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Background: Aerobic glycolysis is a typical metabolic reprogramming in tumor cells,
which contributes to the survival and proliferation of tumor cells. The underlying
mechanisms controlling this metabolic switch in colorectal cancer (CRC), however,
remain only partially understood.

Methods: The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus
(GEO) (GDS4382, GSE6988, GSE35834) were used to analyzed the mRNA expression of
THBS2. 392 paired samples of CRC and adjacent non-cancerous tissues were collected
to detect the expression of THBS2 by IHC. The correlation of THBS2 expression with
categorical clinical variables in patients with CRC was evaluated using chi-square analysis
or Student’s t-test. CCK-8, colony formation, and animal CT scan were used to functional
analysis of THBS2 in CRC.

Results: Thrombospondin 2 (THBS2) is aberrantly upregulated and linked to a poor
prognosis in CRC. Subsequent experiments also showed that THBS2 promotes the
proliferation of CRC cells. In terms of mechanism, THBS2 interacted with Toll-like receptor
4 (TLR4), but not with the other toll-like receptors (TLRs), which upregulated the
mRNA expression of GLUT1, HK2, ALDOA, PKM2, and LDHA and enhanced glycolytic
capacity in CRC cells. Moreover, THBS2/TLR4 axis significantly increased the protein level
of HIF-1a and blocking HIF-1a by siRNA reversed the enhanced glycolytic capacity and
the upregulated expression of glycolytic enzymes in CRC cells.

Conclusion: Our findings revealed that the THBS2/TLR4 axis contributes to HIF-1a
derived glycolysis and eventually promotes CRC progress.
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HIGHLIGHTS

Thrombospondin 2 (THBS2) interacts with TLR4, enhances
aerobic glycolysis by regulating HIF-1a, and eventually
contributes to CRC progress.
INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignant
tumors and ranks third in terms of incidence and mortality
associated with human carcinoma (1). Given the considerable
advances in diagnosis and therapy, early-stage CRC, including
stage 1 and stage 2, has a relatively good prognosis with a 5-year
survival rate. However, the prognosis of stages 3 and 4 patients
extremely weakens with the progress of CRC. Therefore, it is
essential to explore the mechanism underlying CRC progress to
design potential therapeutic strategies.

The thrombospondin (THBS) family has five members
(THBS1, THBS2, THBS3, THBS4, and THBS5); the family is a
disulfide-linked homotrimeric glycoprotein that mediates cell-
to-cell and cell-to-matrix interactions (2). Recently, THBS has
been reported to be involved in various kinds of malignant
tumors, including lung cancer, gastric cancer, colorectal cancer,
and liver cancer (3–6). THBS2 is a member of the THBS family,
which is reported to be regulated by the microRNA network in
human cancer (7–9). However, little is known about the
mechanism underlying THBS2-mediated CRC progress.

Toll-like receptors (TLRs) are common pattern recognition
receptors. Early studies confirm that TLRs mainly recognize
exogenous pathogens and induce the innate immunity of the
human body. TLRs are widely researched in human cancer, the
activation of which will eventually contribute to the malignant
biological behavior of tumor cells (10). Recent emerging evidence
has shown that endogenous ligands or molecules produced by
tumor cells interact with TLRs, which stimulates cancer progress
(11). However, the mechanism underlying TLRs’ contribution to
CRC progress requires further investigation.

Metabolic reprogramming is a characteristic change in
tumor cells, which not only meets the energy demand for the
rapid proliferation of tumor cells but also provides essential
substances for tumor development (12). Therefore, metabolic
reprogramming is a complex program, including glucose
metabolism, fatty acid metabolism, amino acid metabolism,
nucleotide metabolism, and glutamine metabolism (13). To the
best of our knowledge, glucose is the principal energy substance
for providing ATP. Glucose metabolism reprogramming is also
widely reported, of which the Warburg effect is the most famous
one. The Warburg effect means that tumor cells tend to underlie
glycolysis but not oxidative phosphorylation, even in normoxia.
The metabolic switch to glycolysis in tumor cells is controlled by
glycolysis-related enzymes (GLUT1, LDHA, ALDOB) and vital
signaling pathways (PI3K-AKT, mTOR, Myc, HIF-1a) (14).

In this study, we first found that THBS2/TLR4 interaction
promotes the tumor growth of CRC by enhanced HIF-1a-
mediated glycolysis. Similarly, the analyzed clinical information
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shows that patients with higher expression of THBS2 tend to
have a larger tumor size, higher T stage, and lower survival rate.
Therefore, our study may provide new therapeutic insights for
patients with CRC.
MATERIALS AND METHODS

Patients and Samples
A total of 392 paraffin sections of CRC tissues and adjacent paired
non-cancerous tissues were collected to design a tissue array chip
from the Department of Gastrointestinal Surgery, Renji Hospital,
School of Medicine, Shanghai Jiao Tong University. All patients
with CRC underwent surgery at the Department of Gastrointestinal
Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University between January 2014 and January 2016. The
study was approved by the Research Ethics Committee of Renji
Hospital and carried out in accordance with the ethical standards
formulated in the Helsinki Declaration. All patients provided their
informed consent.

Cell Culture
LoVo, RKO, SW480, and SW620 cells (human CRC cell lines)
were obtained from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China), which all performed genotyping of
human cancer cell lines and had no cross-contamination. All cell
lines were cultured in Dulbecco’s modified Eagle’s medium,
supplemented with 10% fetal bovine serum and 1% penicillin
and streptomycin.

Colony Assay
1×103 cells were seeded into 6-well plates. After 14 days, cells
were stained with 0.1% crystal violet solution and the number of
colonies (>50 cells) was counted under the microscope. Each
experiment was carried out independently in triplicate.

Small Interfering RNA Transfection
The siRNAs for TLRs (TLR1-10) were purchased from
GenePharma (Shanghai GenePharma Co., Ltd., Shanghai,
China). Table S1 displays the sequences, and the experimental
method was performed as previously described (15).

Lentivirus Transfection
A lentivirus was used to transfect full-length human THBS2
cDNA into CRC cell lines to generate Lentivirus-THBS2
(THBS2-OV). Lentivirus-NC was used as a negative control
(THBS2-vector). In addition, one short-hairpin RNA (shRNA)
sequence against THBS2 was transfected into CRC cell lines to
generate shRNA-THBS2, while sh-NC-THBS2 was used as a
negative control. Table S1 shows the sequences of shRNA.

RNA Isolation and Real-Time Quantitative
Polymerase Chain Reaction
Trizol was used to extract RNA, and total RNA was reverse
transcribed to cDNA by PrimeScriptTM (TAKARA). We used
18S RNA as an internal control. Table S1 shows the sequences of
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the primers. The relative expression of the target gene was
calculated by the −△△Ct method.

Western Blot Analysis
The radioimmunoprecipitation assay (RIPA) buffer was used to
extract total protein, supplemented with 1% protease inhibitors
(P8340, Sigma-Aldrich) and phosphatase inhibitors (P5726, Sigma-
Aldrich). The bicinchoninic acid (BCA) assay was used to measure
protein concentration. Western blot analysis was performed, as
previously described (12). THBS2 (sc-136238, Santa Cruz
Biotechnology), TLR4 (ab30667, Abcam), Ki67 (Proteintech
Group, Inc.), HIF-1a (ab2185, Abcam), GLUT1 (ab115730,
Abcam), HK2 (ab104836, Abcam), ALDOA (ab150396, Abcam),
PKM2 (ab137852, Abcam), and LDHA (ab101562, Abcam)
primary antibodies were used. Horseradish peroxidase (HRP)-
conjugated AffiniPure goat anti-rabbit IgG (H+L) and HRP-
conjugated AffiniPure goat anti-mouse IgG (H+L) were obtained
from Proteintech Group, Inc. (Jackson).

Immunohistochemistry
All tissues were paraffin-embedded and cut into 4-m thick
sections. All sections were dewaxed with xylene and hydrated
with alcohol. Sodium citrate was used for antigen retrieval, and
0.3% of hydrogen peroxide (H2O2) was used to block
endogenous peroxidase. After blocking non-specific sites with
bovine serum albumin, all the sections were incubated with an
appropriate primary and secondary antibody. We used the 3,3-
diaminobenzidine (DAB) kit for visualization, and hematoxylin
was used to stain nuclei. All the sections were dehydrated with
alcohol and sealed with neutral resin. The IHC staining score was
calculated based on pixel intensity; staining was scored as per the
staining intensity: no staining, 1; weak staining, 2; moderate
staining, 3; and strong staining, 4.

Seahorse Analyses
The Seahorse XF96 Flux Analyzer (Seahorse Bioscience, Agilent)
was used to carry out the extracellular acidification rate (ECAR) and
oxygen consumption rate (OCR) in the CRC cell lines. Briefly, all
CRC cells used in this paper, including LoVo, RKO, SW620, and
SW480 cells, were seeded into an XF96-well plate. The media were
replaced with assay media 1 h before the assay. For ECAR assay
(Seahorse Cat.#103020-100), 10 mM glucose, 1 mMoligomycin, and
50 mM 2-deoxyglucose (2-DG) were added to the wells. For the
OCR test (Seahorse Cat.#103015-100), 1 mM oligomycin, 1 mM
FCCP, 0.5 mM rotenone, and 0.5 mM actinomycin A were added to
the wells at a special time point. Both measurements were
normalized by total protein quantitation. The above experiments
were performed in triplicate and repeated twice.

Glucose and Lactate Measurement
The Amplex® Red Glucose/Glucose Oxidase Assay Kit
(Invitrogen, Cat.#A22189) was used to measure the glucose
uptake. Glucose consumption was calculated by the net
content of the original glucose concentration deduced the
measured glucose concentration in the medium. The Lactate
Assay Kit (BioVision, Cat.#ABIN411683) was used to measure
lactate production. Total proteins were used for the normalization
Frontiers in Oncology | www.frontiersin.org 3
of the results obtained above. These experiments were performed
in triplicate and repeated twice.

Animal Model
For the generation of an orthotopic model of CRC, all nude mice
were anesthetized with 0.5% pentobarbital. After opening the
abdominal cavity, 1*10^6 LoVo or SW620 cells/null mice were
injected into the ileocecum. After 4 weeks, the mice were killed,
and the tumor tissues were excised and weighed. All tissues were
fixed with 4% paraformaldehyde. All animal experiments were
approved by the Research Ethics Committee of Renji Hospital
and adhered to the local and national requirements for the care
and use of laboratory animals.

Co-Immunoprecipitation
Total protein was extracted fromCRC cells and incubated overnight
with the appropriate primary antibody, followed by the addition of
protein A-Sepharose beads. After extensive washing, the precipitates
were subjected to Western blotting for the detection of the
interacting proteins. Normal rabbit IgG served as a negative
control. Anti-hemagglutinin was purchased from Medical &
Biological Laboratories (Nagoya, Japan). Anti-THBS2 (sc-136238)
was obtained from Santa Cruz Biotechnology, while anti-TLR4
(ab30667) was supplied by Abcam.

Statistical Analysis
Measurement data are presented as the mean ± standard
deviation (SD). SPSS 20.0 (Chicago, IL, USA) and GraphPad
Prism 5 software were used to conduct the statistical analyses.
The correlation of THBS2 expression with categorical clinical
variables in patients with CRC was evaluated using chi-square
analysis or Student’s t-test. Measurement data, such as age and
tumor size, were evaluated using Student’s t-test, while
categorical variables and ranked data, such as gender, T stage,
lymph node invasion, and distant metastasis, were analyzed
using the chi-square test. Spearman’s rank correlation was used
for the analysis of two-way ordered categorical data. Survival
curves were generated using the Kaplan–Meier method and
analyzed by the log-rank test. Statistical significance was
accepted at p < 0.05.
RESULTS

Aberrantly Upregulated THBS2 Displayed
a Tumor-Promoting Role in CRC
The comprehensive analysis of THBS2 expression in CRC based on
TCGA and GEO datasets showed a very significant increase in
THBS2 expression in the mRNA level in CRC (Figures 1A–D). To
verify the main function of THBS2 involved in the CRC
development, we detected mRNA and protein expression of
THBS2 in seven CRC cell lines and selected two cell lines with
high expression of THBS2 (RKO and LoVo) and low expression of
THBS2 (SW620) (Figure 1E). Furthermore, we knocked down the
THBS2 expression in RKO and LoVo by shRNA and overexpressed
it in SW620 by lentivirus (Figures S1A–S1C). In vitro experiments
November 2020 | Volume 10 | Article 557730
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FIGURE 1 | THBS2 was aberrantly upregulated and displayed a tumor-promoting role in CRC. (A) The mRNA expression of THBS2 in CRC and adjacent non-
cancerous tissues, as analyzed from the TCGA dataset. (B) The mRNA expression of THBS2 in CRC and adjacent non-cancerous tissues, as analyzed from the
GDS4382 dataset. (C) The mRNA expression of THBS2 in CRC and adjacent non-cancerous tissues, as analyzed from the GSE6988 dataset. (D) The mRNA
expression of THBS2 in CRC and adjacent non-cancerous tissues, as analyzed from the GSE35834 dataset. (E) The mRNA expression of THNB2 in six CRC cell
lines. (F) The viability of LoVo cells transfected with sh-THBS2 or sh-control, as analyzed with CCK-8 assay. (G) The viability of RKO cells transfected with sh-THBS2
or sh-control, as analyzed with CCK-8 assay. (H) The viability of SW620 cells transfected with Vector or THBS2-OV, as analyzed with CCK-8 assay. (I) Establishing
an orthotopic tumor model by injecting tumor cells with luciferase into the cecum of BALB/c nude mice and imaging by CT. (J) Vivo imaging of orthotopic tumor by
injecting sh-THBS2 or sh-control LoVo cell and Vector or THBS2-OV SW620 cells in the cecum (n = 6 in every group). (K) Tumor burden and Tumor volume in the
cecum by injecting sh-THBS2 or sh-control LoVo cell (n = 6 in every group). (L) Tumor burden and Tumor volume in the cecum by injecting Vector or THBS2-OV
SW620 cells (n = 6 in every group). (M) Expression of Ki-67 in the orthotopic tumor tissues. All experiments were performed in triplicate. Measurement data are
presented as the mean ± SD. Student’s t-test was used for statistical analysis; *p < 0.05, **p < 0.01, ***p < 0.001.
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demonstrated that the knockdown or overexpression of THBS2
impairs or enhances the proliferation of tumor cells (Figures 1F–H;
Figures S1D–F). After establishing an orthotopic tumor model
through the injection of tumor cells into the cecum of BALB/c nude
mice, we discovered that THBS2 knockdown or overexpression
obviously inhibited and accelerated tumor growth (Figures 1I–L).
THBS2 overexpressed orthotopic tumors showed a consistently
higher staining intensity of KI-67 than that in the control of
orthotopic tumors and THBS2 knock-downed orthotopic tumors
showed a lower KI-67 expression than that in the control of
orthotopic tumors (Figure 1M). Therefore, THBS2 plays a
tumor-promoting role in CRC development.

THBS2 Promotes CRC Cells Proliferation
by Interacting With TLR4
As noted above, THBS2 has a tumor-promoting role in CRC.
However, the underlying mechanism by which THBS2 promotes
CRC development is still unknown. First, we conducted a Gene Set
Enrichment Analysis (GSEA) based on the THBS2 expression of
Frontiers in Oncology | www.frontiersin.org 5
CRC samples from TCGA dataset in which all CRC samples were
divided into two groups based on the expression level of THBS2,
including the high expression of THBS2 group (THBS2 high group)
and the low expression of THBS2 group (THBS2 low group). The
result showed that the gene sets from the THBS2 high expression
group are enriched in the TLR pathway (Figure 2A). This prompted
a link between THBS2 and TLR pathway. To our surprise, THBS2
knockdown and overexpression did not affect TLRs expression
(Figures S2A–C). However, silencing TLR4 but not the other
TLRs by siRNA reversed the pro-survival role in THBS2
overexpressed CRC cells (Figures 2B and S2D–L). TLR4
expression was detected in six CRC cell lines (Figures 2C, D).
Subsequent experiments also illustrated the interaction between
THBS2 and TLR4 in CRC cells (Figure 2E). Moreover, the in vivo
experiment indicated that TLR4 inhibition by a specific inhibitor
(i.e., TAK-242) reversed the pro-survival role in THBS2
overexpressed CRC cells (Figures 2F, G). These results suggest
that THBS2 promotes the proliferation of CRC cells by regulating
the TLR4 receptor.
A B

D
E
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FIGURE 2 | THBS2 promotes the proliferation of CRC cells by interacting with TLR4. (A) GSEA analysis of THBS2 mRNA expression in CRC, as evaluated from the
TCGA dataset. (B) Viability of THBS2-OV SW620 cells transfected with si-control and si-TLR4. (C) mRNA expression of TLR4 in CRC cell lines. (D) protein
expression of TLR4 in CRC cell lines. (E) Co-IP of THBS2 with TLR4 in LoVo, RKO and SW620 cells. (F) Vivo imaging of orthotopic tumor by SW620 cell in Vector,
THBS2-OV and THBS2-OV+TAK-242 groups (n = 6 in every group), intraperitoneal injection of TAK-242 (1 mg/100 ml) in this study. (G) Tumor weight and volume of
orthotopic tumor by SW620 cell in Vector, THBS2-OV and THBS2-OV+TAK-242 groups (n = 6 in every group), intraperitoneal injection of TAK-242 (1 mg/100 ml) in
this study. (H) KI67 expression in Vector, THBS2-OV and THBS2-OV+TAK-242 groups (n = 6 in every group). Measurement data are presented as the mean ± SD.
Student’s t-test was used for statistical analysis. ns. represents no statistical difference; *p < 0.05; ***p < 0.001.
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THBS2/TLR4 Interaction Enhances
Aerobic Glycolysis in CRC Cells
In this study, we found that THBS2 knockdown and
overexpression significantly inhibit and enhance glycolysis,
albeit without any obvious effect on oxidative phosphorylation
in CRC cell lines (Figures 3A, B, S3A, and S3B). Moreover,
Frontiers in Oncology | www.frontiersin.org 6
silencing TLR4 by siRNA almost reversed the THBS2-enhanced
glycolysis (Figure 3B). Also, THBS2 knockdown and
overexpression consistently reduced and increased glucose
consumption and lactate production (Figures 3C, D, S3C, and
S3D). Silencing TLR4 almost reversed the THBS2-enhanced
glucose consumption and lactate production (Figures 3C, D).
A B

D

E
F

C

FIGURE 3 | THBS2/TLR4 interaction enhances aerobic glycolysis in CRC cells. (A) Extracellular acidification rate (ECAR) of LoVo or RKO cells in the sh-NC and sh-
THBS2 group was detected via a Seahorse Bioscience XFp analyzer. Glc, glucose; O, oligomycin; 2-DG, 2-deoxy-d-glucose. (B) Extracellular acidification rate
(ECAR) of SW620 or SW480 cells in the Vector and THBS2-OV group with the treatment of siTLR4 or TAK-242 was detected via a Seahorse Bioscience XFp
analyzer. Glc, glucose; O, oligomycin; 2-DG, 2-deoxy-d-glucose. (C) Glucose uptake of SW620 or SW480 cells in the Vector, THBS2-OV, THBS2-OV+ siTLR4, and
THBS2-OV+ TAK-242 group. (D) Lactic acid formation of SW620 or SW480 cells in the Vector, THBS2-OV, THBS2-OV+siTLR4, and THBS2-OV+TAK-242 group.
(E) mRNA expression of relative genes in glycolysis in the Vector, THBS2-OV, and THBS2-OV +TAK-242 group in orthotopic tumor tissue. (F) mRNA expression of
relative genes in the glycolysis of SW620 or SW480 cells in Vector, THBS2-OV, THBS2-OV +siTLR4, and THBS2-OV+TAK-242 groups. 10mM TAK-242 in vitro
experiment. Measurement data are presented as the mean ± SD. Student’s t-test was used for statistical analysis; *p < 0.05.
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Glycolysis was regulated by a series of related enzymes and vital
signaling pathway. Consequently, THBS2 upregulated the
expression of glycolysis-related genes (GLUT1, HK2, ALDOA,
PKM2, and LDHA) in vivo and in vitro (Figures 3E, F, S3E, F, G,
S4A, B). Silencing TLR4 almost reversed the upregulated
GLUT1, HK2, ALDOA, PKM2 , and LDHA by THBS2
overexpression (Figures 3E, F, and S3G). Moreover, THBS2/
TLR4 interaction also upregulated the expression of glycolysis
related genes when the cells are under hypoxic conditions
(Figures S3H).

THBS2/TLR4 Interaction Increases HIF-1a
Expression in CRC Cells
As mentioned above, the THBS2/TLR4 axis upregulated the
mRNA expression of glycolysis-related genes, which resulted in
a high glycolytic state in CRC cells. However, the underlying
mechanism by which the THBS2/TLR4 axis regulates the mRNA
expression of glycolysis-related genes is still unknown. HIF-1a is
a vital transcription factor for regulating glycolysis by
transcriptionally activating a series of glycolysis-related genes.
Our results indicate that THBS2 overexpression upregulates the
protein expression of HIF-1a and that THBS2 knockdown
inhibits the protein expression of HIF-1a in vivo (Figure 4A).
THBS2/TLR4 axis did not affect the mRNA level of HIF-1a,
PHD1, PHD2, and PHD3 (Figures S4C, D), which may suggest
THBS2/TLR4 axis contributes to translation of HIF-1a. In tissue
microarray, THBS2 had a significant correlation with HIF-1a
(Figure S4E). Moreover, the in vitro experiment also showed
THBS2 overexpression and knockdown upregulated and reduced
the protein expression of HIF-1a (Figures 4B, C). Silencing
HIF-1a by siRNA significant reversed the enhanced glucose
uptake, lactate acid production and ECAR by THBS2
overexpression (Figures 4D, E, and S4F). Moreover, HIF-1a
knockdown inhibits the upregulated mRNA expression of
GLUT1, HK2, ALDOA, PKM2 , and LDHA by THBS2
overexpression (Figure 4F). In addition, HIF-1a knockdown
eliminated the promoting cell viability by THBS2 overexpression
(Figure 4G).

THBS2 Is a Potential Therapeutic
Target for CRC
Further survival analysis based on TCGA and R2 datasets
demonstrated that high mRNA expression of THBS2 predicts a
poor prognosis of CRC patients (Figures 5A, B). Due to the IHC
staining of THBS2 by a tissue microarray containing 392 cases of
CRC and paired adjacent colorectal tissues, we found that the
protein expression of THBS2 was upregulated in CRC compared
with that in the adjacent colorectal tissues (Figures 5C, D). The
analysis of the clinical characteristics showed that the high
protein expression of THBS2 was closely associated with tumor
size and its pathological stage (Table 1). Combined with follow-
up data, CRC patients with high protein expression of THBS2
showed a significantly lower survival rate than those with low
protein expression of THBS2 (Figure 5E). The in vivo
experiment indicated that blocking THBS2/TLR4 interaction
significantly extends the survival of tumor-bearing mice
Frontiers in Oncology | www.frontiersin.org 7
(Figure 5F). All in all, we discovered that THBS2 interacts
with TLR4, which enhances aerobic glycolysis, and eventually
contributes to CRC progress (Figure 5G).
DISCUSSION

In the THBS family, THBS1 has been extensively researched,
with diverse functions in tumor progress (16). THBS1 was first
reported in breast cancer in which THBS1 promotes the lung
metastasis of breast cancer by facilitating cell adhesion to vessel
walls (17). However, Isenberg et al. (16) hold the opposing view
that THBS1 is an endogenous angiogenesis inhibitor, which
increases the apoptosis of tumor cells and restricts tumor
growth by blocking NO-driven angiogenesis. Many related
studies have consistently illustrated an anti-angiogenesis
effect of THBS1 in human cancer (18, 19), although emerging
evidence points to a huge transverse. THBS1 aberrant expression
via TGF-b-smad3 contributes to invasive behavior during
glioblastoma (GBM) expansion (20). Therefore, an integral and
comprehensive study is needed to probe these controversies to
determine the real role of THBS1 in human cancer. Compared
with THBS1, researches on THBS2 are limited in human cancer
and especially rare in CRC. In early pancreatic ductal
adenocarcinoma (PDAC) and in cooperation with CA19-9,
THBS2 can be a blood marker for the detection of patients at
high risk for PDAC (21). Moreover, THBS2 promotes tumor
progress, including cell proliferation, migration, and invasion
(22–24). However, it is still unclear whether THBS2 plays a role
in regulating CRC development. The analysis of the related data
from the TCGA and GEO datasets in this study shows that
THBS2 is upregulated in CRC tissues. THBS2 knockdown and
overexpression inhibit and promote CRC progress in vivo and
in vitro.

Notably, THBS regulates the tumor cell function via
interaction with receptors or molecules in the cell surface,
including CD36 and CD47 (25, 26). To find the potential
receptors or molecules interacting with THSB2 in CRC, we
carried out a GSEA analysis and discovered that the TLR
pathway is dominantly enriched in the THBS2-high group.
TLRs are vital cell surface receptors that play a key role in
innate immunity and have crosstalk with adaptive immunity (27,
28). As pattern recognition receptors, TLRs recognize both
conserved molecular patterns in microbes (pathogen-associated
molecular patterns: PAMPs) and endogenous ligands (danger-
associated molecular patterns: DAMPs). In CRC, the role of
TLRs is particularly important due to a close association between
CRC and intestinal microorganism, including bacteria, fungi,
and viruses (29–33). In addition to PAMPs, TLRs also recognize
endogenous ligands, such as endogenous RNA or DNA and heat
shock proteins (HSPs) (34, 35). TLRs also interact with the other
molecules in the cell membrane, including CD36 and EGFR (36–
38). The subsequent experiments in our study showed that
THBS2 interacts with TLR4 but not with other TLRs and that
THBS2/TLR4 promotes CRC cell proliferation. Silencing TLR4
reverses the proliferation-promoted role by THBS2 overexpression.
November 2020 | Volume 10 | Article 557730
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Extreme energy demand and essential substances synthesis are
characteristic alterations in tumor cells, allowing them to maintain
continued and rapid proliferation (39, 40). Aerobic glycolysis is a
typical change in glucose metabolism in tumor cells. To the best of
our knowledge, under normal physiological conditions, human
cells underlie oxidative phosphorylation of glucose to produce
ATP. Once meeting hypoxia, oxidative phosphorylation is
transformed into anaerobic glycolysis to maintain the ATP
production. However, this commonsense is no longer correct in
tumor cells. Tumor cells tend to exhibit a significantly glycolytic
Frontiers in Oncology | www.frontiersin.org 8
trend, even in normoxia, which was first reported by Warberg
(41). During the past decades, numerous studies have focused on
this phenomenon and tried to determine its underlying
mechanisms. From the energy perspective, related researches
confirm that unit glucose provides less ATP through glycolysis
and that glycolysis is a quicker way to produce ATP (42). In
addition, through the pentose phosphate pathway (PPP)—
a bypass of glycolysis—glucose can be transformed into
nucleotide, which is essential for tumor cell proliferation
(43). Excess lactic acid production, a glycolysis product, plays a
A B

D E
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C

FIGURE 4 | THBS2/TLR4 axis increased HIF-1a expression in CRC cells. (A) Protein expression of HIF-1a of LoVo cells in the sh-NC and sh-THBS2 group and
SW620 cells in the Vector and THBS2-OV group. (B) Protein expression of HIF-1a of LoVo and RKO cells in the sh-NC and sh-THBS2 groups. (C) Protein
expression of HIF-1a of SW620 and SW480 cells in the Vector, THBS2-OV, THBS2-OV+siTLR4, and THBS2-OV+TAK-242 group. (D) Glucose uptake of SW620 or
SW480 cells in the Vector, THBS2-OV, THBS2-OV+HIF1a group. (E) Lactic acid formation of SW620 or SW480 cells in the Vector, THBS2-OV, THBS2-OV+HIF1a
group. (F) mRNA expression of GLUT1, HK2, ALDOA, PKM2, and LDHA of SW620 and SW480 cells in the Vector, THBS2-OV, and THBS2-OV+siHIF-1a group.
(G) The viability of SW620 or SW480 cells in the Vector, THBS2-OV, and THBS2-OV+siHIF-1a group, as analyzed with CCK-8 assay. Student’s t-test was used for
statistical analysis. ns. represents no statistical difference; *p < 0.05, **p < 0.01.
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TABLE 1 | Correlation between clinical features and THBS expression.

THBS2 P value

Low (n=196) High(n=196)

Age (year) 59.51 ± 17.53 60.62 ± 17.29 0.528
Sex
Male 120 112 0.411
Female 76 84
Tumor size (cm) 4.97 ± 2.54 7.09 ± 3.12 0.0001
T stage
T1 6 5 0.221
T2 23 13
T3 50 44
T4 117 134
Lymph node invasion
yes 96 87 0.362
no 100 109
Distant metastasis
yes 40 41 0.901
no 156 155
Pathological stage
I 22 14 <0.0001
Ⅱ 95 58
Ⅲ 39 83
Ⅳ 40 41
Frontiers in Oncology | www.frontiersin.org
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Bold value showed statistically significant difference.
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FIGURE 5 | THBS2 is a potential therapeutic target for CRC. (A) Overall survival analysis based on the mRNA expression of THBS2 from the TCGA dataset.
(B) Overall survival analysis based on the mRNA expression of THBS2 from the TCGA dataset. (C) Analysis of the protein expression of THBS2 in tissue microarray,
linked to clinical information and follow-up data. (D) The protein expression of THBS2 in a CRC tissue microarray (392 cases of paired CRC and adjacent non-
cancerous tissues) by IHC. (E) Overall survival analysis of the protein expression of THBS2, based on the prognostic information of patients with CRC from tissue
microarray data. (F) Overall survival of the tumor-bearing null mice in the sh-NC, sh-THBS2, sh-NC+TAK-242, and sh-THBS2+TAK-242 group. (G) THBS2
interacted with TLR4, which enhanced aerobic glycolysis, and eventually contributed to CRC progress. Measurement data are presented as the mean ± SD.
Student’s t-test was used for statistical analysis. The Kaplan–Meier method and log-rank test were used for statistical analysis. Spearman’s rank correlation was
used to analyze the correlation between THBS2 expression and pathological staging; ***p < 0.001.
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pro-inflammatory and anti-immune role in human cancer (44,
45). TLRs have been reported to control glycolysis in immune
system cells (46, 47). In this study, we found that THBS2/TLR4
interaction regulates glycolysis, glucose consumption, and lactate
production. Hence, THBS2/TLR4 interaction upregulates
glycolysis-related genes (GLUT1, HK2, ALDOA, PKM2, and
LDHA) in CRC cells.

Metabolic switch to glycolysis in tumor cells is both
controlled by glycolysis-related enzymes and some vital
signaling pathways. In this article, we found that the THBS2/
TLR4 axis upregulates the protein expression of HIF-1a. HIF-1a
inhibition reversed the upregulation of GLUT1, HK2, ALDOA,
PKM2, and LDHA by the THBS2/TLR4 axis. Recent studies have
documented that BGN interacting with TLR2/TLR4 promotes
the mRNA expression of HIF-1a (48). However, in this study, we
found THBS2/TLR4 interaction did not affect mRNA expression
of HIF-1a, which indicated THBS2/TLR4 interaction did not
affect transcription of HIF-1a mRNA. HIF-1a degradation
is regulated by PHDs and we found THBS2/TLR4 interaction
also had no effect on PHD1 and PHD2 expression, which
indicated THBS2/TLR4 interaction did not involve in HIF-1a
degradation. Akt/mTOR/p70S6K/4E-BP1 phosphorylation plays
a vital role in regulating HIF-1a expression at the translational
level (49). Emerging evidence shows PI3K-Akt signaling pathway
is activated rapidly in response to TLRs activation (50).
Therefore, THBS2/TLR4 axis might regulate HIF-1a expression
at the translational level.

As we known, HIF-1a was a vital transcription factor, which
contributed to tumor growth in many solid tumors, including
CRC. HIF-1a accumulation contributes to glycolysis by
enhancing transcription of glycolysis-related genes, including
GLUT1, HK2, ALDOA, PKM2, and LDHA, which was the
most important method for tumor cells to get energy and
growth (51, 52). However, several reports that indicate that
HIF-1a inhibits cell proliferation (53). These controversial
results may be due to different tumor types and models.

In conclusion, we found that THBS2 interacted with TLR4,
which enhanced aerobic glycolysis and eventually contributes to
Frontiers in Oncology | www.frontiersin.org 10
CRC progress. This study provides new therapeutic insights for
patients with CRC.
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