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Highly efficient neuromorphic
learning system of spiking
neural network with
multi-compartment leaky
integrate-and-fire neurons
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School of Electrical and Information Engineering, Tianjin University, Tianjin, China

A spiking neural network (SNN) is considered a high-performance learning

system that matches the digital circuits and presents higher efficiency due

to the architecture and computation of spiking neurons. While implementing

a SNN on a field-programmable gate array (FPGA), the gradient back-

propagation through layers consumes a surprising number of resources. In

this paper, we aim to realize an efficient architecture of SNN on the FPGA

to reduce resource and power consumption. The multi-compartment leaky

integrate-and-fire (MLIF) model is used to convert spike trains to the plateau

potential in dendrites. We accumulate the potential in the apical dendrite

during the training period. The average of this accumulative result is the

dendritic plateau potential and is used to guide the updates of synaptic

weights. Based on this architecture, the SNN is implemented on FPGA

efficiently. In the implementation of a neuromorphic learning system, the shift

multiplier (shift MUL) module and piecewise linear (PWL) algorithm are used

to replace multipliers and complex nonlinear functions to match the digital

circuits. The neuromorphic learning system is constructed with resources

on FPGA without dataflow between on-chip and off-chip memories. Our

neuromorphic learning system performs with higher resource utilization and

power efficiency than previous on-chip learning systems.

KEYWORDS

spiking neural network, multi-compartment LIF, neuromorphic system, dendrite-
guided synaptic plasticity, on-chip learning system

Introduction

A spiking neural network (SNN) is considered the brain-inspired mechanism
in computing. It has shown excellent efficiency in many fields. Compared with
the huge acquisition of computation resources and memory bandwidth in artificial
neural networks (ANNs), SNN provides a convenient way of integrating storage and
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computing, which contributes to high efficiency (Mead, 1990;
Schuman et al., 2017; Davies et al., 2018; Bohnstingl et al., 2019).
ANNs focus on continuous functions and gradient descent
learning rules. SNNs learn through synaptic plasticity based on
the sparse spikes of neurons. The synaptic weights in an SNN
are updated based on local errors instead of global gradients
backpropagated through layers, which is considered the key
to neuromorphic hardware (Boybat et al., 2018; Stewart et al.,
2020). Neuromorphic hardware systems have become the core
of hardware acceleration and embedded systems (Vivancos et al.,
2021).

However, two factors limit efficiency in computation and
power. One is the high-throughout data transmission between
off-chip and on-chip memory. Although high-performance
memory systems have been proposed to optimize data
transmission, the power consumption is irreducible (Lian et al.,
2019; Vivancos et al., 2021). Dynamic random-access memory
(DRAM) is usually used as the off-chip memory. Compared
with a static random-access memory (SRAM), the power
consumption of DRAM is significantly high. It costs 640pj
to access 32 bits of data from DRAM but costs only 5pj
to access 8 Kb of data from SRAM (Horowitz, 2014). This
study uses a learning system to store weights in synapses
between neurons. The integration of storage and computation
has become the key to solving speed and energy consumption
problems. This learning system is implemented on a field-
programmable gate array (FPGA), which has rich memory
and computation resources (Wang et al., 2016; Chang and
Culurciello, 2017; Yang et al., 2018, 2020).

While implementing an on-chip learning system on FPGA,
the computation of global gradients requires a large number of
state variables stored in registers, which is very luxurious for the
FPGA. A series of algorithms based on surrogate-gradient are
proposed to replace global gradients backpropagated layer by
layer from outputs (Zenke and Ganguli, 2017; Sacramento et al.,
2018; Neftci et al., 2019; Nøkland and Eidnes, 2019; Kaiser et al.,
2020; Debat et al., 2021; Singanamalla and Lin, 2021). Although
local gradients based on loss functions for each layer reduce the
memory requirement, the memory complexity is still O(NT),
where N is the number of nodes and T is the number of time
steps in the time window (Kaiser et al., 2020). This study applies
a multi-compartment leaky integrate-and-fire (MLIF) model to
a SNN, which contains the basal dendrite, the apical dendrite,
and the soma. The plateau potential in the apical dendrite guides
the updates of synaptic weights. State variables are no longer
required to be stored all the time to calculate gradients. The
memory complexity is reduced to O(N). In order to match
the digital circuits, shift multipliers (shift MUL) and piecewise
linear (PWL) are applied to replace multiplication and complex
nonlinear operations.

Further, we perform the system to classify spike patterns
and reproduce their frequency distribution. With noise applied
to the outputs of each soma, we also analyze the robustness

and effectiveness of the system. The architecture of the learning
system realized in this study consumes fewer resources and
achieves high evaluation accuracy.

Materials and methods

The architecture of spiking neural
network and multi-compartment leaky
integrate-and-fire model

The SNN used in this study is divided into three layers,
including the input layer, hidden layer, and output layer, as
shown in Figure 1. Spike pattern inputs are encoded into spike
trains by Poisson filters. The MLIF model in the hidden layer
includes three compartments representing the basal dendrite,
apical dendrite, and soma. The basal dendrite receives spike
trains from the input layer, and the apical dendrite receives
spike trains backpropagated from the output layer. Compared
with the single-compartment LIF model, the MLIF model used
in this study provides independent channels for information
transmission. Dendritic current is transmitted to the soma and
converted to the new spike trains. The somatic voltage of the
MLIF model is described as follows:

V0(t + 1) = V0(t)+ (gl(Vres − V0(t))+ gb(V0b(t)− V0(t))

+ ga(V0a(t)− V0(t)))/Cm, (1)

where V0 is the somatic voltage of the MLIF model in the
hidden layer, and gl is the leak conductance.Cm is the membrane
capacitance, ga and gb are the conductance from apical dendrite

FIGURE 1

The architecture of spiking neural network (SNN) is depicted.
There are three layers in the feedforward SNN. Input signals are
encoded by the input layer and transmitted from the bottom to
the top of SNN. An error is generated by the output layer with
teaching current and backpropagated to the hidden layer with a
dedicated channel different from the feedforward channel.
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to soma and from the basal dendrite to soma, Vres is the
resting potential, V0b is the basal dendritic potential, and V0a

is the apical dendritic potential. The basal and apical dendritic
potentials are given by weighted sums of the filtered spike trains:

V0b
i (t) =

∑
j

W0
ijxj(t)+ b0

i , (2)

V0a
i (t) =

∑
j

Yijs1j (t), (3)

s(t) =
∑
k

K(t − tk), (4)

K(t) = (e−t/τl − e−t/τs)2(t)/(τl − τs), (5)

where x is the filtered spike trains from the input layer, s1 is
the filtered spike trains from the output layer, K(t) is the kernel
function, W0 is the feedforward synaptic weights from the input
layer to the hidden layer, Y is the synaptic feedback weights from
the output layer to the hidden layer, b0 is the bias of the MLIF
model in the hidden layer, tk is the kth spike time of the spike
trains, τl and τs are long and short time constants, and 2(t) is
the Heaviside step function.

The firing rate of the MLIF model is described as follows:

φ0(t) = φmaxσ(V0(t)) = φmax
1

1+ e−V0(t)
, (6)

where φ0(t) is the firing rate of the MLIF model at time t, φmax is
the maximum firing rate, and σ[V0(t)] is the sigmoid function as
a nonlinear activation function. The Poisson filter samples spike
trains based on the firing rate of the MLIF model.

The MLIF model in the output layer includes two
compartments representing the basal dendrite and soma.
A teaching current is added to the soma of the MLIF model in
the output layer, which contains an excitatory current and an
inhibitory current. The somatic voltage of the MLIF model in
the output layer is described as follows:

V1(t + 1) = V1(t)+ (gl(Vres − V1(t))+ gd(V1b
− V1(t))

+ I(t))/Cm, (7)

I(t) = gE(EE − V1(t))+ gI(EI − V1(t)), (8)

V1b
i (t) =

∑
j

W1
ijs

0
j (t)+ b1

i , (9)

where V1 is the somatic voltage of the MLIF model in the
output layer, gd is the conductance from basal dendrite to soma,
V1b is the basal dendritic potential, I(t) is the teaching current
added to the MLIF model, gE and gI are the excitatory and
inhibitory nudging conductance, s0 is the filtered spike trains
from the hidden layer, W1 is the feedforward synaptic weights
from the hidden layer to the output layer, and b1 is the bias of
the output layer.

Learning rules based on plateau
potentials

Neuron models used in this study generate spikes based on
the Poisson process. The training period consists of two phases:
the forward phase and the target phase. Each phase continues
100 ms, and all synaptic weights and biases are updated at the
end of the target phase. Notably, the synaptic feedback weights
from the output layer to the hidden layer are fixed. In the
forward phase, the teaching current I is kept at 0. In the target
phase, gE = 1 and gI = 0 are applied to the output neuron
according to the default label. The other neurons in the output
layer are inhibited with gE = 0 and gI = 1. Synaptic weights
and biases in the hidden layer are updated based on the plateau
potentials of apical dendrites as follows:

W0
=W0

− η0P0 gb
gl + gb + ga

(αt − αf )φmaxσ
′(V̄0f ) • x̄f ,

(10)

b0
= b0
− η0P0 gb

gl + gb + ga
(αt − αf )φmaxσ

′(V̄0f ), (11)

σ′(V̄0f ) = σ(V̄0f )(1− σ(V̄0f )), (12)

αf = σ

(
1
1t

∫ t1

t1−1t
V0a(t)dt

)
, (13)

αt = σ

(
1
1t

∫ t2

t2−1t
V0a(t)dt

)
, (14)

where η0 is the learning rate, P0 is the scaling factor of the
hidden layer, αf and αt are plateau potentials in the forward
phase and the target phase, and V̄0f is the average somatic
voltage of the MLIF model in the hidden layer during a forward
phase, x̄f is the average input from the input layer during the
forward phase, σ’ is the derivative of the sigmoid function, “·”
is the matrix multiplication, t1 and t2 are the duration of the
forward phase and the target phase, and 1t is the unstable time.
Synaptic weights and biases in the output layer are updated
based on the error between predictions of SNN and labels as
follows:

W1
=W1

− η1P1 gd
gl + gd

(φ̄1t
− φ̄1f )φmaxσ

′(V̄1f ) • s̄0f ,

(15)

b1
= b1
− η1P1 gd

gl + gd
(φ̄1t
− φ̄1f )φmaxσ

′(V̄1f ), (16)

φ̄1f
= φmaxσ(V̄1f ), (17)

φ̄t
= φmaxσ(V̄ t), (18)

where η1 is the learning rate, P1 is the scaling factor of the output
layer, φ̄1f and φ̄1t are the average firing rates of output neurons
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in the forward phase and target phase, and s̄0f is the average
filtered input from the hidden layer. We simulate a 784-500-10
SNN on a computer with MATLAB before implementing the
learning system on the FPGA. The SNN is trained to classify
the handwriting digits of the MNIST dataset and reaches an
accuracy of 96.13% after 60 epochs. It suggests that the SNN
learns satisfactorily based on the learning rule. The parameters
used in this simulation are shown in Table 1 (Guerguiev et al.,
2017).

Linear approximated function

The sigmoid function is used to convert the somatic
potential to a spiking frequency. Due to the exponential
and reciprocal operations in the sigmoid function, it is not
friendly for implementation on hardware (Lian et al., 2019;
Heidarpur et al., 2020). These operations are usually realized
by a large number of adders and multipliers on the FPGA.
Shift and addition are the easiest operations realized on the
FPGA. However, multiplication usually consumes decades more
resources than addition. In this study, piecewise linearization
(PWL) is used to replace nonlinear functions with several
linear functions. In Figure 2A, the sigmoid function is divided
into five PWL segments with two additional limit rules
(Soleimani et al., 2012; Hayati et al., 2015). Accordingly, the
PWL5 model of the sigmoid function is computed by the
following equation:

σl(V) =



m0V + k0, V ≤ N0

m1V + k1, N0 < V ≤ N1

m2V + k2, N1 < V ≤ N2,

m3V + k3, N2 < V ≤ N3

m4V + k4, V > N3

(19)

where σl is the sigmoid function with PWL5, mi and ki are
the slope and intercept of lines in PWL5, and Ni is the scope
of the border. We exhaust Ni, mi, and ki to minimize the
root-mean-square error (RMSE), which is computed by the

TABLE 1 Parameter values of spiking neural network (SNN)
(Guerguiev et al., 2017).

Parameters Values Parameters Values

dt 1 ga 0

ϕmax 0.2 gb 0.6

τl 10 gl 0.1

τs 3 Vres 0

EE 12 Cm 1

EI −12 1t 30

gd 0.6 η0 , η1 0.01

P0 20/ϕmax P1 20/ϕmax
2

following equation:

RMSE =

√√√√ 1
N

N∑
i=1

(Xsof (i)− Xhar(i))2, (20)

where N is the number of values in exhaustion, the steps
of Ni, mi, and ki are 0.1, 0.01, and 0.01 in exhaustion. The
sigmoid function with PWL5 is clipped to 0–1. In Figure 2B,
the derivative of the sigmoid function is divided into six PWL
segments, and it with PWL6 is clipped to 0–∞. The evaluation
results of Sigmoid and their derivative functions are shown in
Table 2. The evaluation criteria include RMSE, mean absolute
error (MAE), and R-square (R2). MAE and R2 are computed as
follows:

MAE =
1
N

N∑
i=1

|Xsof (i)− Xhar(i)|, (21)

R2
= 1−

∑N
I=1(Xsof (i)− Xhar(i))2∑N
I=1(X̄sof − Xsof (i))2

, (22)

where Xsof (i) and Xhar(i) are the results of simulation on
software and implementation on FPGA at the ith iteration, N
is the total number of iterations, and X̄sof is the mean of Xsof (i).
The results of error evaluation with three indicators are shown
in Table 3. With PWL models, only shift and addition operations
are needed while calculating nonlinear functions.

Neuromorphic system architecture
overview

The SNN used in this study comprises four parts:
inputs, MLIF models, outputs, and synaptic plasticity
modules. The learning system is implemented on the Altera
Stratix V Advanced Systems Development Kit with Altera
Stratix V 5SGXEA7N2F45C2N FPGA, which is available at
https://github.com/TianGaoTJU/Learning-System-of-Spiking-
Neural-Network-with-Multi-compartment-LIF-Neurons. This
learning system on the FPGA is used to classify spike patterns
and reproduce frequency distribution. To keep a balance
between the accuracy and resource consumption of calculation,
we used 24-bit fixed-point data for calculation. The value of
data is computed as follows:

(−1)sign × (integer + fraction/216), (23)

The 0–15th bits are the fraction part, the 16–22nd bits are
integral, and the 23rd is the significant part. If the sign part is
0, the data is positive. If the sign part is one, it is negative.

Figure 3 shows the architecture of the learning system
implemented on the FPGA. The controller contains a counter
used as a system clock. The counter increases at the posedge
of the system clock from 0 to 200. When the counter reaches
100, the ping-pong switch is sloped to the target side. When
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FIGURE 2

The approximated sigmoid functions and their derivative functions. (A) The sigmoid function and its approximated function with piecewise
linear 5 (PWL5). (B) The derivative of the sigmoid function and its approximated function with piecewise linear 6 (PWL6).

the counter reaches 200, the ping-pong switch is sloped to the
forward side. At the beginning of the forward phase, a clear
signal is transmitted to all modules to reset the SNN to its initial
state. There is a clear port, a forward phase enable port, and
a target phase enable port in the synaptic plasticity module. In
the forward phase, the forward phase enables signal = 1, and the
target phase enables signal = 0. In the target phase, the settings
are the opposite. More details of control signals are shown in
Figure 6. The outputs of SNN are spike trains. Each output
neuron has a dedicated counter that counts the soma spikes. The
location of the output neuron with the most spikes is considered
the prediction of SNN.

Implementation of the
multi-compartment leaky
integrate-and-fire model

Figure 4 shows the architecture of the MLIF model in
the hidden layer. Figure 4A shows that the kernel function is
calculated in a 10 ms time window. K (t) results in ten timesteps
stored in shift registers shown as yellow blocks. Spike trains

TABLE 2 Coefficients of approximated functions.

Coefficients Approximated function

Sigmoid Derivative of sigmoid

(m0 , k0 , N0) (0.0078125, 0.05,3.4) (0.0078125, 0.05,3.2)

(m1 , k1 , N1) (0.0625, 0.24,1.3) (0.03125, 0.15,2)

(m2 , k2 , N2) (0.25, 0.5, 1.3) (0.0625, 0.25, 0)

(m3 , k3 , N3) (0.0625, 0.76, 3.4) (0.0625, 0.26, 2)

(m4 , k4 , N4) (0.0078125, 0.95, −) (0.03125, 0.15, 3.2)

(m5 , k5 , N5) (−, −, −) (0.0078125, 0.05,3.2)

from the input layer are delayed from 1 to 10 ms and multiplied
with ten K (t) values stored in registers. The z−1 block in gray
is a register with a single bit and stores the spike at the latest
timestep. K (t) values are multiplied by synaptic weights and
accumulated in the Multiply Accumulate (MAC) module. The
dendritic and somatic potential differences are multiplied by the
conductance. The new somatic potential is calculated based on
the sum of dendritic currents and leakage currents. The MLIF
model in the output layer differs from that in the hidden layer,
which only consists of the basal and somatic compartments.

In Figure 4B, we show the Poisson filter used to sample
spikes from the firing rate of the MLIF model. The firing rate
of each model is clipped to 0–200 Hz and distributed over ten
frequency segments. Each frequency segment covers a range of
20 Hz. We use the random function in MATLAB to generate
these ten Poisson spike trains on a computer. The parameter
λ of the function is set as 0.02, 0.04, ..., 0.2, where λ is the
average incidence of random events happening per millisecond.
The spike trains are clipped to 0–1. We used the chi-square test
to evaluate these Poisson spike trains. With a significance level
of 0.05, these spike trains conform to the Poisson distribution.
Then these spike trains are stored in shift registers as the
yellow blocks in Figure 4B. The shift register outputs a bit
of data at the constant address according to φ(t), and then
the constant address is shifted right a bit. Figure 5 shows the
somatic potential of the MLIF model implemented on FPGA
and simulated in MATLAB on the computer with the same

TABLE 3 Error evaluation results.

RMSE MAE R2

Sigmoid 0.0101 0.0049 0.9995

Derivative of Sigmoid 0.0015 2.1643× 10−4 0.9948
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FIGURE 3

Overview of the spiking neural network (SNN) architecture implemented on the field-programmable gate array (FPGA). The controller is used as
a system clock counter and enables signals. The ping-pong switch controls enable signals for the forward phase and target phase.

input. The results of the error evaluation of the MLIF model are
as follows, i.e., RSME = 0.0057, MAE = 0.0042, and R2 = 0.9944.

Implementation of synaptic plasticity

There are three input ports in the synaptic plasticity module
implemented on FPGA: the forward phase enable, the target
phase enable, and clear. In the controller, the forward phase
enable and the target phase enable are accessed with a ping-pong
switch. When the forward phase enable is set to 1, the target
phase enable is set to 0. Figure 6 shows the architecture of the
synaptic plasticity module for b0. The MUX block is a selector
with three input ports and an output port. When the Sel. port is
0, the MUX block outputs the data on the first input port. When
the Sel. port is 1, the MUX block outputs the data on the second
input port. In the forward phase (without the first 30 ms), V0a

is transmitted into the multiplier and decreased to 1/70 of its
original value. The sigmoid function with PWL5 converts the
average potential of the apical dendrite to the firing rate in the
forward phase. Due to the target phase enable being set to 0, the
inputs of αt are clamped at 0. In the target phase (without the
first 30 ms), the target phase enable is set to 1, and the forward
phase enable is set to 0. The input to αf is clamped at 0, keeping
the value. V0f is calculated in the same way.

Two kinds of multipliers are implemented in the synaptic
plasticity module. One is used for the multiplication of a
constant and a variable. This multiplier is composed of shifters
and adders. Another is the Shift MUL module, which multiplies
two variables (Yang et al., 2021). The “Input a” and “Input b”
are two variable inputs of the Shift MUL module. Note that
the value of “Input a” is expected to be between 0 and 1 for

the exact calculation, and thus the 16–23rd bits of “input a”
are dropped, and the 0–15th bits are split into 16 single bits
in a bus splitter. The outputs of the bus splitter are numbered
from 16 to 1 according to the importance of each output port,
from the least significant to the most significant bit. The “Input
b” is shifted right in the shifter block according to the input
number from 16 to 1. The MUX block is used to choose the
input flow. The number 0 is added to the first data line of
MUX. And the variable “Input b” is added to the second data
line after being shifted right by the barrel shifter block. Outputs
of the MUX blocks are added in a parallel adder. The sum of
MUX blocks is considered the multiplication result. The same
indicators are used to evaluate the errors of Shift MUL. RSME is
1.0703× 10−4, MAE is 9.8480× 10−5, and R2 is 1.0000.

We also compare the compilation results of the shift
MUL module and the multiplier summarized in Table 4. The
multiplier module is an IP block provided by Quartus and
DSP Builder software, which consumes 436 LUTs. A shift MUL
module consumes 185 LUTs and 185 registers. One LUT and one
register are integrated into a logic element (LE) of an FPGA.
This result indicates that the Shift MUL module only requires
185/436 LEs of the multiplier module, suggesting high resource
utilization efficiency.

Results

An 8× 10 × 4 SNN (with 120 synapses) is implemented on
the FPGA to evaluate the learning system. Four spike patterns
with different frequency distributions are input to the SNN. In
these spike patterns, the maximum spike frequency is 200 Hz,
and the minimum spike frequency is 20 Hz. Figure 7 shows
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FIGURE 4

Multi-compartment leaky integrate-and-fire (MLIF) model implemented on the field-programmable gate array (FPGA). (A) The architecture of
somatic voltage used in the MLIF model. (B) The architecture of the Poisson process is used to generate spike trains based on the firing rate of
the MLIF model. Spike trains with different firing rates are stored in memory. When a spike output is read out, the constant address is shifted
right a bit.

the inputs and outputs of the SNN on the FPGA with the
SignalTap II Logic Analyzer. Spike trains in 200 Hz are input
to “Data2in,” “Data4in,” “Data6in,” “Data8in,” and spike trains
in 20 Hz are input to “Data1in,” “Data3in,” “Data5in,” and
“Data7in.” Output ports “Data1out”–“Data4out” are spike trains
output by MLIF models in the output layer. It can be found
that the first neuron outputs the most spikes, so the prediction
label of the SNN is 1. In this experiment, SNN realizes a high
accuracy of 100.0% after 500 epochs. The resource utilization
and power consumption are shown in Table 5. Compared with
the other two previous works, our SNN performs higher Fmax,
fewer look-up tables (LUTs), and less power consumption. The
total power dissipation is 3.644 watts, as shown in Table 4. The
core dynamic power dissipation is 2.2215 watts, and the static

power dissipation is 989.08 mW. The I/O power dissipation is
433.44 mW. A 2 × 2 × l SNN with six synapses is implemented
on FPGA based on the on-chip back-propagation learning
algorithm designed by Vo (2017). Further, Mazouz and Bridges
(2021) implement an 8 × 8 CNN based on a back-propagation
learning algorithm. Table 5 shows the compilation results of
neural networks implemented on FPGA, which are extended to
120 synaptic connections. The SNN implemented by Vo (2017)
requires 5.6 times the logic elements of our implementation. The
utilization of the CNN is 1.6 times that of the SNN in this study
if it is extended to 120 neurons. These results suggest that our
SNN performs more efficiently in resource utilization.

Another experiment is tested on the 8 × 10 × 8 SNN
(with 160 synapses) on the FPGA. In this experiment, SNN is
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FIGURE 5

Multi-compartment leaky integrate-and-fire (MLIF) model
implemented on field-programmable gate array (FPGA) is
compared with it simulated in MATLAB with the same random
input. There is only a small difference between the MLIF model
in simulation and its implementation on the FPGA.

expected to reproduce the patterns with the specified frequency
distribution (Mohemmed and Schliebs, 2012). In Figure 8,
errors between random pattern input and frequency distribution
output by SNN are evaluated in MAE and R2. Figure 8A shows
the results of inputs without any noise. At the end of each
training epoch, the SNN is tested and outputs spikes. Trained
after 300 epochs, MAE and R2 are 6.8904 and 0.9910. When
compared with the range of 200 Hz, the SNN reproduces the
input spike pattern accurately.

Further, we add a drop noise to spike trains and show the
results trained after 300 epochs in Figure 8B, where the abscissa
is the probability of dropping. When 50% of input spikes are
decreased by noise, MAE increases to 32.46, and R2 reduces to
69.55%. These results suggest that the learning system performs
well under robustness to noise.

TABLE 4 Resource utilization of multipliers.

LUT Register/FF

Shift MUL 185 185

Multiplier 436 0

Discussion

This study applies dendrite-guided synaptic plasticity to
the neuromorphic learning system. In contrast to the gradients
backpropagated from top-down in ANNs, two dendrites in the
MLIF model receive spike trains as inputs. Dendrites convert
the input frequency into the potential. After a short oscillating
period, the potential in dendrites reaches a plateau. If potentials
in dendrites are at a high level, the presynaptic neuron fires at a
high frequency. While training the SNN, the teaching current is
added to neurons in the output layer. It could be transmitted
to the apical dendrite, which guides the behavior of neurons
in a lower layer. The gradients are not backpropagated from
the output layer but calculated by the presynaptic activities
and potentials in the dendrites. Benefiting from the reduction
in memory complexity and synaptic plasticity, data used for
learning could be stored on FPGA, not off-chip memory. It
further contributes to the decrease in energy consumption in
dataflow between on-chip and off-chip memories, which is
considered a challenge in energy and speed. In order to match
the learning system to the digital circuits, PWL and Shift MUL
are applied to optimize nonlinear functions and multiplication
between two fixed-point data.

As a computing unit independent of the soma, the dendrite
enriches the possibility of a learning mechanism in the system.
It has been proven that the prediction error between dendrites
and soma can be used for synaptic plasticity. Urbanczik
and Senn (2014) minimize the discrepancies between somatic
firings and local dendritic potential to train their SNN. The
error is generated continuously and drives synapses to be

FIGURE 6

The architecture of synaptic plasticity. The synaptic plasticity module is implemented on the field-programmable gate array (FPGA) as an on-chip
learning system. A shift multiplier (MUL) module is proposed to replace DSP blocks on the FPGA to reduce logical resource consumption.
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FIGURE 7

An example of spike pattern inputs and outputs of spiking neural network (SNN) on the field-programmable gate array (FPGA). Spike trains with
a certain frequency distribution are input to SNN for classification. The output port “Data1out” outputs the most spikes, reflecting the prediction
label according to this spike pattern.

TABLE 5 Resource utilization and comparison with previous works.

LUT Register/FF Power Fmax Device

This study 196469 197154 3.644 W 216.54 MHz Stratix V

Vo (2017) 1103160 584640 − − Spartan 3E

Mazouz and Bridges (2021) 274125 − 4.982 W 200 MHz Zynq-7100

FIGURE 8

Results of reproducing spike patterns. (A) Without noise, spiking neural network (SNN) reproduces input patterns accurately. (B) Noise in the
form of dropping with a constant probability is added to an SNN.

constantly updated. Sacramento et al. (2018) use the error
between predictive activities from lateral interneurons and
feedback activities to train the SNN. Their model does not
need separate phases, and synaptic plasticity is driven by the
local dendritic prediction errors continuously in time. These
algorithms proved excellent and provided ways to solve credit
assignment problems. However, continuous learning during
training drives the synaptic plasticity module on the FPGA to
work all the time at high speed. The lateral synaptic connections
also increase the number of synaptic plasticity modules on
FPGA. Although these two learning rules achieve extremely high
accuracy in testing, we need a hardware-friendly learning rule to
implement the SNN on FPGA. We divide the training period
into two phases. Synaptic weights are updated at the end of the
target phase. Only the plateau potentials in the apical dendrites

are required to guide the updates of synaptic weights. The
plateau potential is obtained by accumulating the potential in
the apical dendrite, which consumes a fixed-point adder and two
24-bit registers. The power consumption of the learning system
on FPGA is mainly generated by the transmission of spikes
between neurons and the update of synaptic plasticity modules.
We use the discrepancies between the plateau potentials of the
apical dendrites in two phases to train the SNN, and weights are
updated only once at the end of the target phase. The FPGA
works at an extremely high speed compared to the CPU, but
the memory and logical resources of the FPGA are scarce. Thus,
high-efficient utilization of resources on the FPGA is the most
important. Besides, while realizing the same learning system,
the power consumption of FPGA is usually a few tenths of that
of a GPU. Therefore, power consumption is usually considered
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the second most important standard for FPGA. We aim to
realize a learning system with low power consumption and high
resource utilization on FPGA. The SNN and architecture of
implementation in this study are best suitable for this goal.

One of the main energy consumptions of the learning
system occurs in data transmission. Spiking neurons generate
spike trains, which only include 0 or 1 signal. Meanwhile, SNN
transmits signals at 0 or 1 instead of continuous membrane
potential. These 1-bit signals greatly reduce the requirements
for bandwidth and energy during data transmission. After
the dendrite of the MLIF model receives spike trains, the
postsynaptic potential is triggered by a flip-flop (FF) without
MAC operation. It has been shown that SNN works on FF and
simple operations, not LUTs (Pei et al., 2019). In particular,
the MLIF model used in this study generates spikes with a
certain probability based on its membrane potential. As a result,
the membrane potential is stored with less precision, and the
neuromorphic system presents better robustness, as shown in
Figure 8. Although neuromorphic learning systems are still
being studies and have many limitations, embedded devices will
present advantages in a broad category of applications with such
neuromorphic learning systems.

Conclusion

In this study, a high-efficient neuromorphic learning system
based on MLIF models is realized on a FPGA. We use the
discrepancies between the plateau potentials in two phases
to train the SNN. The synaptic weights are updated only
once at the end of the target phase, which facilitates FPGA
implementation with fewer memory resources and energy.
The shift MUL module and PWL mechanism are applied
instead of multiplication and complex nonlinear operations.
The neuromorphic learning system is implemented on the
Stratix V FPGA. For important units and modules in this
learning system, error evaluation is applied based on computer
simulations and hardware experiments. Results of resource
utilization and performance in two tasks support the notion that
the neuromorphic learning system works more efficiently.
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