described in a README file at https://github.com/mskcc/RNAseqDB/blob/master/README.
md.

Data Records
The data generated using our pipeline is available on figshare (Data Citation 1,Data Citation 2, and Data
Citation 3).

Data record 1
The maximum likelihood gene expression levels computed using RSEM, i.e., the expected_count in
RSEM’s output, are in Data Citation 1. This dataset includes 52 data files, each being a sample-gene
matrix of a certain tissue type (see Table 1 for the tissues we processed). This dataset can be provided to
programs such as edgeR for identifying differentially expressed genes.

Figure 1. Uniform processing of RNA-seq data from GTEx and TCGA.
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Data record 2
The gene expression levels calculated from the FPKM (Fragments Per Kilobase of transcript per Million)
in RSEM’s output are in Data Citation 2. This dataset (of data files) was quantile normalized, but not
corrected for batch effects.

GTEx tissue / TCGA cancer type GTEx TCGA normal TCGA tumor Total

bladder / blca 11 19 411 441

breast / brca 218 114 1112 1444

cervix / cesc 11 3 304 318

uterus / ucec 90 24 180 294

uterus / ucs 0 57 57

colon-sigmoid / read 173 10 94 277

colon-transverse / coad 203 41 295 539

liver / lihc 136 50 371 557

salivary gland / hnsc 70 44 520 634

esophageal / esca 790 11 185 986

prostate / prad 119 52 497 668

stomach / stad 204 35 415 654

thyroid / thca 355 59 505 919

lung / luad 374 59 528 961

lung / lusc 51 504 555

kidney cortex / kirc 36 72 541 649

kidney cortex / kirp 32 290 322

kidney cortex / kich 25 66 91

Total 2790 701 6875 10366

Table 1. GTEx and TCGA RNA-seq samples processed by our pipeline. Only paired-end RNA-seq
samples were included.
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Figure 2. Effect of uniform processing and batch effect removal on gene expression levels in GTEx and

TCGA. Two-dimensional plots are shown of principal components calculated by performing PCA of the gene

expression values of bladder, prostate, and thyroid samples from GTEx and TCGA. (a) PCA of the level 3 data,

i.e., the expression data from GTEx and TCGA. GTEx expression data was quantile normalized (see

Supplementary Fig. S1B). (b) PCA of the expression data after uniform processing through our pipeline, before

batch bias correction. (c) PCA of the expression data after uniform processing through our pipeline, after batch

bias correction.
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Data record 3
The normalized gene expression levels (FPKM) are in Data Citation 3. This dataset was not only quantile
normalized, but was corrected for batch effects (using ComBat).

Technical Validation
To allow proper batch bias correction, we processed only samples from tissues that were studied by both
GTEx and TCGA (Table 1). Tissues with no or insufficient numbers of normal samples available in
TCGA (e.g., sarcoma, ovarian cancer, melanoma) were not processed (supplementary Table S1).

We downloaded and processed raw paired-end RNA-seq data from 10,366 samples, including 2,790
from GTEx and 7,576 from the TCGA project (Table 1). 831 samples (8%) exhibited 5′ degradation (as
described previously15) and were excluded from further analysis. We also discarded samples with low
alignment rates and samples not used in the final GTEx study, resulting in a total of 9109 (89%) high-
quality samples for further analysis.

To correct for batch biases, we first created a sample-gene matrix for each tissue-tumor pair by
merging gene expression levels of the corresponding GTEx and TCGA samples. Regardless of the actual
batch that a sample belonged to in an RNA-seq experiment, we treated all GTEx samples as one batch
and TCGA samples as another. Then, we ran ComBat18 to correct for non-biological variation accounting
for unwanted differences between GTEx and TCGA samples of a particular tissue type (see Methods).

To examine how well our pipeline was able to correct study-specific batch effects, we systematically
compared the effects of uniform realignment, expression quantification, and batch effect correction for
three tissues: bladder, prostate and thyroid. When using expression levels reported by the TCGA and
GTEx projects, even after applying upper-quartile normalization to bring expression levels into
comparable ranges (Supplementary Fig. S1B), samples from the same study were more similar to each
other than samples from the same tissue, as shown by PCA analysis (Fig. 2a). This result indicates the
necessity to uniformly reprocess RNA-seq samples.

However, uniform realignment and expression quantification using our pipeline did not fully resolve
these differences; while the first principal component was now the tissue, the second principal component
was still defined by the source (Fig. 2b), indicating that study-specific biases still accounted for significant
variation in RNA-seq expression levels within each tissue type. This result shows that consistent
realignment and expression quantification alone are not sufficient, and that further study-specific batch
effects need to be removed in order to be able to compare expression data from TCGA and GTEx.

To this end, we next added a batch-effect correction step to our pipeline, using ComBat18

(see Methods), which successfully corrected our example data and resulted in clustering by tissue type
(Fig. 2c).
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& batch effect removal
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Figure 3. Hierarchical clustering of GTEx and TCGA bladder, prostate, and thyroid data shows the effect

of uniform processing and batch effect correction. (a) level 3 expression data from GTEx and TCGA; (b)

gene expression calculated using our pipeline prior to batch bias correction; (c) our expression data after batch

bias correction.
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Figure 4. Normalized expression across tissue and cancer types for three known cancer genes: ERBB2,

IGF2 and TP53.
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To determine whether uniform alignment and expression quantification was an essential step, or
whether batch effect removal via ComBat by itself was sufficient, we also applied ComBat directly to the
level 3 data from GTEx and TCGA (GTEx-quantified data was rescaled using quantile normalization).
We found that batch effect removal by itself is not sufficient, and that the combination of uniform
processing of sequencing reads followed by additional batch effect removal is required to make data from
the TCGA and GTEx projects comparable (Supplementary Fig. S2). We validated the expression
similarities observed in the principal component analysis through hierarchical clustering (Fig. 3).

Our results demonstrate that uniform realignment and expression quantification, together with
explicit correction for study-specific biases, are not only effective, but also necessary for removing batch
effects and making samples from different studies comparable.

The bladder is more proximal (and developmentally closer) to prostate than to thyroid, and this tissue
proximity is reflected in Fig. 2c. If three distal tissues, such as breast, lung, and liver, are used, the clusters
representing the three biological subgroups will be more separated accordingly in the principle
component analysis (Supplementary Fig. S5).

Here, we corrected batch biases for each tissue separately. We also evaluated a different strategy to
remove batch biases between TCGA and GTEx as a whole. For the three tissue types processed through
our pipeline, we used all TCGA normals as one batch and GTEx normals as another batch to run
ComBat. Our preliminary analysis showed this strategy was not effective in making RNA-seq samples
from the two studies comparable (Supplementary Fig. S6).

Finally, we examined the expression levels of three cancer driver genes, ERBB2, IGF2, and TP53, in our
batch-effect corrected data (Fig. 4). ERBB2 expression was significantly higher in a subset of tumor
samples, consistent with the frequent amplifications observed in various tumor types. IGF2 showed a
similar pattern, with a subset of tumor samples expressing the gene at levels several orders of magnitude
higher than those in normal samples. TP53, on the other hand, is often affected by truncating mutations
in cancer, which leads to decreased levels of RNA due to nonsense-mediated decay, an effect that is visible
in the normalized RNA data.
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