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Objective: The partnership between humans and machines can enhance clinical decisions accuracy, lead-
ing to improved patient outcomes. Despite this, the application of machine learning techniques in the
healthcare sector, particularly in guiding heart failure patient management, remains unpopular. This sys-
tematic review aims to identify factors restricting the integration of machine learning derived risk scores
into clinical practice when treating adults with acute and chronic heart failure.
Methods: Four academic research databases and Google Scholar were searched to identify original
research studies where heart failure patient data was used to build models predicting all-cause mortality,
cardiac death, all-cause and heart failure-related hospitalization.
Results: Thirty studies met the inclusion criteria. The selected studies’ sample size ranged between 71
and 716 790 patients, and the median age was 72.1 (interquartile range: 61.1–76.8) years. The minimum
and maximum area under the receiver operating characteristic curve (AUC) for models predicting mor-
tality were 0.48 and 0.92, respectively. Models predicting hospitalization had an AUC of 0.47 to 0.84.
Nineteen studies (63%) used logistic regression, 53% random forests, and 37% of studies used decision
trees to build predictive models. None of the models were built or externally validated using data orig-
inating from Africa or the Middle-East.
Conclusions: The variation in the aetiologies of heart failure, limited access to structured health data, dis-
trust in machine learning techniques among clinicians and the modest accuracy of existing predictive
models are some of the factors precluding the widespread use of machine learning derived risk
calculators.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Predictive analytics is applied across many industries, typically
for insurance underwriting, credit risk scoring and fraud detection
[1-3]. Both statistical methods and machine learning algorithms
are used to create predictive models [4]. In heart failure, machine
learning algorithms create risk scores estimating the likelihood of
a heart failure diagnosis and the probability of outcomes such as
all-cause mortality, cardiac death and hospitalization [5-13].

Clinicians treating heart failure patients may underestimate or
overestimate the risk of complications and may battle with dose
titration, failing to reach target dosages when prescribing oral
medication such as beta-blockers [14,15]. Despite these challenges,
risk calculators are still not widely used to guide the management
of heart failure patients. Most clinicians find risk calculation time
consuming and are not convinced of the value of the information
derived from predictive models [15,16]. Moreover, the lack of inte-
gration of risk scores predicting heart failure outcomes into man-
agement guidelines may diminish clinicians’ confidence when
using risk calculators. Also, clinicians may question the integrity
of unsupervised machine learning and deep learning methods
since algorithms single-handedly select features (predictors) with-
out human input.

Machine learning and its subtype, deep learning, have shown an
impressive performance in medical image analysis and interpreta-
tion [17]. Convolutional neural networks (CNN) were trained to
classify chest radiographs as pulmonary tuberculosis (TB) or nor-
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mal using chest radiographs from 685 patients. The ensemble of
CNN’s performed well with an area under the receiver operating
characteristic curve (AUC) of 0.99 [17]. These impressive results
have resulted in the commercialization of chest x-ray interpreta-
tion software [18]. The availability of such software can play a crit-
ical role in remote areas with limited or no access to radiologists,
as CNN can potentially identify subtle manifestations of TB on
chest radiographs, leading to prompt initiation therapy, curbing
further transmission of TB. Amid these capabilities, the uptake of
machine learning techniques in the healthcare sector remains lim-
ited. This systematic review aims to identify models predicting
mortality and hospitalization in heart failure patients and discuss
Fig. 1. Flow chart of the syst
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factors that restrict the widespread clinical use of risk scores cre-
ated with machine learning algorithms.

2. Methods

2.1. Search strategy for identification of relevant studies

A systematic literature search was conducted in accordance
with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. Literature searches were con-
ducted in MEDLINE, Google Scholar, Springer Link, Scopus, and
Web of Science. The search string contained the following termi-
ematic literature search.
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nology: (Mortality OR Death OR Readmission OR Hospitalization)
AND (Machine Learning OR Deep Learning) AND (Heart Failure
OR Heart Failure, Diastolic OR Heart Failure, Systolic).
2.2. Review methods and selection criteria

Studies reported in languages other than English were not
included. A single reviewer screened titles, abstracts and full-text
articles and made decisions regarding potential eligibility. Studies
were eligible if they reported models predicting all-cause or car-
diac mortality or all-cause or heart failure-related hospitalization
in heart failure patients. Models included in the study were created
using machine learning algorithms and/or deep learning. We did
not include studies using solely logistic regression for a classifica-
tion task. Logistic regression analysis is a machine learning algo-
rithm borrowed from traditional statistics. When logistic
regression is used as a machine learning algorithm, the algorithm
is initially trained to identify clinical data patterns using a dataset
with labelled classes, a process known as supervised learning. After
that, the logistic regression algorithm attempts to classify new data
into two or more categories based on ‘‘posteriori knowledge.”
2.3. Data extraction

The following items were extracted: study region, data collec-
tion period, sample size, age, gender, cause of heart failure (is-
chaemic vs non-ischaemic), predictor variables, handling of
missing data, internal and external validation, all-cause mortality
and cardiovascular death rate, all-cause hospitalization rate and
performance metrics (sensitivity, accuracy, AUC or c-statistics
and F-score). Summary statistics were generated with STATA MP
version 13.0 (StataCorp, Texas).
3. Results

3.1. The review process

The initial search yielded 1 835 research papers. After screening
titles and abstracts, 1 367 did not meet the inclusion criteria.
Excluded papers were predominantly theoretical reviews and con-
ference papers in the field of computer science. Two hundred and
sixty full-text articles were assessed for eligibility. A further 230
studies were excluded, leaving thirty papers legible for analysis
(Fig. 1). Reasons for excluding 230 studies are provided as
supplementary data.
3.2. Characteristics of the included studies

The source of data in the majority of the studies were electronic
health records (EHR) (n = 16), followed by claims data (n = 5), trial
data (n = 3), registry (n = 3) and data obtained from research
cohorts (n = 3). Data was collected from hospitalized patients in
twelve studies. The sample size in the predictive models ranged
between 71 and 716 790, with the smallest sample size used to
predict survival in patients with advanced heart failure managed
with second-generation ventricular assist devices [19]. Within
the 30 studies, twelve studies created models predicting mortality.
Another 13 studies predicted hospitalization, and five studies pre-
dicted both mortality and hospitalization. The data used to create
predictive models was collected between 1993 and 2017 (Table 1).
Of the 30 included studies, 22 included data originating from North
America, seven from Asia and six from Europe. There were no stud-
ies conducted in Africa or Middle-East (Fig. 2).
3

3.3. Clinical characteristics of patients with heart failure

The majority of studies reported the patients’ age (93%) and
gender (87%). The median age was 72.1 (61.1–76.85) years.
Between 14.0 and 83.9% of the extracted studies’ participants had
ischaemic heart disease (Table 2). In total, 30% of studies men-
tioned Black patients. Between 0.95% and 100% of the individuals
were Black, with one study enrolling only African American males
with heart failure [20].

3.4. Machine learning algorithms

Only eight (27%) studies used a single algorithm to build a pre-
dictive model. Nineteen studies (63%) used logistic regression, 53%
random forests, and 36% of studies used decision trees to create
predictive models. The rest of the algorithms are depicted in Fig. 3.

3.5. Predictors

Twelve (36.4%) studies did not report on the number of predic-
tors or features used. The number of predictors in the identified
studies were between 8 and 4 205. Some authors only mentioned
the number of predictors and did not list them. Age, gender, dias-
tolic blood pressure, left ventricular ejection fraction (LVEF), esti-
mated glomerular filtration rate, haemoglobin, serum sodium,
and blood urea nitrogen were some of the predictors of mortality
identified in the extracted studies [10,11,13]. Predictors of hospi-
talization included ischaemic cardiomyopathy, age, LVEF, hypoten-
sion, haemoglobin, creatinine, and potassium serum levels [7].

3.6. Model development, internal and external validation

When creating a predictive model using machine learning, data
is generally partitioned into three or four datasets. In the studies
extracted, between 60 and 80% of the data was used for training
models, while the rest was used for testing and/or internally vali-
dating the models. Although the data on model validation was
scanty, external validation was explicitly mentioned in two stud-
ies. None of the models were externally validated using data orig-
inating from Africa or the Middle-East.

3.7. Model performance and evaluation metrics

Parameters used to evaluate model performance were the con-
fusion matrix, reporting sensitivity, specificity, positive and nega-
tive predictive value, accuracy, and precision. Most studies also
reported the f-score, AUC, concordance statistic (C-statistic), and
recall. The minimum and maximum AUC for models predicting
mortality were 0.477 and 0.917, and models predicting hospital-
ization had an AUC between 0.469 and 0.836 (Table 3).

4. Discussion

This systematic review highlights several factors that restrict
the use of risk scores created with machine learning algorithms
in the clinical setting. The existence of clinical information with
prognostic significance such as the New York Heart Association
functional class in the free-text format in EHR systems may result
in models with low predictive abilities if such critical data is omit-
ted when building predictive models. Fortunately, newer emerging
techniques such as bidirectional long short-term memory with a
conditional random fields layer have been introduced to remedy
the problem of free-text in EHR [21,22].

Risk scores derived from heart failure patients residing in North
America or Europe may not be suitable for application in low and



Table 1
Characteristics of the included studies.

Study ID Data
collection
period

No. of
patients

Setting Data source No. of
features

Primary outcome assessed

Adler, E.D (2019) [10] 2006–2017 5 822 Inpatient
and
outpatient

EHR and Trial 8 All-cause mortality

Ahmad, T (2018) [30] 2000–2012 44 886 Inpatient
and
outpatient

Registry 8 1-year all-cause mortality

Allam, A (2019) [31] 2013 272 778 Inpatient Claims dataset 50 30-day all-cause readmission
Angraal, S (2020) [13] 2006–2013 1 767 Inpatient Trial 26 All-cause mortality and HF hospitalization
Ashfaq, A (2019) [32] 2012–2016 7 655 Inpatient

and
outpatient

EHR 30-day all-cause readmission

Awan, SE (2019) [33] 2003–2008 10 757 Inpatient
and
outpatient

EHR 47 30-day HF-related readmission and mortality

Chen, R (2019) [34] 2014–2017 98 Inpatient Prospective Clinical
and MRI

32 Cardiac death, heart transplantation and HF-related
hospitalization

Chicco, D (2020) [11] 2015 299 Inpatient Medical records 13 One year survival
Chirinos, J (2020) [35] 2006–2012 379 Inpatient Trial 48 Risk of all-cause death or heart failure-related

hospital admission
Desai, R.J (2020) [6] 2007–2014 9 502 Inpatient

and
outpatient

Claims data and EHR 62 All-cause mortality and HF hospitalization, total costs
for hospitalization, outpatient visits, and medication

Frizzell, J.D (2017) [36] 2005–2011 56 477 Inpatient Registry and claims
data

All-cause readmission 30-days after discharge

Gleeson, S (2017) [37] 2010–2015 295 Inpatient Echo database & EHR 291 All-cause mortality and heart failure admissions
Golas, S.B (2018) [12] 2011–2015 11 510 Inpatient

and
outpatient

EHR 3 512 All-cause 30-day readmission, healthcare utilization
cost

Hearn, J (2018) [38] 2001–2017 1 156 EHR and
Cardiopulmonary
stress test data

All-cause mortality

Hsich, E (2011) [9] 1997–2007 2 231 Cardiopulmonary
stress test data

39 All-cause mortality

Jiang, W (2019) [39] 2013–2015 534 Inpatient EHR 57 30-day readmission
Kourou, K (2016) [19] 71 Pre and post-

operative data
48 1-year all-cause mortality

Krumholz, H (2019) [40] 2013–2015 716 790 Inpatient Claims dataset All-cause death within 30-days of admission
Kwon, J (2019) [5] 2016–2017 2 165

(training
dataset)

Inpatient Registry 12 and 36-month in-hospital mortality

Liu, W (2020) [41] 303 233
(heart
failure)

Inpatient Readmission
database

Admission 3H myocardial infarction, congestive heart
failure and pneumonia 30-day readmission

Lorenzoni, G (2019) [7] 2011–2015 380 Inpatient Research data Hospitalization among patients with heart failure
Maharaj, S.M (2018) [42] 2015 1 778 Inpatient EHR 56 30-day readmission
McKinley, D (2019) [20] 2012–2015 132 Inpatient EHR 29 All-cause readmission within 30-days
Miao, F (2017) [43] 2001–2007 8 059 Public database 32 1-year in-hospital mortality
Nakajima, K (2020) [24] 2005–2016 526 Multicentre database 13 2-year life-threatening arrhythmic events and heart

failure death
Shameer, K (2016) [44] 1 068 Inpatient EHR 4 205 30-day readmission
Shams, I (2015) [45] 2011–2012 1 674 Inpatient EHR 30-day readmission
Stampehl, M (2020) [46] 2010–2014 206 644 Inpatient EHR 30-day and one-year post-discharge all-cause

mortality
Taslimitehrani, V (2016) [47] 1993–2013 5 044 Inpatient EHR 43 1,2 and 5-year survival after HF diagnosis
Turgeman, L (2016) [27] 2006–2014 4 840 Inpatient EHR Readmission

CVD = cardiovascular disease; EHR = electronic health record; HF = heart failure; MRI = magnetic resonance imaging.
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middle-income countries (LMIC). In high income countries (HIC),
the predominant cause of heart failure is ischaemic heart disease
(IHD), whereas, in sub-Saharan Africa, hypertension is still the
leading cause of heart failure [23]. Also, healthcare services’ avail-
ability and efficiency differ significantly between countries, sug-
gesting that algorithms trained using data from HIC should be
retrained using local data before adopting risk calculators.

Despite the endemicity of heart failure in LMIC, risk scores
derived from patients residing in LMIC are scanty or non-
existent. The lack of EHR systems, registries, and pooled data from
multicentre studies is responsible for the absence of risk scores
derived from patients in LMIC. If digital structured health data
4

were available in LMIC, models predicting outcomes could be cre-
ated instead of extrapolating from studies conducted in HIC. The
absence of structured health data in LMIC resulted in the underrep-
resentation of this population in the training and test datasets
included in this systematic review.

The AUC was one of the most commonly reported performance
metric in the extracted studies. The highest AUC for models pre-
dicting mortality was 0.92, achieved by the random forest algo-
rithm in a study by Nakajima et al., where both clinical and
physiological imaging data were used to train algorithms [24]. A
model with an AUC equal to or below 0.50 is unable to discriminate
between classes. One might as well toss a coin when making pre-



Fig. 2. Study population region.

Table 2
Characteristics of heart failure patients included in the 30 models predicting mortality and hospitalization.

First Author (year) Study Region No. of patients % Black Age % male % Hypertension % IHD

Adler, E.D (2019) [10] USA and Europe 5 822 60.3
Ahmad, T (2018) [30] Europe 44 886 73.2 63
Allam, A (2019)[31] USA and Europe 272 778 73 ± 14 51
Angraal, S (2020)[13] USA, Canada, Brazil, Argentina, Russia, Georgia 1 767 72 (64–79) 50
Ashfaq, A (2019) [32] Europe 7 655 78.8 57
Awan, SE (2019) [33] Australia 10 757 82 ± 7.6 49 67 55
Chen, R (2019) [34] China 98 47 ± 14 79 23
Chicco, D (2020) [34] Pakistan 299 40–95* 65
Chirinos, J (2020) [35] USA, Canada, Russia 379 7.4 70 (62–77) 53.5 94.5 30.6
Desai, R.J (2020) [6] USA 9 502 5.1 78 ± 8 45 87.1 22
Frizzell, J.D (2017) [36] USA 56 477 10 80 (74–86) 45.5 75.7 58
Gleeson, S (2017) [37] New Zealand 295 62 74 43
Golas, S.B (2018) [12] USA 11 510 7.9 75.7 (64–85) 52.8
Hearn, J (2018) [38] Canada 1 156 54 74.6
Hsich, E (2011) [9] USA 2 231 54 ± 11 73 41
Jiang, W (2019) [39] USA 534 28 74.8 46
Kourou, K (2016) [19] Belgium 71 48.07 ± 14.82 80.3
Krumholz, H (2019) [40] USA 716 790 11.3 81.1 ± 8.4 45.6
Kwon, J (2019) [5] Asia 2 165 69.8 59.7
Liu, W (2019) [41] USA 303 233 72.5 50.9
Lorenzoni, G (2019) [7] Italy 380 78 (72–83) 42.9 18.9
Maharaj, S.M (2018) [42] USA 1 778 0.95 72.3 ± 12.1 97.6 14
McKinley, D (2019) [20] USA 132 100 59.25 100 91
Miao, F (2017) [43] USA 8 059 73.7 54 25 23.2
Nakajima, K (2020) [24] Japan 526 66 ± 14 72 53 37
Shameer, K (2016) [44] USA 1 068
Shams, I (2015) [45] USA 1 674 70.4 69.9 96
Stampehl, M (2020) [46] USA 206 644 12.6 80.5 ± 11.2 38.3 96.5 0.4
Taslimitehrani, V (2016) [47] USA 5 044 78 ± 10 52 81 70.2
Turgeman, L (2016) [27] USA 4 840 69.3 ± 11.02 96.5 84.9

Age showed as mean ± standard deviation, median (25th-75th percentile interquartile range) or minimum and maximum value.* IHD: ischaemic heart disease; USA: United
States of America.

Fig. 3. Number of studies using machine learning algorithms.
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Table 3
Performance metrics of algorithms predicting mortality and hospitalization in heart failure.

Author Algorithms Sensitivity Accuracy AUC (mortality) AUC (Hospitalization) F-score

Adler, E.D (2019) [10] Boosted decision trees 0.88 (0.85–0.90)
Ahmad, T (2018) [30] Random forest 0.83
Allam, A (2019) [31] Recurrent neural network 0.64 (0.640–0.645)

Logistic regression l2-norm regularization (LASSO) 0.643 (0.640–0.646)
Angraal, S (2020) [13] Logistic regression 0.66 (0.62–0.69) 0.73 (0.66–0.80)

Logistic regression with LASSO regularization 0.65 (0.61–0.70) 0.73 (0.67–0.79)
Gradient descent boosting 0.68 (0.66–0.71) 0.73 (0.69–0.77)
Support vector machines (linear kernel) 0.66 (0.60–0.72) 0.72 (0.63–0.81)
Random forest 0.72 (0.69–0.75) 0.76 (0.71–0.81)

Ashfaq, A (2019) [32] Long Short-Term Memory (LSTM) neural network 0.77 0.51
Awan, SE (2019) [33] Multi-layer perceptron (MLP) 48.4 0.62
Chen, R (2019) [34] Naïve Bayes 0.827 0.855

0.887
0.890
0.877
0.852
0.847
0.705
0.797

Naïve Bayes + IG 0.857
Random forest 0.817
Random forest + IG 0.827
Decision trees (bagged) 0.827
Decision trees (bagged) + IG 0.816
Decision trees (boosted) 0.735
Decision trees (boosted) + IG 0.806

Chicco, D (2020) [11] Random forest 0.740 0.800 0.547
Decision tree 0.737 0.681 0.554
Gradient boosting 0.738 0.754 0.527
Linear regression 0.730 0.643 0.475
One rule 0.729 0.637 0.465
Artificial neural network 0.680 0.559 0.483
Naïve Bayes 0.696 0.589 0.364
SVM (radial) 0.690 0.749 0.182
SVM (linear) 0.684 0.754 0.115
K-nearest neighbors 0.624 0.493 0.148

Chirinos, J (2020) [35] Tree-based pipeline optimizer 0.717 (0.643–0.791)
Desai, R.J (2020) [6] Logistic regression (traditional) 0.749 (0.729–0.768) 0.738 (0.711–0.766)

LASSO 0.750 (0.731–0.769) 0.764 (0.738–0.789)
CART 0.700 (0.680–0.721) 0.738 (0.710–0.765)
Random forest 0.757 (0.739–0.776) 0.764 (0.738–0.790)
GBM 0.767 (0.749–0.786) 0.778 (0.753–0.802)

Frizzell, J.D (2017) [36] Random forest 0.607
GBM 0.614
TAN 0.618
LASSO 0.618
Logistic regression 0.624

Gleeson, S (2017) [37] Decision trees 0.7505
Golas, S.B (2018) [12] Logistic regression 0.626 0.664 0.435

Gradient boosting 0.612 0.650 0.425
Maxout networks 0.645 0.695 0.454
Deep unified networks 0.646 0.705 0.464

Hearn, J (2018) [38] Staged LASSO 0.827 (0.785–0.867)
Staged neural network 0.835 (0.795–0.880)
LASSO (breath-by-breath) 0.816 (0.767–0.866)
Neural network (breath-by-breath) 0.842 (0.794–0.882)

Hsich, E (2011) [9] Random survival forest 0.705
Cox proportional hazard 0.698

Jiang, W (2019) [39] Logistic and beta regression (ML) 0.73
Kourou, K (2016) [19] Naïve Bayes 85 0.86

Bayesian network 85.9 0.596
Adaptive boosting 78 0.74
Support vector machines 90 0.74
Neural networks 87 0.845
Random forest 75 0.65

Krumholz, H (2019) [40] Logistic regression (ML) 0.776
Kwon, J (2019) [5] Deep learning 0.813 (0.810–0.816)

Random forest 0.696 (0.692–0.700)
Logistic regression 0.699 (0.695–0.702)
Support vector machine 0.636 (0.632–0.640)
Bayesian network 0.725 (0.721–0.728)

Liu, W (2019) [41] Logistic regression 0.580 (0.578–0.583)
Gradient boosting 0.602 (0.599–0.605)
Artificial neural networks 0.604 (0.602–0.606)

Lorenzoni, G (2019) [7] GLMN 77.8 0.812 0.86
Logistic regression 54.7 0.589 0.646
CART 44.3 0.635 0.586
Random forest 54.9 0.726 0.691
Adaptive Boosting 57.3 0.671 0.644
Logitboost 66.7 0.625 0.654
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Table 3 (continued)

Author Algorithms Sensitivity Accuracy AUC (mortality) AUC (Hospitalization) F-score

Support vector machines 57.3 0.699 0.695
Artificial neural networks 61.6 0.682 0.677

Maharaj, S.M (2018) [42] Boosted tree 0.719
Spike and slab regression 0.621

McKinley, D (2019) [20] K-nearest neighbor 0.773 0.768
K-nearest neighbor (randomized) 0.477 0.469
Support vector machines 0.545 0.496
Random forest 0.682 0.616
Gradient boosting machine 0.614 0.589
LASSO 0.614 0.576

Miao, F (2017) [43] Random survival forest 0.804
Random survival forest (improved) 0.821

Nakajima, K (2020) [24] Logistic regression 0.898
Random forest 0.917
GBT 0.907
Support vector machine 0.910
Naïve Bayes 0.875
k-nearest neighbors 0.854

Shameer, K (2016) [44] Naïve Bayes 0.832 0.78
Shams, I (2015) [45] Phase type Random forest 91.95 0.836 0.892

Random forest 88.43 0.802 0.865
Support vector machine 86.16 0.775 0.857
Logistic regression 83.40 0.721 0.833
Artificial neural network 82.39 0.704 0.823

Stampehl, M (2020) [46] CART
Logistic regression
Logistic regression (stepwise) 0.74

Taslimitehrani, V (2016) [47] CPXR(Log) 0.914
Support vector machine 0.75
Logistic regression 0.89

Turgeman, L (2016) [27] Naïve Bayes 48.9 0.676
Logistic regression 28.1 0.699
Neural network 8.9 0.639
Support vector machine 23.0 0.643
C5 (ensemble model) 43.5 0.693
CART (boosted) 22.6 0.556
CART (bagged) 9.0 0.579
CHAID Decision trees (boosted) 30.3 0.691
CHAID Decision trees (bagged) 10.5 0.707
Quest decision tree (boosted) 20.3 0.487
Quest decision tree (bagged) 7.2 0.579
Naïve network + Logistic regression 38.2 0.653
Naïve network + Neural network 26.3 0.635
Naïve network + SVM 35.8 0.649
Logistic regression + Neural network 16.8 0.59
Logistic regression + SVM 26.2 0.607
Neural network + SVM 16.5 0.577

AUC: area under the receiver operating characteristic curve; CART: classification and regression tree; CPXR: contrast pattern aided logistic regression; GBM: gradient-boosted
model; HR: hazard ratio; IG: information gain; LASSO: least absolute shrinkage and selection operator; ML: machine learning; SVM: support vector machine; TAN: tree
augmented Bayesian network. The AUC is displayed under both the mortality and hospitalization column if the authors did not specify the outcome predicted.
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dictions. Some of the reasons for the modest performance metrics
demonstrated by machine learning algorithms include a training
dataset with excessive missing data or few predictors, absence of
ongoing partnership between clinicians and data scientists and
class imbalance. In most instances, when handling healthcare data,
the negative class tends to outnumber positive classes. The learn-
ing environment is rendered unfavourable since there are fewer
positive observations or patterns for an algorithm to learn from.
For example, when predicting mortality, the class with patients
that demised is frequently smaller than the class with alive
patients.

Models with perfect precision and recall have an F-measure,
also known as the F-Score or F1 Score, equal to one [25]. Sensitiv-
ity, also known as recall, measures a proportion of positive classes
accurately classified as positive [26]. Machine learning algorithms
in the extracted studies had a sensitivity rate between 7.2 and
91.9%. The low sensitivity, reported by Turgeman and May,
improved to 43.5% when they used an ensemble method to com-
bine multiple predictive models to produce a single model [27].
7

Although the random forest algorithm appeared to have the
highest predictive abilities in most studies, one cannot conclude
that it should be the algorithm of choice whenever one attempts
to create a predictive model. The random forest algorithm’s main
advantage is that it is an ensemble-based classifier that takes
random samples of data, exposing them to multiple decision tree
algorithms. Decision trees are intuitive and interpretable and can
immediately suggest why a patient is stratified into a high-risk
category, hence guiding subsequent risk reduction interventions.
The interpretability of decision trees is a significant advantage in
contrast to deep learning methodologies such as artificial neural
networks with a ‘‘black box” nature. Once random samples of
data have been exposed to multiple decision tree algorithms,
the decision trees’ ensemble identifies the class with the highest
number of votes when making predictions. Random forests also
perform well in large datasets with missing data, a common
finding when handling healthcare data, and can rank features
(predictors) in the order of importance, based on predictive pow-
ers [28].
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Predictors of mortality identified by machine learning algo-
rithms in the extracted studies were explainable and included fea-
tures such as the LVEF, hypotension, age and blood urea nitrogen
levels. Whether these predictors should be considered significant
risk factors for all heart failure, irrespective of genetic makeup, is
debatable. The youngest patient in the studies reviewed was
40 years old, but most of the patients included in the predictive
models were significantly older, with a median age of 72 years.
Risk scores derived from older patients may reduce the applicabil-
ity of the existing risk calculators in the sub-Saharan African (SSA)
context, considering that patients with heart failure in SSA are gen-
erally a decade younger [29].

Geographically unique heart failure aetiologies and diverse clin-
ical presentations call for predictive models that incorporate geno-
mic, clinical and imaging data. We recommend that clinicians
treating heart failure patients focus on establishing structured
EHR systems and comparing outcomes such as mortality and hos-
pitalization in patients managed with and without risk scores.
Clinicians without access to EHR systems should carefully study
the cohort used to create risk scores before implementing risk
scores in their clinical practice.

5. Limitations

This systematic literature review has several limitations. The
systematic literature search was conducted by a single reviewer,
predisposing the review to selection bias. We only included origi-
nal research studies published after 2009. The rationale for includ-
ing studies published in the past 11 years was to avoid including
studies where rule-based expert systems were used instead of
newer machine learning techniques. Although the data used to cre-
ate predictive models was grossly heterogeneous, a meta-analytic
component as part of the review would have provided a broader
perspective on machine learning algorithms’ performance metrics
when predicting heart failure patient outcomes.

6. Conclusion

The variation in the aetiologies of heart failure, limited access to
structured health data, distrust in machine learning techniques
among clinicians and the modest accuracy of predictive models
are some of the factors precluding the widespread use of machine
learning derived risk calculators.
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