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Abstract: Delivering transgenes to human cells through transduction with viral vectors constitutes
one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the
most promising vectors for these approaches. When the genetic modification of the cell must be
performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of
off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined
by the characteristics of the surface proteins carried by the vector. In this regard, an important
property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses,
widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved
at the molecular level and what the properties and the potentialities of the different envelope proteins
that can be used for pseudotyping these vectors are.
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1. Gene Therapy Using Viral Vectors

According to the definition provided by the NIH Genetics Home Reference, gene therapy is an
experimental technique aimed at treating or preventing a disease by using genes [1]. This can be
achieved by various means. When the disease is of genetic origin and, particularly, when it is caused
by a single defective gene, the ultimate goal is replacing the defective gene with a wild-type one.
This has been possible only recently with the development of powerful genome editing techniques [2–4].
Although, these are not applicable routinely and alternative approaches are followed, the most common
of which is the introduction of a gene conferring a dominant wild-type phenotype to the modified
cell [5]. Whatever the approach followed, gene therapy relies on the use of vectors that allow the
efficient genetic modification of cells, or tissues, combined with a high specificity for the target cells to
reduce adverse effects [6]. Introducing exogenous genetic material in cells is efficiently performed by
cellular “parasites”—phages for bacteria or viruses for eukaryotic cells. In particular, the vast range of
human viruses provides a large panel of promising tools for vectorization (by transduction) in sight of
intervention on human cells. How to reprogram human viruses for the purposes mentioned above is a
major challenge in molecular medicine.

A main watershed in gene therapy is whether the genetic modification of the cell must be carried
out ex vivo or in vivo. If the cells’ target for the therapy can be isolated from the patient, modified ex
vivo, and reinfused in the patient, essentially no specific tropism is required for the vector since the
cells to modify are the only ones it comes into contact with [7–10]. In this case, the vectors can therefore
carry pan-tropic envelope proteins such as, for example, the vescicular stomatitis virus (VSV) envelope
protein G (see below). If, in contrast, the modification of the cells must be carried out in vivo, a high
specificity for the target cells is required to avoid off-target transduction. The nature of the envelope
proteins carried by the viral vector is the major determinant for the specificity of transduction.
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Most gene therapy clinical trials carried out to date have relied on the use of adeno-associated
vectors (AAVs) or retroviral vectors, which might be derived from γ-retroviruses or lentiviruses [11].
Modification of cells in vivo (liver, muscles, central nervous system and retina) has been restricted to
the use of AAV-derived vectors, while ex vivo approaches (for the genetic modification of T cells and of
human hematopoietic stem and progenitor cells) have relied on the use of vectors derived from murine
γ-retroviruses and human lentiviruses. The neat division between clinical trials where AAV vectors
have been used and those involving retroviral vectors is in part explained by the natural tropism of the
viruses from which these vectors have been constructed.

AAV are non-enveloped non-integrative single-stranded DNA viruses of the Parvoviridae family.
They require coinfection by adenoviruses to replicate and are non-pathogenic for humans. They infect
replicating as well as quiescent cells and enter into the target cells by interaction with sialic
acid, heparan sulfate, or galactose present on their surface, and therefore possess a large tropism.
Differences in the capsid protein of AAV determine cell type-specific preferences and define the
existence of the eleven serotypes of this virus. For gene therapy, according to the type of target tissue,
serotypes that naturally target that type of tissue, when such serotypes exist, are the preferred choice
for building a viral vector. To date, in gene therapy, eight serotypes (1–2 and 4–9) have been used to
orient viral transduction toward the tissue of interest [12].

In sharp contrast to AAV, γ-retroviruses and lentiviruses do not present different serotypes
and no variation in tissue specificity is found for these viruses, which both target blood cells.
For example, in human immunodeficiency virus (HIV), despite its impressive genetic diversity,
which is particularly high at the level of its envelope proteins, infection remains essentially restricted
either to CD4+/CCR5+ or CD4+/CXCR4+ cells. However, an interest of retroviral-derived vectors
(and therefore of lentiviral-derived vectors as well) comes from the possibility of replacing the original
envelope proteins with those of other viruses, a process called pseudotyping. In this review article,
we focus on the perspectives on which pseudotyping lentiviral-derived vectors (LV vectors) open and
how this is achieved.

2. Lentiviruses and Gene Therapy

Retroviruses are enveloped viruses that integrate in the infected cell. This property has made
of these viruses the preferred choice for developing vectors when the expression of the transgene
must be stable or when the transgene must be inherited by the progeny of the transduced cell.
For these reasons, retroviral vectors have been chosen for the expression of transgenes in hematopoietic
stem and progenitor cells (HSPCs) and, more recently, they have been used for the transduction of
peripheral blood cells for the generation of CAR-T cells [13]. Gammaretroviral vectors derived from
Moloney murine leukemia were used for the earliest gene therapy assays using retroviral vectors.
They have been successful in the treatment of several primary immunodeficiencies, such as the
X-linked severe combined immunodeficiency (SCID) or the adenosine deaminase deficiency-induced
SCID [14–16], and they have been employed in the treatment of the Wiskott–Aldrich syndrome and of
X-linked chronic granulomatous disease [17–19]. However, γ-retroviral vectors have been progressively
replaced by the lentiviral vectors (LV vectors), mostly due to the lower levels of induction of the innate
immune response they trigger [20,21] and, in particular, for biosafety reasons. Indeed, LV vectors
predominantly integrate in transcription units [22], rather than in regions controlling gene expression
as promoters and enhancers that are, instead, the preferential sites of integration for gammaretroviral
vectors [23,24]. This difference has been shown to lead to a lower probability for lentiviruses to cause
insertional oncogenesis [25,26]. LV vectors have thus been used in most recent trials, always for
the treatment of blood diseases. Besides treating the same diseases with these new vectors as are
treated with γ-retroviral vectors mentioned above [27–31], β-thalassemia [32], Fanconi anemia [33],
metachromatic leukodystrophy [34,35], mucopolysaccharidosis type I [36], adrenoleukodystrophy [37]
and sickle cell disease [38] have also been made the object of clinical trials using LV vectors.
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3. Molecular Biology of Lentiviruses

Lentiviruses belong to the subfamily Lentivirinae of retroviruses [39]. They are considered as
“complex” retroviruses, due to the presence of additional genes, compared to other retroviruses. As all
retroviruses, they are enveloped integrative viruses. The viral particle is constituted by a spheric matrix
shell that lies immediately underneath the lipid bilayer, which consists of a patch of the cell membrane
that is carried over during viral budding from the infected cell [40]. More internally, a fullerene-shaped
core [41] contains the genomic RNA that is constituted by a single-stranded positive-sense molecule,
present in two copies in the viral particle, in a dimeric form. Upon infection of the host cell (that occurs
after recognition of a specific receptor on the surface of the cell) the viral capsid enters the cytoplasm.
The availability of the nucleotides, to which the capsid is permeable, allows the initiation of reverse
transcription. This results in the conversion of the genomic RNA into double-stranded DNA which is
then integrated in the cell genome [42–45].

Where and when this conversion occurs and is achieved remains a matter of debate. The traditional
view according to which reverse transcription was completed in the cytoplasm or at the nuclear pore,
followed by the dismantling of the capsid core and the import of the preintegration nucleoprotein
complex [46–49], has recently been challenged by the observation of intact or almost-intact cores,
as well as the detection of ongoing reverse transcription in the nucleus [50]. However, irrespective of
the form under which the genetic material is imported into the nucleus, the import occurs in an active
manner, through the interaction of the viral capsid protein p24 with the cellular protein cyclophillin A
and the cellular splicing factor CSPF6 [51–53]. This interaction leads to the use of the nuclear import
pathway relying on the pair of nuclear pore proteins Nup153/Nup358 and transportin 3 (TNPO3) [54].
This complex system allows lentiviruses (in the specific case detailed above, human immunodeficiency
virus type 1 (HIV-1)) to infect non-replicating cells. This not only allows LV vectors to deliver
transgenes to cells that naturally do not replicate, but also can be exploited for transducing cells, such as
HSPCs, that must be kept in a quiescent state to avoid their differentiation and loss of pluripotency.
Retroviruses as γ-retroviruses are instead unable to enter the nucleus of the infected cell and require
the disassembly of the nuclear membrane at mitosis for reaching the genome of the infected cell
for integration.

Integration is carried out by the viral enzyme integrase with poor sequence specificity for the
selection of the integration sites, although preferential types of genomic regions (as, for example,
regions where actively transcribed genes are located, or the proximity with respect to transcription
start sites) can be defined for the different types of retroviruses [55,56]. The reverse transcription
product, integrated in the genomic RNA of the infected cell, is called a provirus. The provirus is
flanked by the terminal repeated regions (LTRs) that contain the viral promoter sequence (see below).
Transcription from the LTR in 5’ will lead to the synthesis of the new genomic RNA as well as the
viral proteins required for infection to be continued. At the moment of assembly of the viral particle,
the dimers of viral genomic RNA will be packaged in the budding particle [57]. The particle will also
incorporate the envelope proteins at their surface, as detailed below, and be released in the extracellular
space as an immature particle. Activation of the viral protease in the immature particle, will then lead
to viral maturation and the production of an infectious virus [40].

4. Molecular Bases for the Making of LV Vectors

4.1. Structure of the Genomic RNA

LV vectors are generally derived from the best characterized lentivirus—human immunodeficiency
virus type 1 (HIV-1). Lentiviral infection, detailed above, is conceptually composed of two phases.
Entry and the conversion of the genomic RNA (gRNA) into DNA that will be integrated in the cell’s
chromosomes are considered as the “early phase” of the infectious cycle. With the exception of entry,
which depends on the nature of the envelope employed in the viral vector, all the steps of the early
phase of HIV-1 infection are carried out essentially in the same manner during LV vector-mediated
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transduction. The late phase, constituted by the production of the gRNA and of the viral proteins,
is instead absent in the case of LV vector transduction.

The viral gRNA of HIV-1 is characterized, proceeding from 5’ to 3’, by the terminal repeated
sequence R, the unique sequence in 5’ U5; then, contiguous to U5, are found the 18 nucleotides
that constitute the sequence to which the tRNA Lys3 anneals for priming reverse transcription
(primer binding sequence (PBS)) [58] followed by an untranslated 5’ region that is responsible for the
dimerization of the gRNA and its packaging in the viral particle [57]. Then, the main three genes
(gag, pol and env) follow, overlapping the sequences for the auxiliary proteins Vif, Vpr and Vpu, as well
as the proteins Tat and Rev (Figure 1). Finally, partially overlapping with the 3’ portion of env, the Nef
coding sequence is found, followed by the unique sequence in 3’ U3, the repeated sequence R and the
polyA tail [59]. The sequences required for priming the synthesis of the second strand of DNA (3’ and
central polypurine tracts, -3’ PPT and cPPT, respectively) are located immediately upstream of the
U3 sequence and in the 3’ end portion of pol, respectively [60,61]. The Rev Responsive Element (RRE)
sequence that, when bound by the Rev protein allows the export of partially unspliced RNAs from the
nucleus, is located in the portion of env encoding the gp41 protein [62].

Figure 1. Organization of the human immunodeficiency virus type 1 (HIV-1) genomic RNA. U3,
unique sequence 3’; R, repeated sequence; U5, unique sequence 5’; Ψ, indicates the packaging and
dimerization sequences; RRE, Rev responsive element. The PPT sequences as well as the primer
binding sequence (PBS) region are not shown.

To generate the gRNA of the LV vector, the viral gRNA is modified by removing all the coding
sequences for the viral proteins and leaving the elements required in cis for genomic RNA packaging,
reverse transcription and integration. Specifically, the gRNA of the vector must contain: the PBS
sequence; the 3’ PPT and cPPT sequences; the region (located in the 5’ untranslated portion of the
genome) responsible for the packaging and dimerization of the genomic RNA; the RRE sequence;
the repeated terminal sequence R and the sequence U5, which are required for achieving reverse
transcription and integration [63]. The U3 sequence, instead, is only partially preserved, since a
large deletion (approximately half of its total length) is made in this sequence [64]. The deletion is
essential for inactivating, in LV vectors, the promoter activity of U3, generating what are known as
self-inactivating (SIN) vectors [64]. In natural infections, the U3 sequence is located inside the LTR
sequences, present at both ends of the proviral DNA (Figure 2A). The U3 sequence located in the 5’ LTR
contains the promoter that is used to drive the transcription of the genomic RNA. The genomic RNA
contains only the U3 sequence of the 3’ LTR (Figure 2A). After reverse transcription of this genomic
RNA, the LTRs are again generated (Figure 2A). In the case of SIN LV vectors, the U3 sequence of the
3’ LTR carries the deletion (in black in Figure 2B) and it will be this sequence that will be present in
the genomic RNA. After reverse transcription, this deleted version of U3 will be present in both LTR,
the 5’ and the 3’ regions (Figure 2B). Transcription is thereby no longer possible from this proviral
DNA, since the promoter in the U3 sequence in the 5’ LTR is not functional. Taking into account these
requirements, the gRNA of the LV vector can accommodate up to 8 kb of exogenous sequences.
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Figure 2. Schematic representation of the structure of the genomic forms of the viral DNA during
natural infection (panel (A)) or during transfection and transduction by a self-inactivating (SIN)
lentiviral-derived (LV) vector (panel (B)).

For the generation of the LV vector particle, the plasmid leading to the synthesis of the gRNA
is cotransfected with transcomplementation plasmids leading to the synthesis of the viral proteins.
Depending on which generation of LV vectors is considered, the structure of the plasmids varies as
well as which viral proteins are provided (Figure 3). In this setting, in order to change the tropism of
the viral vector through pseudotyping, the plasmid encoding the envelope proteins will be chosen to
carry the desired, non-HIV, envelope protein coding sequences.

Figure 3. The various generations of lentiviral vectors. Top panel. Plasmids employed for constructing first
generation lentiviral vectors. Three plasmids are employed. (1) A packaging (or transcomplementation)
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plasmid encodes the Gag, Pol, Vif, Tat, Rev, Nef, Vpr proteins under the control of the Cytomegalovirus
(CMV) promoter. (2) The envelope protein(s) (the vescicular stomatitis virus (VSV) G protein in the
example given) is encoded by an expression plasmid under the control of the CMV promoter. (3) Finally,
the plasmid leading to the synthesis of the genomic RNA (“genomic plasmid”) contains the sequences
required in cis for the packaging and reverse transcription of the RNA. It also contains the sequence of
the transgene under the control of an internal promoter (EF1α in the example). The expression of the
genomic RNA is driven by the 5’ terminal repeated regions (LTR). The sequence U3 in the 3’ LTR is
partially deleted, inactivating the promoter present in U3 generating self-inactivating (SIN) vectors.
Middle panel: 2nd generation vectors are built by triple transfection of the producer cells. In this
generation of LV vectors, the packaging plasmid only encodes Gag, Pol, Tat and Rev, increasing the
level of biosafety (the auxiliary proteins Vif, Nef and Vpr are absent). Bottom panel, third generation
of vectors. The packaging plasmid is split in two plasmids, one encoding (under the control of the
CMV promoter) the Gag and Pol sequences and carrying the Rev responsive element (RRE), the second
encoding the Rev protein (also under the control of the CMV, in the example given). In the genomic
plasmid the 5’ LTR sequence is replaced by the sequence of a chimeric LTR where the U3 sequence is
replaced by that of a heterologous promoter (the Rous Sarcoma Virus-RSV-promoter in the example
given). Finally, "next generation" vectors have also been elaborated, but since they differ considerably
from one another, no "synthetic" drawing summarizing them is provided. The main improvement
consists of the splitting of the coding sequences in a larger number of plasmids, for increasing biosafety.

4.2. Mechanism of Entry in HIV-1

The need for pseudotyping LV vector particles comes, as mentioned above, from the difficulty of
modifying the mechanism of viral entry of the natural HIV envelope proteins. HIV-1 encodes two
envelope proteins—gp41 and the gp120. The gp41 is a transmembrane protein that, associating in a
non-covalent manner to the gp120 (that is located on the external side of the virus), forms an unstable
heterodimer [65]. Three of these heterodimers associate to form a trimer of dimers that constitute
the viral spike [65]. Viral entry occurs by fusion of the cell and viral membranes, carried out by the
viral envelope proteins. For this, the spike interacts, through the gp120 component, with the natural
HIV-1 receptor, the CD4 molecule [66,67]. This triggers a conformational change that leads to the
generation in the gp120 of a binding site for the HIV coreceptor, generally the transmembrane protein
CCR5, or CXCR4 [68–72]. This second interaction is responsible for another structural rearrangement
of the gp120/gp41 dimer that releases the gp41 from the interaction with the gp120 [73]. The gp41 that
was maintained in a metastable state by the interaction with the gp120 inserts its highly hydrophobic
N-terminal portion, called “fusion peptide”, in the internal portion of the spike, in the membrane
of the target cell [74]. Once this has occurred, the gp41 folds back on itself to reach the most stable
conformation possible. This brings the fusion peptide (still inserted in the cell membrane) in proximity
of the viral membrane leading to the fusion of the membranes [75–78] and to the creation of a pore
that, once enlarged, allows the entry of the viral core into the cytoplasm. Because of the complex
series of conformational transitions required for the functionality of the envelope, the interactions
between the two Env proteins must be based on highly unstable equilibria that are extremely difficult
to retain if one wishes to modify this system, in order to redesign the tropism of the virus. Therefore,
changing the tropism of a HIV-derived LV vectors is a fairly difficult goal to achieve through the
modification of the natural HIV envelope proteins. However, the relative ease with which a LV vector
can be efficiently pseudotyped by exogenous viral envelope proteins provides alternative solutions to
bypass these difficulties.

4.3. Mechanism of Recruitment of HIV-1 Envelope Proteins on the Surface of the Virus: Bases for Pseudotyping

The HIV-1 particle is enveloped by the plasma membrane of the cell from which the virus has
budded. Consequently, the lipid and protein compositions of the viral membrane reflect that of the
infected cell at the site of budding. The peculiar composition of lipids and proteins of the viral particle
with respect to that of the cell, suggests that viral budding occurs in specific regions of the membrane
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with a particular lipid composition. To be incorporated in the budding viral particle a protein must be
addressed to the cell compartment where viral budding occurs [79]. These observations set the bases
to conceive the possibility of pseudotyping lentiviral particles.

HIV-1 assembles at lipid rafts, areas of the membrane enriched in cholesterol and sphingolipids.
This lipid composition tends to be enriched in glycosylphosphatidylinositol-anchored proteins at
the site of budding [80]. Potentially, any protein with a high “affinity” for lipid rafts has a higher
probability than the average protein to be found on the viral particle. This strategy allows the virus
to reduce immunogenicity during natural infections and, consequently, also leads to the generation
of poorly immunogenic HIV-derived LV vector particles. Assembling at lipid rafts indeed provides
a lipid membrane of the viral particle enriched in proteins such as CD46, CD55 and CD59 [81–84]
which are known to inhibit complement activation [85–87]. Accordingly, when the virus is produced
in glycosylphosphatidylinositol-anchors deficient cells, it becomes sensitive to degradation by the
immune system [88].

In HIV-1, the envelope proteins are recruited at lipid rafts through the interaction between the
cytoplasmic tail of the gp41 and the precursor polyprotein Pr55 Gag, which is localized at the lipid
rafts thanks to the myristoyl group that is present at its N-terminus [89]. It also has been shown that
the acylation of the transmembrane domains of proteins was sufficient to address these proteins to
the lipids raft [90,91]. Acylated proteins potentially prevail in viral particles that bud from lipid raft
rich areas. This characteristic of acylated proteins provides a “tool” to induce pseudotyping in LV
vectors. Accordingly, VSV glycoproteins are acylated [92], as well as the E2 envelope glycoprotein
of alphaviruses such as Semliki forest virus and Sindbis Virus [93,94]. All these envelope proteins
efficiently pseudotype LV vectors. For other viral envelope proteins, such as the rabies ones for instance,
the molecular mechanism leading to pseudotyping LV vectors is known in much less detail, but it
is logical to expect that, also in this case, pseudotyping occurs through addressing these proteins to
lipid rafts.

5. Dressing LV Vectors (Pseudotyping)

Pseudotyping LV vectors with envelope proteins of different viruses allows combining the
properties of lentiviruses with those of viral entry of other viruses. The envelope proteins of several
types of viruses have been shown to be able to pseudotype LV vectors. Among these viruses,
some possess a large tropism and therefore the use of their proteins for treatments in vivo cannot
be envisaged. However, some of these proteins can be used as starting platforms for engineering
variants that specifically target a desired cell population. Envelope proteins from other viruses,
instead, present a tropism restricted to certain types of cells (neurons, for example), and can be
employed “opportunistically” when these cell types constitute the target of the intervention strategy.
Envelope proteins from several viruses have been described to successfully pseudotype LV vectors.
Those for which the molecular mechanism has been elucidated in more detail fall into three viral
families and are presented here (Figure 4 and Table 1).
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Figure 4. Outline of the mechanisms of viral entry by the main envelope proteins that can be used to
pseudotype LV vectors. ECM: Extracellular Medium; MVB: Multivesicular Body.

Table 1. Overview table summarizing the main characteristics of the pseudotypes discussed in
this review.

Original Virus Pseudotype Main Characteristics of
the Pseudotyped LV

Natural Cell
Tropism Receptor Transduction

Efficiency References

Vesicular
Stomatitis virus VSV-G Quasi-universal tropism,

high efficiency Broad LDL-R High [95,96]

Rabies virus RabV-G Natural ability to efficiently
targets neurons Neurons

nAChR,
CD56,

p75NTR,
mGluR2

Up to 50% [97–100]

Measle virus H/F
High efficiency, tolerant to
peptide insertion, can be
neutralized by vaccines

B cells, T cells,
Epithelial cells,
Dendritic cells,

HSPC

CD46,
SLAM,

nectin-4
Up to 50–70% [101–108]

Nipah virus G/F Low prevalence: low
neutralization hazard

Pericytes, tumor
endothelium

EphrinB2,
EphrinB4 20–40% [109,110]

Chickungunya
virus E1/E2 Versatile basis for

engineering/reprograming Broad

PHB1,
Mxra8,

integrins,
Heparan
sulfates

Low on
non-adherent
cells, high on
adherent cells

(related to
VSV-G)

[111–114]

Sindbis virus E1/E2
Versatile basis for

engineering/reprograming,
Low immunogenicity

Broad 67LR,
NRAMP2 Variable [115,116]
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5.1. Rhabdoviruses: Clathrin-Dependent Endocytosis

5.1.1. Vescicular Stomatitis Virus

Pseudotyping LV vectors by the vescicular stomatitis virus envelope glycoprotein G is the most
common approach for creating cell lines [117]. VSV is an enveloped virus from the Rhabdoviridae family.
It expresses the G glycoprotein on the envelope surface. The first hypothesis to explain the large tropism
of the virus suggests that it might use not only a specific, widespread, receptor but that it possibly
also uses alternative receptors. The first receptor described for VSV-G were the phosphatidylserines,
phospholipids that are a main components of plasma membranes [118,119] present at the surface
of almost all cell types [119]. However, more recent work showed that treatment with annexin V,
a specific ligand for phosphatidylserines, did not inhibit infection by VSV [120]. In addition, the same
work showed an absence of correlation between the content of phosphatidylserines in the plasma
membrane and the efficacy of infection by VSV [120]. In 2013 it was demonstrated that the main
receptor promoting VSV entry are members of the LDL-Receptor (LDL-R) family [95]. These receptors
are involved in the regulation of the homeostasis of cholesterol in mammalian cells and are ubiquitously
expressed [121,122]. Once bound to the cell membrane, the VSV envelope protein VSV-G triggers
clathrin-dependent endocytosis [123], typical of the Rhabdoviridae family, followed by pH-dependent
fusion of endosomal and viral membranes [124,125], leading to the release of the capsid in the cell,
although it is still debated whether membrane fusion occurs in the early endosome or in the late
endosomes/multivesicular bodies [126,127]. To begin fusion, a conformational change of the G protein
is required first to anchor the virus into the cell membrane and then to operate a physical connection
between the two lipid bilayers that ultimately allows membrane fusion [128].

The quasi-universal tropism provided by the glycoproteins G of VSV makes it difficult to conceive
a safe manner for the systemic inoculation of these vectors in patients, because of obvious problems
related to off-target delivery. When the natural biodistribution that follows the systemic administration
of vectors is favorable, as for example when the liver is the target of the therapy, LV vectors pseudotyped
by the VSV envelope protein G have proved to be successful for in vivo treatment, as for the case
of the induction of the expression of the coagulation factor IX (FIX) in mice and hemophilic dog
models [129,130]. Alternatively, their local administration can be considered in vivo, as it has been
shown for colorectal administration in mouse models [131]. However, to date, pseudotyping LV
vectors by the VSV envelope protein G for gene therapy is employed, in the majority of the cases,
for transduction ex vivo [132,133].

5.1.2. Rabies Virus

Rabies viruses (RVs) are negatively stranded RNA Rhabdoviruses, with a natural tropism for
neurons. Accordingly, the use of their envelope proteins for pseudotyping LV vectors is strictly
related to intervention on these cells. RVs infect neurons through their terminal axons and spread
through the synapses in a retrograde direction, a feature that is maintained when RV-pseudotyped
LV vectors are used [134]. Recognition of the receptor is ensured by the G protein, which interacts
with a panel of different receptors, all expressed on neurons. After receptor recognition, RV particles
are endocytosed following a clathrin-dependent uptake [135]. The internalized vesicles then fuse
with the early endosomes, as a consequence of the acidification of the endosome, with a VSV-like
mechanism [123] (Figure 3).

The first receptor described for RV was the nicotinic acetylcholine receptor (nAChR) [97].
This receptor is present at a high density in neuromuscular junctions [136]. Another receptor
used by RV is CD56 (or NCAM) [98], involved in the adhesion of neural cells, the development
of neurites and the synapses’ plasticity. However, CD56 is also abundant on natural killer cells,
raising a concern about the specificity of its use. RVs have also been shown to interact with the
nerve growth factor receptor (NGFR) superfamily, the p75NTR (Low-affinity Nerve Growth Factor
Receptor: LNGFR) [99]. However, despite this interaction, infection is limited to around 20% of
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neurons, while more than 80% are p75NTR positive [137]. These results tend to show that the LNGFR
is not the most important receptor for RV uptake. Finally, mGluR2, abundant in the central nervous
system [100], has also been described as a receptor for RV. Indeed, it has been observed that RV and
mGluR2 are internalized into cells and transported to early and late endosomes in close association,
suggesting their functional interaction.

In conclusion, the efficient transduction by the RV G glycoprotein involves a wide panel of
receptors, but is strictly limited to neurons. This characteristic can be exploited to transduce specifically
neurons. Indeed, it has been shown that an injection of RV-pseudotyped LV vectors directly in the
muscle can lead to gene transfer in the spinal cord motoneurons while, under the same conditions,
a vector pseudotyped with VSV-G have transduced muscle cells around the injection site, without any
expression in the spinal cord neurons [134]. However, crossing the hemato-encephalic barrier by
LV vectors in adults is mostly restricted to some more permissive areas as the median eminence
(hypothalamus), pituitary, choroids plexus or pineal gland [138], limiting the use of RV-pseudotyped
LV vectors.

5.2. Paramyxoviruses: Splitting Binding and Fusion in H and F Proteins

5.2.1. Measles Virus

Measles virus (MV) is an enveloped, single-stranded RNA virus of negative polarity belonging
to the family of Paramixoviridae. It is responsible for the measles disease in humans, against which
extensive vaccinal strategies were developed over decades. Its envelope glycoproteins confer a wide
cell tropism. Recognition of the receptors is ensured by the H protein (hemagglutinin) present at the
surface of the virus. Once the virus is bound to the target cell, membrane fusion is ensured by the
F protein (where F stands for fusion). For this, F undergoes a first conformational change that allows it
to anchor the cell membrane and, subsequently, start the fusion [139], which is achieved by bringing
the viral and cell membranes in close proximity [140]. As for all Paramixoviridae, the mechanism of
membrane fusion is pH independent and it occurs directly at the plasma membrane [141] (Figure 3).

The first receptor to be identified for measles was CD46, a molecule present on the surface of
most human cells except erythrocytes [142–144]. Consequently, the use of these envelope proteins
would result in an extremely large tropism, conferring only a little advantage with respect to the use of
VSV-G. Furthermore, it appears that CD46 is not the only receptor for measles virus, since passages in
cell culture of the MV on lymphoblastoid cell lines led to the selection of a strain capable of infecting
cells not expressing CD46 [101–103]. This laboratory strain had the ability to infect lymphocyte cell
lines through the use of the receptor SLAM (also named CDw150) [104–106]. However, SLAM is
also expressed on some subsets of B and T human cells. Therefore, the problem of the lack of
specificity encountered with CD46 is still present, although considerably reduced, if pseudotyping
is performed with an envelope issued from a SLAM-tropic strain. Finally, for the wild-type MV and
for the strain used in vaccinal approaches (the Edmonston laboratory strain), another receptor can
be used—nectin-4 [145,146]. Nectins are responsible for calcium-dependent cell adhesion and are
therefore found on epithelial cells. Nectin-4 is found overexpressed on the surface of tumor cells in
some ovarian [147] or lung [148] cancers and could therefore be used for treatment of cancers expressing
this receptor. Therefore, three types of receptors have been identified for this virus. While for two of
them the tropism is too large for their use, for the third one it is possible to envisage its use if the cells
to target match the natural tropism of this viral variant.

The H protein can also be used as a basis for redirecting viral tropism. In this sense, mutations
that abolished binding to CD46 and SLAM were identified, an important issue for reducing off-target
delivery [149]. The first relevant case of complete MV retargeting consisted of the modification of the
H glycoprotein, by inserting a single-chain antibody directed against CD38 or EGFR to be used as an
oncolytic vector [150]. The engineered viruses mediated efficient infection through their respective
receptors targeted, but not through, CD46 or SLAM. This work showed the possibility of a complete
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specificity change of the H protein. Single-chain antibodies are not the only way to retarget the
specificity of the MV envelopes, though. It has been shown that the insertion of designed ankyrin
repeat proteins (DARPins), consisting of at least three ankyrin repeats, in H protein can allow the
retargeting of a MV-pseudotyped LV vectors [151]. In addition to an efficient retargeting, the H protein
fused to a DARPin has a higher level of surface expression than the H proteins fused to a single-chain
antibody [151].

The major obstacle to the development of a pseudotyping approach based on the use of MV
envelope proteins is constituted by the neutralization of the vectors, due to the large vaccinal coverage
against measles virus present in the human population. Since H protein seems to be the main target
of the immune response [152], a promising approach is constituted by the introduction of mutations
in this protein that allow escape, to a certain extent, from immune recognition while preserving its
functional activity [153].

5.2.2. Nipah Virus

Another Paramyxovirus, the Nipah virus (NiV), a virus that can cause severe flu-like disease in
human with potentially fatal issues, constitutes a promising option as source of envelope proteins
for pseudotyping LV vector particles [154]. Infections by NiV are very rare, making the existence
of a pre-existing humoral immunity that would interfere with gene transmission unlikely [109].
Nipahs have two envelope proteins—F and G glycoproteins (NiV-F and Niv-G, respectively). NiV-G is
responsible for binding to the viral receptor, while F is the protein that carries out membrane fusion
with the same mechanism than MV, as previously described [139] (Figure 3).

The NiV-G glycoprotein consists of a stem domain and a globular head. It forms dimers linked
by disulfide bonds which combine in pairs to generate tetramers [155]. Functional pseudotyping of
LV vectors by these proteins is possible but it requires the truncation of the cytoplasmic tail of the
NiV-F protein. Recently, indeed, a truncated variant mutated in four residues of the cytoplasmic
tail (Fc∆22) also shows a ten-fold increased efficiency of pseudotyping [110,156]. Concerning the
NiV-G protein, it has been reported that the full-length form can be used, although two truncated
forms of the protein, Gc∆33 and Gc∆34, in which have been deleted respectively the 33 and 34 N-ter
amino acids, provide optimized pseudotyping [109,156]. It has already been described that shortened
cytoplasmic tails of the attachment proteins increase the titers of Paramyxoviridae-pseudotyped LV
vectors [157,158]. It is therefore not unexpected that this strategy is transposable to pseudotyping LV
vectors by Nipah envelope proteins [109]. The advantages conferred by the truncation can be explained
by the location of the truncated forms of the NiV-G proteins in plasma membrane regions far from
ephrin-B2, which is normally located at the junction of neighboring cells. For the truncated forms,
this limits, at the same time, the cytopathic effect exerted at these junctions and their sequestration by
ephrin-B2 molecules expressed in producer cells. This enhances their incorporation into LV vector
particles [109].

Attachment of Nipah on the target cell occurs through binding to Ephrin-B2 [159] as a primary
receptor, although Ephrin-B3 can also be recognized for attachment albeit with an affinity ten times
lower [160]. Ephrin receptors are membrane-associated tyrosine kinase (RTK) receptors with different
roles in several biological processes such as neurogenesis and angiogenesis. The main receptor,
Ephrin-B2, is highly expressed in the arterial endothelium and, to a lower extent, in pericytes and
vascular smooth muscle cells [161,162]. Usually expressed at the cell–cell junctions, Ephrin-B2/Ephrin-B4
interactions are strongly involved in angiogenesis, cell migration and tumor invasion. Pseudotyping LV
vectors with wt Nipah envelope proteins would therefore allow to address viral vectors to these
areas, potentially interfering with the setting up of the angiogenic processes that are associated with
tumor expansion.

Besides these potential applications of LV vectors pseudotyped by the wild-type Nipah envelope
proteins, the use of engineered proteins can also be envisaged. Namely, to increase the specificity
of the vector pseudotyped by NiV-G, NiV-Gc∆34 has been modified by point mutations in order to
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abolish binding to Ephrin-B2 [156]. This study showed that combining some mutations can reduce
binding to a level below detection, providing a basis for the development of variants with an entirely
new tropism. By the insertion of new ligands in the mutated H protein [156], it has been possible
to transduce efficiently model cells expressing either CD20 (a marker of B cells), CD8 (a marker of
cytotoxic T cells), or EPCAM (a putative marker of early tumor cells [163]) with the same selectivity as
reference LV vectors pseudotyped with receptor-targeted measles virus envelope proteins. Thanks to
the lower exposure of the population to Nipah virus, engineered NiV envelope proteins could therefore
provide an alternative for LV vector pseudotyping with a reduced risk of antibody neutralization of
the vector with respect to MV.

5.3. Togaviridae: The Pair E1-E2 Dissociates to Trigger Membrane Fusion

5.3.1. Chikungunya Virus

Chikungunya virus (ChikV) is an alphavirus from the Togaviridae family. Akin to all togaviruses,
its spikes are composed by the E1, E2 and E3 envelope glycoproteins, associated non-covalently.
E1 is responsible for pH-dependent viral and cell membrane fusion [164] after the clathrin-dependent
endocytosis [165,166] of the virus. E2 carries out the association with cellular receptors [167] while E3 is
responsible for the translocation of the spikes to the endoplasmic reticulum. E3 also displays chaperone
activity to assist the correct folding of the E2 precursor and, by acting as a clamp, stabilizes the
association between E1 and E2 [168,169]. E3 is ultimately cleaved from E2 in the trans-Golgi network.
This cleavage is necessary to remove the “clamp” since, upon binding to the target cell at low pH
conditions, dissociation of the E2-E1 heterodimer becomes necessary in order to mediate fusion between
the viral and host cell membranes during viral entry [170]. Indeed, for entry, once E2 and the target
receptor have interacted, dissociation of the E1/E2 complex, probably induced by the acidification of
the endosome, is required to trigger fusion [171]. The dissociation exposes a non-polar domain at the
E1 apex, which is able to start the fusion by anchoring to the membrane of the endosome. Nevertheless,
some studies revealed the existence of alternative entry pathways such as macropinocytosis [172],
probably coexisting with the main clathrin-mediated, one (Figure 3).

The tropism conferred by this envelope is not fully defined, although heparan sulfate, integrins
and the matrix remodeling-associated protein 8 (Mxra8, a protein expressed on a large panel of cell
types) have been shown to be involved in binding of the virus to the cell surface. The widespread
expression of these proteins can explain the large variety of symptoms observed during infection
with wild-type ChikV: encephalitis and neurological complications [173], arthralgia/myalgia [174] and
ophthalmic disorders [175]. The neurological disorders associated with this virus have suggested the
use of ChikV-pseudotyped LV vectors for transducing cells of the central nervous system. A study has
indeed shown that ChikV-pseudotyped LV vectors efficiently transduce neurons and astrocytes both
in vitro and in vivo [176]. Despite these results, it has not been shown that this type of pseudotyping
allows specific targeting in vivo. Another receptor, Prohibitin (PHB), has also been described as a target
for ChickV [111]. PHB is an evolutionarily conserved and ubiquitously expressed protein. It has a broad
range of functions: it has a structural role at the level of the cell membrane, it is involved in transcription,
in mitochondrial morphogenesis and apoptosis [177,178]. Even if PHB is overexpressed in some
cancers, such as diffuse large B-cell lymphomas [178], also in this case, its widespread expression does
not allow it to be used as a target for specific interventions in vivo. Therefore, at least until variants
with a more restricted tropism will be developed, the most straightforward therapeutic application
for the use of ChickV envelope proteins seems to be the reprogramming of target cells in vitro [176].
Furthermore, the frequent recognition of the ChikV envelope by the immune system, having oriented
the research to focus preferentially on another less immunogenic but just as promising as ChikV for
genetic manipulations, alphavirus envelope: the one of the Sindbis virus.
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5.3.2. Sindbis Virus

The Sindbis virus (SV), similar to ChikV, is an alphavirus from the Togaviridae family. Since these
viruses are genetically related [179], their envelope proteins have similar structures, with a step of
dissociation between E1 and E2 essential for triggering membrane fusion in both cases. Due to the
similarity between alphaviruses, the entry mechanism of Sindbis virus is described as being strictly
similar to that of ChikV.

Despite their relatedness, the receptors used differ between these two viruses. The most well
documented receptor capable of interactions with SV E2 is the 67 kDa non-integrin high affinity laminin
receptor, 67LR [115]. 67LR is found in lipid rafts of a wide variety of normal cell types such as intestinal
epithelium cells [180], neurons, hematopoietic cells [181] and in some cancer cells as carcinomas [182].
The natural resistance-associated macrophage protein 2 receptor (NRAMP2, also known as DMT1,
for divalent metal transporter 1), expressed in almost all cell types [183–185], has also been described
as being an E2 interactant [116]. As for ChikV, viral entry into the cell follows a clathrin-dependent
pathway with the subsequent release of the capsid into the cytoplasm (Figure 3). It is noteworthy that
some studies support the idea that Sindbis fusion could occur at the plasma membrane with no need
for clathrin-dependent endocytosis [186,187] (Figure 3).

The use of the wt Sindbis virus envelope in pseudotyping for the purposes of viral vectorization
in vivo is limited because of its wide tropism. However, the main interest of its envelope proteins
comes from their versatility in genetic modifications. Numerous studies have described variants of
SV envelope proteins that have been modified by genetic engineering and used to pseudotype LV
vectors. In particular, a loop of the E2 protein allows insertion of exogenous motifs without affecting
the ability of the SV envelopes to promote viral entry in the target cell. The most successful results
obtained so far concern the insertion of the ZZ domain derived from the IgG-binding domain of
protein A of Staphylococcus aureus between amino acids 71 and 74 of E2 [188]. This strategy made it
possible to bind the envelope protein to the Fc fragment of an IgG directed against specific receptors
in order to reorient the vector to enter a defined type of cells thanks to the interaction between the
ZZ domain and the IgG. Other works aimed at reducing non-specific targeting through abolishing
the natural tropism of the virus. The most successful one resulted in the creation of a variant called
m168 [189] which was fusion competent but deficient for binding to the natural receptors of SV.
The mutations present in the m168 variant are, in addition to the insertion of the ZZ motif in E2,
a deletion of the residues 61-64 of E3 and the insertion of four point mutations in E2 (K159A, E160A,
E216A and T218A) [190]. Therefore E1, responsible for the fusion of the membranes, was not mutated.
The m168 mutations were then combined to coupling an IgG directed against the P glycoprotein that is
expressed in the lungs [191]. When the vector was administered by intravenous injection in model
mice, the pseudotyped lentiviruses were addressed to the lungs with a low dispersion of the vectors
in the rest of the organism. However, this strategy requires a step of non-covalent coupling between
the viral particle and the antibodies, which, being a labile interaction, constitutes the critical point of
the strategy.

In conclusion, alphaviruses’ wt envelope proteins cannot be used for in vivo approaches, due to
their natural broad tropism. However, the marked separation of the binding and of the fusion functions,
carried out by E2 and by E1, respectively, allows envisaging modifications to the E2 protein so as
to allow the most specific interactions possible with the desired targets without affecting the fusion
step. The main concern is the preservation of the association between E1 and E2 at the surface of the
viral particle.

6. Concluding Remarks

Viral vectorization for gene therapy is a cutting-edge technique whose development has not yet
shown its full potential. Even if several virus-based vectors have been identified as being potentially
useful for these approaches, so far, the choice of preference regularly falls on a handful of vectors,
among which are lentiviral vectors. A feature of LV vectors that makes them particularly promising
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is their possibility to uptake envelope proteins from other viruses. These exogenous envelopes can
either possess a limited natural tropism that can match the tropism required for the intervention or
can have a widespread tropism. In this latter case, they cannot be employed the way they are but,
if they have a high plasticity with respect to genetic engineering, they can be used as starting points for
the elaboration of artificial envelopes with a specific tropism of interest for the approach followed.
LV vectors play the role of mannequins for these approaches for both the “prêt à porter” envelopes and
for the “tailor-made” ones, being extremely useful for the development of these therapeutic approaches.
Furthermore, emerging viruses may provide interesting alternatives to the envelopes already studied.
In this sense, viruses responsible for today’s illnesses may become part of tomorrow’s therapies.
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