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Abstract

Introduction

In recent years, numerous methods have been proposed to predict tissue outcome in acute

stroke patients using machine learning methods incorporating multiparametric imaging

data. Most methods include diffusion and perfusion parameters as image-based parameters

but do not include any spatial information although these parameters are spatially depen-

dent, e.g. different perfusion properties in white and gray brain matter. This study aims to

investigate if including spatial features improves the accuracy of multi-parametric tissue out-

come prediction.

Materials and methods

Acute and follow-up multi-center MRI datasets of 99 patients were available for this study.

Logistic regression, random forest, and XGBoost machine learning models were trained

and tested using acute MR diffusion and perfusion features and known follow-up lesions.

Different combinations of atlas coordinates and lesion probability maps were included as

spatial information. The stroke lesion predictions were compared to the true tissue out-

comes using the area under the receiver operating characteristic curve (ROC AUC) and the

Dice metric.

Results

The statistical analysis revealed that including spatial features significantly improves the tis-

sue outcome prediction. Overall, the XGBoost and random forest models performed best in

every setting and achieved state-of-the-art results regarding both metrics with similar

improvements achieved including Montreal Neurological Institute (MNI) reference space

coordinates or voxel-wise lesion probabilities.
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Conclusion

Spatial features should be integrated to improve lesion outcome prediction using machine

learning models.

Introduction

Acute ischemic stroke is one of the major causes of mortality and disability [1]. At the same

time, various socioeconomic factors are also related to this disease, e.g. reduced quality of life

of the patient and families, emotional distress, and high costs for the health care system. An

ischemic stroke originates from an occlusion of an artery supplying the brain with blood,

which results in a shortage of oxygen, glucose, and supply of other essential nutrients, ulti-

mately leading to a necrosis. An occlusion does not lead to an immediate necrosis of the whole

affected brain tissue due to blood flow via collateral connections. However, the ability of brain

tissue to endure this hypoperfusion is limited leading to a dynamic growth of the necrosis until

the whole brain tissue mainly supplied by the occluded artery is necrotic.

Imaging parameters derived from diffusion- and perfusion-weighted MR imaging (DWI

and PWI) are known to correlate with the voxel-wise infarct outcome [2, 3]. Owing to the high

complexity of cerebral perfusion and metabolism and dynamic lesion growth, thresholding a

single parameter map from PWI and DWI, as commonly done in the clinical routine for tissue

outcome prediction, oversimplifies the reality [4]. Therefore, a good predictive model should

aim to include as much of the available imaging data as possible. Considering this, several

multi-parametric tissue outcome prediction methods have been proposed in the past utilizing

multiple imaging parameters to predict tissue outcome after an acute ischemic stroke [3, 5, 6].

These methods utilize various machine learning approaches such as tree ensembles and artifi-

cial neural networks [7–9]. Generally, incorporating multi-parametric image information has

been shown to lead to better outcome predictions compared to single parameter thresholding.

However, most previously published multi-parametric outcome prediction methods do not

include any spatial information, essentially treating all voxels in the same way although it is

known that even white and gray brain matter have considerably different perfusion properties

[10]. However, not only white and gray matter brain tissue exhibit different sensitivity to

endure hypoperfusion, but even different anatomical and functional brain regions might differ

in this respect. Thus, the anatomical location beyond simple white and gray matter differentia-

tion in the brain might play a crucial role for predicting the tissue outcome with high accuracy.

Thus, the aim of this study was to investigate if integrating spatial information into the

machine learning model can improve the accuracy of multi-parametric tissue outcome

prediction.

Materials and methods

Patients

We retrospectively analyzed data of patients with anterior circulation strokes collected from

2006 to 2009 in five different centers. The study was approved by the local ethics committees

and institutional review boards (University Centre Hamburg-Eppendorf, Germany).

If possible, patients were treated with intravenous tissue-type plasminogen activator (IV

tPA). Criteria for patient inclusion in this study included: (1) first-ever stroke, (2) National

Institutes of Health Stroke Scale (NIHSS) > 4, (3) multiparametric MRI, including PWI and
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DWI� 12 hours of witnessed stroke onset, (4) follow-up MRI, including a FLAIR MRI dataset

acquired within 7 days of witnessed stroke onset, and (5) conservative or intravenous throm-

bolytic treatment. Among other clinical parameters, patient’s age, sex, ischemic hemisphere

side, and severity of neurological deficit (NIHSS) at admission were recorded. Patient datasets

were excluded for this secondary study in case of severe imaging or motion artifacts as well as

unsuitable post-processing results.

Imaging

Among others, acute DWI and PWI datasets as well as follow-up FLAIR datasets acquired

within 7 days after acute ischemic onset were available and used for this study. MRI with vary-

ing sequence parameters was performed with the scanner used for stroke MRI at the admitting

hospital of the contributing centers.

DWI acquisition was performed using magnetic field gradient strengths of b = 1000s/mm2,

averaged for 3–12 directions, and b = 0 s/mm2. The in-slice resolution ranged from 0.9×0.9

mm2 to 2.0×2.0 mm2, while the slice thickness ranged from 6 mm to 7 mm. The in-slice spatial

resolution of the PWI datasets also ranged from 0.9×0.9 mm2 to 2.0×2.0 mm2, while the slice

thickness ranged from 6 mm to 6.5 mm. Finally, the in-slice spatial resolution of the follow-up

FLAIR datasets ranged from 0.45×0.45 mm2 to 1.0×1.0 mm2, while the slice thickness ranged

from 6 mm to 7 mm.

Image processing

Basic processing of the DWI, PWI, and FLAIR sequences was performed using the in-house

developed software tool AnToNIa [11], briefly summarized in the following. First, apparent

diffusion coefficient (ADC) maps were generated based on the DWI sequence and subse-

quently used for segmentation of the brain tissue and cerebrospinal fluid (CSF). The brain seg-

mentation was separated into the ipsi- and contralateral hemisphere using the hemispheric

fissure approximated by a plane in 3D space constructed based on two manually defined lines

in distant axial slices. The PWI sequence for each patient was corrected for in-slice motion in a

first preprocessing step. A slice-time correction and temporal interpolation to 1 second per

frame was applied followed by a conversion of the signal curves to concentration time curves.

The arterial input function was automatically extracted for each patient using an atlas-based

approach. Therefore, the Montreal Neurological Institute (MNI) brain atlas is registered to the

average baseline perfusion image using an affine registration. After this, a segmentation in

MNI reference space that contains typical locations of the MCA and ICA including a safety

margin, which were determined using a previously generated statistical cerebrovascular atlas

[12], is transformed to the average baseline perfusion image. The corresponding concentration

time curves within this segmentation are separated into arterial and non-arterial signals using

a k-means clustering approach, whereas the concentration time curves from the cluster with

the earlier time-to-peak and higher peak are averaged to a final arterial input function using a

geometrically correct method. All automatically identified arterial input functions were manu-

ally checked for proper quality. The extracted arterial input function for each dataset was then

used for calculation of the perfusion parameter maps (CBF: cerebral blood flow, CBV: cerebral

blood volume, MTT: mean transit time, and Tmax: time to maximum of the residue function)

using a block-circulant deconvolution approach applying a threshold of 0.15 [13]. Two neuro-

radiologists segmented the infarct lesions in the follow-up FLAIR datasets in consensus.

Afterwards, the perfusion parameter maps (CBF, CBV, MTT, Tmax) and the segmented

follow-up lesions were registered to the DWI (B0) image. The contralateral brain segmenta-

tion, excluding the CSF segmentation, was then used to calculate average values of the
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perfusion parameters, which were further used for the normalization of the perfusion parame-

ter maps (subtraction for MTT and Tmax, and ratio for CBF and CBV).

For the CBF and CBV parameters, the magnitude of the measurement denotes an impor-

tant property of the brain tissue so that the ratio compared to the unaffected hemisphere is a

meaningful measurement. For temporal parameters, the magnitude of the measurements can

be affected by multiple aspects, including differences regarding the contrast injection protocol

and the cardiac output function so that the difference in time between the affected and unaf-

fected hemispheres is most informative. Thus, subtraction was used for the normalization of

the temporal MTT and Tmax parameters.

In order to incorporate comparable spatial information within the prediction models, each

DWI (B0) image was non-linearly registered to the Montreal Neurological Institute (MNI)

brain atlas in the next step using the software package ANTs, whereas the resulting transfor-

mation was used to transform all parameter maps (ADC and normalized perfusion parame-

ters) as well as the corresponding CSF and follow-up lesion segmentations into the MNI

reference space [14]. A concatenation of the calculated transformations was used for this in all

cases to prevent doubling of interpolation errors.

Visual quality checks were performed in each processing step. Patients with relevant arti-

facts in the image data, low image quality, no contrast agent in PWI sequence, suboptimal reg-

istration quality, or no visible follow-up lesions were excluded from further analysis.

Machine learning models

Three different machine learning models, including logistic regression (LR) [15], random for-

est (RF) [16], and XGBoost (XGB) [17], were employed in this work to predict the voxel-wise

infarct outcome based on the described voxel-wise diffusion and perfusion features as well as

spatial information. While LR was introduced quite early in the field of tissue outcome predic-

tion [6], RF and XGB were introduced to the field rather recently [8, 18].

LR models the relation of the expected value of a binary variable y depending on several inde-

pendent variables x1, x2, . . ., xn through the equation E yjx1; x2; . . . ; xnð Þ ¼ 1

1þe� ðb0þb1x1þ���þbnxnÞ
.

This turns out to represent the probability of a voxel to develop a lesion when y encodes the

voxel outcome as 1 (lesion) and 0 (non-lesion). LR is known to be comparably fast and its fitted

β-coefficients allow investigating the impact of changes in the x variables on the outcome proba-

bility. However, the main limitation of this model is that it is not suitable to model inherently

nonlinear relationships.

RF consists of a collection of randomly grown decision trees, which are averaged to a final

prediction. As each tree gets trained independently, the training process is easily parallelizable.

RF requires defining several hyperparameters, such as the number of trees, their depth, and

the amount of training data randomly selected for training of the individual trees. Decreasing

the latter often leads to lower correlations between individual trees. Single decision trees are

typically considered very sensitive to noise in the data and prone to overfitting. However, the

aggregation of several uncorrelated trees is typically considered more robust and generalizable

to new data. In contrast to LR, RF is able to capture non-linear relationships and interactions

in the training data.

XGB is another tree-based ensemble method, which adds some sophisticated features to the

typical gradient boosting machine (GBM) implementation. A GBM ensembles several weak

learners, e.g. decision trees, in an iterative manner. Before each round of boosting, the GBM

updates the weights of the training data according to the residuals of the aggregated predic-

tions from previous rounds. While GBM adds one tree at each stage to optimize the overall
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performance (represented by an objective function), XGB most notably adds a regularization

term to the objective function, which penalizes complex trees and leads to less complex weak

learners. Therefore, XGB is considered less prone to overfitting. The learning process can be

controlled by a rather large set of hyperparameters, which allow to regulate the overall bias-

variance trade-off. In recent years, XGB received a lot of attention and was used in many

machine learning models winning competitions while outperforming other machine learning

techniques on tabular data regarding training time. More details about its implementation and

optimizations are described by Chen et al. [17].

Spatial features

Two different spatial features were investigated in this work with respect to the potential to

improve the prediction accuracy. More precisely, all available ADC and normalized perfusion

(CBF, CBV, MTT, and Tmax) features were used for model training and testing as well as the

MNI reference atlas space coordinates (x, y, z) and voxel-wise lesion probabilities. For includ-

ing the MNI coordinates efficiently, the x-axis was shifted to the middle of the MNI space so

that the hemispheric fissure of the MNI brain atlas is located at x = 0. This axis shift allows to

differentiate hemispheres by the sign of the x-coordinate. As only unilateral strokes were

included in this study, voxels from the contralateral hemispheres were excluded for the tissue

outcome prediction in all cases. As the symmetric MNI brain atlas was used in this work, MNI

positions with the same absolute values of x, y, and z were treated as the same position. There-

fore, no differentiation between hemispheres was made.

Patient-specific lesion probability maps were generated to prevent a double dipping in the

following evaluation procedure. Therefore, the relative frequency of lesions at each voxel posi-

tion was calculated for each dataset using the other 98 datasets. In doing so, the lesion informa-

tion from the dataset the lesion probability map was generated for was not included in this

calculation. Thus, double dipping is prevented in the cross-validation scheme used for

evaluation.

Machine learning setups

The following four feature combinations were investigated for each machine learning model

described above:

1. DWI (ADC) and PWI (CBF, CBV, MTT and Tmax) features

2. DWI and PWI features, and MNI coordinates

3. DWI and PWI features, and voxel-wise lesion probabilities

4. DWI and PWI features, MNI coordinates, and voxel-wise lesion probabilities

As XGB is a high-level machine learning model with several hyperparameters and a rela-

tively low overall training time, a total of seven parameter settings, randomly selected from a

predefined equidistant parameter value grid, were evaluated (see appendix). Therefore, 36 dif-

ferent models were trained in total (4 LR-, 4 RF-, and 28 XGB models). Each RF was trained

with 100 trees and 60% of random training data per tree. For the training of all machine learn-

ing models, the number of non-lesioned voxels used for machine learning model training was

restricted to the number of lesioned voxels using random sampling in the ipsilateral hemi-

sphere for each patient, as imbalanced training sets often lead to worse results compared to

balanced training sets [19]. All tissue outcome predictions were generated in R (version 3.4.2)

[20].
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Evaluation

All lesion outcome prediction models were evaluated using the area under the receiver operat-

ing characteristic curve (ROC AUC) [21] and the Dice similarity metric [22] using a ‘leave-

one-patient-out’ cross-validation approach. In doing so, the tissue outcome for each patient

was predicted and evaluated without incorporating any data from the regarding patient within

the model training process, which also includes the lesion probability map. All machine learn-

ing models described above generate likelihood maps for tissue infarction. The ROC AUC

reflects the suitability of the likelihood score to discriminate between the two outcome classes

independently of a specific threshold. It can also be interpreted as the probability that a ran-

domly chosen infarct voxel receives a higher risk than a randomly chosen non-infarct voxel.

Hence, a ROC AUC of 1.0 would describe a perfect model, while a ROC AUC of 0.5 would

indicate that the model is not advantageous compared to random guessing. In contrast to this,

the likelihood maps have to be binarized for the calculation of the Dice similarity metric. How-

ever, the likelihood calculation is not comparable between models so that a single threshold

(e.g. 50%) might not lead to optimal results across all models. Thus, the probability threshold

needs to be optimized for every model, setup, and cross-validation run using the training data.

Therefore, all lesion prediction maps were first generated using the cross-validation scheme

described above. Afterwards, the optimal threshold leading to the overall best average Dice

score for the actual lesion prediction was determined also using cross-validation principles.

More precisely, the patient-individual optimal threshold for lesion probability binarization

was determined by identifying the threshold that maximizes the Dice coefficient using all

lesion predictions and corresponding true follow-up lesions from all other training datasets.

Then, the optimal threshold was applied for binarizing the tissue outcome prediction on the

test patient and its corresponding Dice coefficient was calculated. After calculating the ROC

AUC and Dice coefficient for each patient within the cross-validation, the averages and stan-

dard deviations of these metrics were calculated for each model setup.

Results

Patient characteristics

Table 1 shows the characteristics of the 99 patients included in this study. Overall, the patients

from the different centers were comparable in terms of age, the median NIHSS, gender distri-

bution, and affected hemisphere. Contrary to this, the treatment distribution was different

among the centers and the patients from two centers showed considerably smaller follow-up

lesion volumes but also contained the smallest patient samples among the contributing centers.

Lesion prediction results

Table 2 shows the quantitative results of the lesion prediction models using the ROC AUC and

Dice metrics. Overall, two XGB models, which included spatial information, performed best

Table 1. Characteristics of the 99 included patients included in this study.

Origin N Left/right IV-tPA/no tPA Follow-up lesion volume (in ml) Male/female Age NIHSS

Center 1 12 6/6 12/0 16.49 (±30.67) 7/5 65.2 (±7.9) 9.08 (±5.3)

Center 2 2 0/2 2/0 7.17 (±1.02) 1/1 74.5 (±5) 8.5 (±5)

Center 3 28 15/13 14/14 36.99 (±87.25) 14/14 68.7 (±12.1) 12.6 (±6.1)

Center 4 19 11/8 16/3 27.98 (±49.23) 10/9 70 (±12.5) 9.12 (±4.1)

Center 5 38 24/14 19/19 31.62 (±93.48) 23/15 64 (±14.1) 11.2 (±6.6)

All 99 56/43 63/36 28.62 (±79.26) 55/44 66.8 (±12.6) 10.9 (±6)

https://doi.org/10.1371/journal.pone.0228113.t001
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regarding the average ROC AUC and Dice values, achieving a ROC AUC of 0.89±0.09 (setting

3 using the MNI coordinates) and a Dice coefficient of 0.395±0.229 (setting 7 using the lesion

probabilities). The latter setting also achieved the highest average of the ROC AUC and Dice

coefficient. Both models revealed highly significant improvements (p< 0.01) compared to any

other model without spatial information—regarding both metrics and effect sizes of 0.064

(ROC AUC) and 0.048 (Dice) compared to the best models without spatial information.

The XGB models with the highest average ROC AUC and Dice coefficients per feature

combination (see Table 2) were investigated for further analysis. In general, these XGB and all

RF models performed significantly better (p< 0.001) regarding both metrics compared to the

LR model using the respective feature setup. Significant benefits of XGB over RF (p< 0.01) for

both metrics were only obtained for the feature combination ADC, PWI, and lesion probabil-

ity. For the feature combinations ADC and PWI (ROC AUC) as well as ADC, PWI, MNI, and

lesion probability (Dice), significant improvements were only found for one metric. Further-

more, model specific comparisons between feature settings with and without spatial features

revealed significant performance improvements when incorporating spatial information for

all XGB (p< 0.0001) and RF (p< 0.01) models (Fig 1). For LR, spatial features improved the

performance in all cases except when MNI coordinates were used exclusively, which even had

a negative effect on the Dice coefficient. Performance improvements in ROC AUC were signif-

icant (p< 0.00001) for both settings containing the lesion probability. An illustration of the

final infarct prediction for models without and best models with spatial information for a

selected patient can be found in Fig 2.

Contribution of features for final infarct prediction—Gain

One of the properties of XGB, which is very convenient, is that it is possible to determine the

importance of features rather easily. Therefore, the relative contribution of different features to

the best XGB models was determined based on the Gain per feature, which corresponds to the

Table 2. Average ROC AUC and Dice results from the leave-one-patient-out cross-validations for each model.

Model Features Setting mean ROC AUC mean Dice training time (s)

LR ADC + PWI 0.813±0.107�� 0.317±0.220�� 41

LR ADC + PWI + MNI 0.827±0.100�� 0.292±0.229�� 48

LR ADC + PWI + LP 0.874±0.108�� 0.319±0.238�� 45

LR ADC + PWI + MNI + LP 0.877±0.099�� 0.322±0.232�� 44

RF ADC + PWI 0.826±0.104�� 0.341±0.218�� 614

RF ADC + PWI + MNI 0.891±0.092 0.383±0.226�� 628

RF ADC + PWI + LP 0.883±0.104�� 0.371±0.227�� 622

RF ADC + PWI + MNI + LP 0.889±0.092 0.368±0.228�� 758

XGB ADC + PWI 7 0.830±0.105�� 0.346±0.220�� 77

XGB ADC + PWI + MNI 3 0.893±0.085 0.387±0.213 179

XGB ADC + PWI + LP 7 0.888±0.101 0.395±0.229 95

XGB ADC + PWI + MNI + LP 6 0.887±0.098� 0.386±0.224 157

Best results according to each metric are highlighted in bold text. Significant differences to this best-performing method computed with a one-sided paired student’s t-

test are marked with a star (�) for a confidence interval of 95% (p < 0.05) and two stars (��) for a confidence interval of 99% (p < 0.01). Nominal p-values are reported

without correction for multiplicity, similarly as in [23]. For the XGB models, the best setting for each feature combination in terms of average of ROC AUC and Dice

metric was used. The full table including all XGB results can be found in the online supplement. Training time refers to the time required to train one machine learning

model on the whole dataset. ADC = apparent diffusion coefficient, PWI = perfusion-weighted MRI parameters, MNI = MNI coordinates, LP = lesion probability.

https://doi.org/10.1371/journal.pone.0228113.t002
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average training loss reduction gained when using a feature for splitting during the training

process. The Gain has the advantageous property that its sum over all features is equal to one.

As shown in Fig 3, the ADC feature contributes almost a constant average of 14.4% (±5.5%)

across all input feature setups. The Tmax and MTT perfusion parameters were found to result

in the highest Gains regarding the perfusion parameters. Tmax outperformed MTT in the

three settings that included spatial features while MTT had a considerably smaller Gain value

in the two models that included the lesion probability feature. CBF and CBV were found to

have a rather low impact that decreased even further with the inclusion of spatial features.

Fig 1. Model performances. Boxplots representing ROC AUC and Dice coefficients for each feature combination for

all LR, RF, and the best XGB models.

https://doi.org/10.1371/journal.pone.0228113.g001

Fig 2. Prediction example for a selected patient. Imaging parameters, lesion probability map (LP), and true follow-

up FLAIR datasets (top row), and predictions represented by binary infarct prediction (middle row) and lesions

likelihood maps (bottom row) for models without and best models with spatial information, as well as the

corresponding final follow-up lesion for a selected patient. For this patient, all binarized prediction maps, except those

generated using LR including the lesion probability (A), correspond well with the final infarct outcome. The prediction

maps mostly differ in the spatial distribution of voxels with lower (B) to medium (C) infarct risk. While these seem

more randomly distributed for models containing only ADC and PWI parameters, the low risk areas (B) are

concentrated in areas of low lesion probabilities and medium risk areas (C) are concentrated in areas of high lesion

probabilities for models containing spatial information. However, this leads to smoother lesion risk prediction maps

and the infarcted areas remain clearly distinguishable in case of RF and XGB. In case of LR, a strong overestimation of

the infarct occurs in the binarized map (D).

https://doi.org/10.1371/journal.pone.0228113.g002
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Generally, the specific contribution of input features was found to be highly dependent on the

number of features used for the outcome prediction. However, Tmax and MTT vary especially

strong with standard deviations of 12% (Tmax) and 16.1% (MTT).

For the feature combination DWI, PWI, and MNI coordinates, the x, y, and z coordinates

contribute a nearly equal amount of 12% Gain each, which sums up to over a third of the over-

all Gain (37%). Similarly, in the absence of MNI coordinates, the lesion probability map con-

tributes 36.2%. Finally, when adding the MNI coordinates and the lesion probability features

together, the lesion probability contributes significantly more than any other feature (65.2%)

to the overall Gain. In contrast, the x, y, z MNI coordinates lose a lot of their impact and con-

tribute only a total of 8% (x = 3.3%, y = 3.2%, and z = 1.5%).

Contribution of features for final infarct prediction—Shapley values

Shapley values were introduced in 1953 by Lloyd Stowell Shapley in the field of cooperative

game theory. They provide a concept to divide a reward among a coalition of cooperative play-

ers. Each player receives an amount of the reward according to his contribution to the surplus

generated by the coalition [24]. The concept has been recently transferred to machine learning

by Lundberg and Su-In Lee [25]. Here, the role of the reward (including the surplus of the coa-

lition) corresponds to a prediction, players correspond to features, and a player’s contribution

corresponds to the value of a feature. Therefore, Shapley values provide a concept to decom-

pose the output of a machine learning model into contributions from its single features. They

can be interpreted in similar manner as a feature coefficient by its feature value in the context

of a linear model. The Gain was employed to measure the contribution of each feature during

training. To determine the impact of the features and their values on new predictions, Shapley

values were calculated for each prediction of the four best XGB models considering each fea-

ture combination (see Fig 4).

Shapley values possess some desirable properties and are often considered as state of the art

regarding recent debates about interpreting black box machine learning models. One of these

properties is that the sum of the Shapley values of all features for one voxel (including the bias)

corresponds to the model’s infarct risk prediction at this voxel (on the logit scale). This allows

plotting the average feature contribution to the predictions of lesion and non-lesion outcome

voxels for each feature, see Fig 5.

As Shapley values for several features can simply be added, the individual predictions can

be decomposed into contributions of each feature (see Fig 6).

Fig 3. Gain per feature. Gain per feature (in %) of the best XGB model settings for each feature combination analyzed.

https://doi.org/10.1371/journal.pone.0228113.g003
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Contribution of features for final infarct prediction—Permutations

In the previous two subsections, the global feature contributions during the training of the best

XGB models were investigated in terms of Gain and Shapley values to determine feature con-

tributions for each prediction individually. To determine the contribution of each feature in

terms of Dice and ROC AUC during the cross validation, random permutations were applied

to each of the model’s features on the out of fold data—one feature at a time. Thus, the regard-

ing feature became uninformative for prediction and the change in the average Dice coefficient

and ROC AUC compared to a model with fully informative input can be associated with the

Fig 4. Mean Shapley values and corresponding mean feature percentiles for both voxel outcomes. Mean Shapley

values (x-axis) and mean feature values in terms of percentiles (color encoding) for the best XGB models (per feature

combination). The means were calculated for both outcomes (lesion yes/no). As the bias is a constant term per model,

it only varies between the cross-validation folds and is the same for lesion and non-lesion voxels in each cross-

validation run. The color encoding of the dots represents the means of the corresponding feature values (in lesion or

non-lesion voxels) in terms of their percentile in the dataset, e.g. the blue dots in the positive ranges of the Shapley

values for the lesion probability (LP) indicate that corresponding LP feature values were relatively high on average in

terms of LP percentiles in the underlying datasets. (Positive Shapley values indicate a positive correlation between the

respective feature and the infarct risk prediction. However, the impact on the final prediction is not linear, as XGB

calculates Shapley values on the logit scale).

https://doi.org/10.1371/journal.pone.0228113.g004

Fig 5. Waterfall breakdown of mean Shapley values per outcome and model. Green bars represent average Shapley

values of predictions for voxels with non-lesion outcome. Thus, the sum over all green bars corresponds to the average

out of sample prediction score (on the logit scale) for non-lesion voxels. Likewise, the red bars correspond to average

Shapley values of predictions for voxels with a lesion outcome.

https://doi.org/10.1371/journal.pone.0228113.g005
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loss in information carried by the original feature (see Fig 7. The basic idea to measure permu-

tation importance for features goes back to Breiman [16].)

Contribution of features for final infarct prediction—Summary

To compare the contribution of the features to the final infarct predictions across models

and measures (Gain, Shapley values, and decrease in ROC AUCs and Dice coefficients after

feature permutation)–with respect to the four best XGB models—the following procedure

was applied. First, the contribution of the MNI coordinates (for Gain and Shapley values)

was aggregated by adding them up to a combined MNI feature. In case of Gain, this is con-

sidering that the information provided by the coordinates is literally orthogonal and also

Fig 6. Shapley value decomposition. Shapley value decomposition of the predictions from the XGB model

incorporating DWI, PWI, MNI, and LP (setting 6). The sum of the intercept and the Shapley values for DWI, PWI,

MNI, and LP correspond to the prediction of the follow-up lesion on the logit scale (bottom row). The Shapley values

for PWI and MNI are themselves sums of the Shapley values of CBF, CBV, MTT, Tmax (PWI) and X, Y, Z (MNI; top

row). Further addition of the MNI and LP Shapley value maps would lead to a high-level spatial Shapley value map

incorporating all spatial features from the model. Similar Shapley value maps for the other three best XGB models per

setting can be found in the online supplement.

https://doi.org/10.1371/journal.pone.0228113.g006

Fig 7. Permutation importance per feature. Average absolute decrease in Dice and ROC AUC metrics for

independent permutations of each feature. For the calculation of the Dice coefficients, the same approach for

determining the optimal threshold for binarization of the prediction maps as described in the methods section was

employed. As simple permutation of only one of the x, y, or z coordinates may lead to individual coordinates that have

not been seen by the model during training, additionally x, y, and z coordinates were supplied in combination that

resulted from permutations of MNI coordinates as single coordinate points.

https://doi.org/10.1371/journal.pone.0228113.g007
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supplementary. Therefore, the paths of the trees in the XGB models arguably contain splits

among several MNI dimensions. For Shapley values addition occurs just naturally as show-

cased above. In case of the permutation measures, the aggregation was not needed as the

contribution of the MNI coordinates was explicitly evaluated via joint permutation of the

coordinates. Afterwards, four rankings—one per metric—were obtained for each model. In

case of Shapley values, features were ordered by the average difference between Shapley val-

ues in lesion and non-lesion voxels (see Fig 5). Finally, the rankings were normalized

according to the number of features in each model and evenly scaled between 0 (lowest

rank) and 1 (highest rank).

In summary, the spatial lesion probability (LP) feature achieved the highest ranking-score

(0.975) and was the top feature among both models that included it, only exceeded in terms of

average Gain by Tmax for the DWI-PWI-LP model. The MNI coordinates (0.896), contributed

most to the DWI-PWI-MNI model and third most to the DWI-PWI-MNI-LP model where it

placed behind LP and Tmax—regarding the average Gain. Tmax had the third highest average

ranking score (0.785) and achieved the highest rank among the PWI features. These were

mostly ranked in the order Tmax—MTT (0.442)—CBF (0.215)–CBV (0), except for the Gain-

rankings of the DWI-PWI model, where Tmax ranked behind MTT and the DWI-PWI-M-

NI-LP model, where CBF was ranked ahead of MTT. The fourth highest average rank was

achieved by ADC (0.623). It was always ranked above CBF and CBV. Permutations of ADC

resulted in the second highest decrease in the Dice coefficient ranked after the spatial features

and, in case of the DWI-PWI-MNI model also after Tmax. Furthermore, it contributed third

most in terms of ROC AUC permutation importance and Shapley values, following the spatial

features and Tmax. The only feature besides the spatial ones and Tmax which ranked higher

than ADC, was MTT in the Gain-rankings of the DWI-PWI and DWI-PWI-MNI models.

Discussion

Tissue outcome prediction

The main finding of this work is that advanced non-linear machine learning models including

spatial information as features perform superior predicting tissue outcome in acute ischemic

stroke patients compared to the corresponding models that do not include spatial information.

Only in case of the linear model, the exclusive inclusion of MNI coordinates without the spatial

lesion probability information led to a decrease of the average Dice coefficient. Furthermore,

the tree-based XGB and RF models achieved competitive results regarding the ROC AUC and

Dice metrics, clearly outperforming the linear model.

Spatial features in linear models

Considering the inhomogeneity and complexity of the brain, it does not seem reasonable to

assume a simple linear relation between the different aspects of brain physiology and the spa-

tial infarct risk. Thus, locally varying infarct risk can only be incorporated in a linear model

by the lesion probability mask but not by Cartesian coordinates within the brain. Linear

models have their strengths in modelling datasets consisting of (possibly sparse) categorical

and continuous features, which are monotonous (at least under transformations). Thus, it is

expected that raw MNI coordinates, which describe a linear direction within the brain, have

no practical use for the outcome prediction and even lead to decreased accuracy with respect

to the Dice score if used without the lesion probability information. However, as there seems

to be some pattern in the overall dataset regarding the spatial occurrence of infarcts as can be

seen in the lesion probability map (Fig 2), a small ROC AUC increase of 1.3% was observed.

This rise in the ROC AUC compared to the simultaneous decrease of 2.5% in the Dice
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coefficient results from a better detection of correctly classified non-lesion voxels (true nega-

tives), as these represent most of the brain and are not taken into account for the Dice coeffi-

cient calculation.

In contrast to MNI coordinates, the sole incorporation of the lesion probability led to a

significant increase of the ROC AUC (6.09%) and a nearly equal Dice coefficient. Since a con-

tinuous, monotonous relation between positional infarct probability in the training data and

the test data is to be expected, the lesion probability is much easier to incorporate for the lin-

ear model compared to the MNI coordinates. Consistently, the incorporation of the MNI

coordinates in addition to the lesion probability did not lead to any further significant

improvement of the evaluation metrics. However, apart from quantitative improvements in

the evaluation metrics, visual checks revealed that high infarct risk probabilities in individual

patients often correspond to areas that also show high lesion probabilities in the population-

based lesion probability map independent of the other imaging features. This unwanted cor-

respondence led to considerable over- and under-estimations of the predicted lesion com-

pared to other models used in this study (Fig 2). As there is no evidence for direct causation

between population-based lesion probabilities and the infarct outcome in the individual

patient, the linear model clearly lacks the interaction of the lesion probability feature and the

imaging parameters, which are known for their causal relation to the infarct outcome. There-

fore, this model is likely to be not generalizable to cases with differing spatial distributions of

the infarct areas.

Spatial features in tree models

In contrast to the linear model, the results suggest that the XGB and random forest models are

capable of handling MNI coordinates directly in a meaningful manner. These models consist

of iteratively (XGB) or parallel (random forest) trained tree models that split features several

times. Therefore, the ensemble trees are very robust handling categorical features with fixed

level-ranges and non-monotonous, continuous variables, which might contain several local

maxima. Applying such trees to a feature set containing the MNI coordinates possibly leads to

several splits along the x, y, and z direction in MNI space. Each of these split points is basically

a two-dimensional hyperplane in the MNI space. Combining all these hyperplanes will frag-

ment the MNI space into multiple small areas. As the individual trees map different risk proba-

bilities to each side of the spatial splits, each parcel provides an accumulated different ‘basic’

infarct risk. Therefore, the combination of these parcels provides a rough infarct probability

map with spatial perfusion thresholds, learned from the data. The granularity of these parcels

is most likely lower compared to a voxel-wise lesion probability map. However, in principle,

this is only restricted by the variety of the infarct prevalence along the spatial dimensions in

the training data and the hyperparameter setting selected for the training of the regarding tree

ensemble. The similar results for the XGB and RF settings, containing the MNI coordinates or

the lesion probability information, suggest that both spatial features capture mostly similar

spatially dependent information. In contrast to the logistic regression, these models also did

not reveal any considerable issues regarding over- or underestimation of the lesion size in

areas of high or low lesion probabilities. This might be the case because both tree ensembles

are able to automatically identify interactions between the spatial and imaging features in the

training data. Therefore, a high or low lesion probability might not substantially affect the pre-

diction in individual patients as the regarding MNI coordinates or lesion probability depen-

dent splits are just parts of a path in a tree, which typically contains further splits of the ADC

and perfusion parameters.
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Contribution of features for final infarct prediction in XGB models

As consistently indicated by the rankings regarding the average Gain per feature, the differ-

ences in the average Shapley values for lesion and non-lesion values, and the permutation

importance measured by the decrease in ROC AUCs and Dice coefficients for random permu-

tations of one feature at a time during the cross-validation, the spatial features almost always

exhibited the highest contribution. While the magnitude of lesion probability contribution

was comparatively high and always ranked higher than the contribution of the (aggregated)

MNI coordinates, the information encoded in these two spatial features seems to be compara-

ble. This is supported by the comparable cross-validation results regarding ROC AUC and

Dice coefficient, the theoretical aspects mentioned in the last paragraph as well as the visual

inspections of the Shapley value maps for MNI and the lesion probability in the DWI-P-

WI-MNI and the DWI-PWI-LP models (see S1 Fig). However, as the distributions of both

Shapley value maps seem to be highly correlated with the lesion probability map (see Fig 2 for

visual inspection) and considering the high contribution of the spatial features, generalization

of the spatial models to new datasets should be conducted with care. The high magnitudes of

the lesion probability and the MNI coordinate contributions might raise the concern that

interactions between spatial and PWI/DWI features possibly learned by the XGB models

might not be generalizable if the trained model is applied to cases with strokes in different

areas such as the brain stem or posterior flow territory. Thus, it is likely that these models

would benefit from the integration of datasets with infarcts in other brain regions and possibly

differing occlusion locations.

Apart from the spatial features, the most informative features across all models were Tmax

followed by ADC and MTT. While MTT was especially contributing to the high average Gain

in the model training phase, permuting ADC revealed comparatively high decreases in the

Dice coefficient. Many previous studies have used ADC to determine the infarct core while

Tmax and MTT are mostly used to define the penumbra of an acute ischemic stroke. Thus, it

is not surprising that these features have a high informative value for tissue outcome predic-

tion. In contrast to these findings, the CBF and CBV features were almost always the least con-

tributing features, which could be explained by the high variation of CBF and CBV in brain

tissue (e.g. white and gray matter difference).

State of the art—ISLES challenges

To address the challenge of comparability between methods, the Ischemic Stroke Lesion Seg-

mentation challenge (ISLES) was started in 2015 [9]. While the initial challenge was focused

on ischemic stroke lesion segmentation, the 2016 and 2017 challenges aimed at lesion outcome

prediction after ischemic stroke. During the challenges in 2016 and 2017, 24 teams employed

different strategies and methods competing to predict the 90-day follow-up tissue outcomes

for 19 (2016) and 32 (2017) patients, respectively. For all competitors, n = 35 (2016) and n = 43

(2017) patient datasets were available to train their algorithms. These datasets included pre-

generated ADC, CBF, CBV, MTT, and Tmax maps. Intentionally, only minimal pre-process-

ing steps were uniformly applied to the data. In 2016, mostly predictions based on classical

machine learning methods were submitted, while the participants made exclusive usage of

deep learning models in 2017, which mostly outperformed previous methods. To the best of

our knowledge, only Robben et al. [26] and McKinley et al. [27] incorporated similar spatial

features in the form of atlas coordinates, as used in this work. None of the submissions

employed extreme gradient boosting. Monitored performance metrics included the precision,

sensitivity, Hausdorff distance, average symmetric surface distance, and the Dice coefficient.

The overall winning method in 2017 achieved a Dice coefficient of 0.31±0.23, while the best
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method regarding the Dice metric only achieved a Dice coefficient of 0.32±0.23. The best per-

forming approach (XGB in combination with lesion probability) presented in this work

achieved a considerably better average Dice coefficient 0.395±0.229. However, the datasets

used for training and evaluation are different so that the results are not directly comparable as,

for example, smaller lesions are more challenging to predict and lead to smaller Dice coeffi-

cients so that no direct comparison is possible. In order to establish comparability and repro-

ducibility in this research area, all datasets from these challenges remain available online.

However, in this research project, no datasets from the ISLES challenges were used because the

raw datasets PWI and DWI were not made available and the calculated ADC and perfusion

maps were likely processed differently than the datasets used in this work, potentially intro-

ducing a systematic bias. For this reason, the choice was made to use a much bigger database

to allow improved training of the machine learning models.

Although remarkable progress regarding the quality of lesion outcome prediction and

sophistication of employed methods has been achieved in recent years, a general breakthrough

has not been reached so far. Even with the increasing amount of available training data,

improvements in the prediction results seem to be limited by the complex nature of the

problem.

A major conclusion of the ISLES challenge results was that current or new methods should

incorporate clinical information as well as a priori physiological information on stroke infarc-

tion, while keeping the transparency and interpretability of employed methods in mind. The

machine learning models described in this work incorporate spatial information in the form of

probability maps and MNI coordinates into existing and recently developed multi-parametric

machine learning methods, which allow investigating the importance of the various features,

thus, addressing these considerations.

State of the art—Other convolutional networks

Recently, Nielsen et al. proposed a deep convolutional neural network to include spatial infor-

mation for voxel-wise stroke prediction of 30 days follow-up tissue outcome [7]. A total of

nine biomarker maps were used in different convolutional neural network architectures.

Using 158 datasets for training and 29 patients for validation, an average ROC AUC of

0.88±0.12 was reported for the scenario, which is in the range of the highest ROC AUC of

0.89±0.09 achieved by the best XGB model in this study (setting 7 incorporating ADC and

PWI perfusion features as well as MNI coordinates). In contrast to the smooth prediction

images of their method, the prediction results of the models achieved in this work appear

more scattered, which might be a result of noise and other imaging artifacts in the data that

have a reduced effect if multiple voxels within a neighborhood are analyzed as in convolutional

neural networks. However, scattered noise artefacts in the final prediction map can also be

removed easily using simple neighborhood analysis methods. In contrast to the reported five

days of training for the deep convolutional neural network, the XGB method achieving compa-

rable ROC AUC results took only 95 seconds to train on a conventional computer, which

highlights the potential of this machine learning method to experiment with other setups more

quickly but also suggest that tree ensemble methods such as random forests or XGB should be

also used as a comparison method instead of the simple linear model when evaluating new

stroke prediction methods employing convolutional neural networks.

State of the art—XGB

Despite the highly competitive performance of the XGB algorithm published in 2014, its

application in acute stroke tissue outcome prediction is still rare. Only recently, Livne et al.
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presented a stroke prediction method with a reported ROC AUC of 0.88 achieved using a

leave-one-out cross-validation based on 195 patients, from two studies [8]. For modelling, 12

biomarkers were used including normalized T2-FLAIR, DWI, and 10 PWI features. However,

no spatial information was used. Hyperparameters were tuned within each training process

and the data was sampled to balance the class differences of lesions and non-lesion voxels. The

follow-up times were not reported. Regarding the differences to this study, it is speculative to

explain the comparably high ROC AUC of 0.88, which was achieved without incorporation of

spatial features. One reason might be the evaluation strategy in our work, which did not take

into account voxels in the contralateral hemisphere, possibly leading to lower true negative

rates and a decrease of the ROC AUC. Unfortunately, no Dice coefficients were reported by

Livne et al., which would have shed light on this aspect. However, it seems beneficial to com-

bine the imaging features used in the study by Livne et al. with the spatial features suggested in

this work.

Reproducibility, general applicability, limitations, and outlook

It should be highlighted that the performance of any machine learning model depends on the

data used for training and testing. Imaging data usually does not only differ due to the acquisi-

tion process, but also due to patient-individual characteristics and stage of the stroke. Within

this context, it also needs to be mentioned that the time of follow-up imaging was ranging

between 1 and 7 days, which can also influence the prediction accuracy as the lesion change in

appearance during this time, for example, due to changes in water accumulation within the

lesion. Furthermore, varying steps in the preprocessing pipeline, differing software, and

observer differences regarding the segmentation of the final lesion make it hard to compare

results between different experimental setups. As the data used in this work was collected in

different hospitals with the same study protocol and our preprocessing pipeline contains only

standardized analyses and image sequences, the results described in this work should be repro-

ducible using comparable datasets. It should be mentioned that the proposed lesion outcome

prediction models were only applied to datasets of patients with first-ever unilateral strokes.

Thus, it remains to be evaluated how these models would perform in patients with secondary

or bilateral strokes.

However, for machine learning models that are not as robust as tree-based models regard-

ing the properties of raw MNI coordinates, incorporating only lesion probabilities seems

suggested, especially since the performance was rather similar. Furthermore, it needs to be

highlighted that this is not the first method to employ the MNI coordinates in this domain.

Robben et al. [26] and McKinley et al. [27] used these features among other engineered spatial

features within the ISLES 2015 and 2016 challenges (http://www.isles-challenge.org/). Both

used these features within a modified approach based on (extreme) random forests for ische-

mic stroke lesion segmentation. However, the contribution of the MNI coordinates within

these approaches was not discussed.

It needs to be pointed out that the spatial features used in this work do not account directly

for the correlation that can be expected between neighboring voxel and each voxel is still

treated independent of the neighborhood. This problem can be partly solved by postprocessing

methods, e.g. applying connected component analyses or Markov random fields [28]. How-

ever, further research is needed to directly model spatial correlation in the prediction model.

Within this context, it might also be beneficial to include lesion probability maps within a

multi-modal deep convolutional neural network approach for tissue outcome prediction.

Finally, it needs to be pointed out that the cross-validation used in this work has some disad-

vantages compared to using a completely independent test set. Although the multi-center
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sample available for this study is comparably large, it is likely not large enough for training of

the machine learning model if the data would have been split into independent training, vali-

dation, and test sets. Thus, the generalizability and reproducibility of the proposed machine

learning models incorporating spatial features should be investigated in more detail using an

independent test set in future.

In conclusion, the incorporation of spatial information can lead to significant performance

improvement for tissue outcome prediction of patients suffering from acute stroke.
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each model was run with the following similar properties: objective = binary: logistic;
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S1 Fig. Shapley value decomposition maps. Shapley value decomposition maps of the predic-
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