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Abstract

Background: Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and
adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of
dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-
based resource to access the information in the literature. Current pathway diagrams lack either
comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated
knowledgebase that integrates this information into a map of signaling networks.

Description: We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing
researchers with a valuable resource and a facile method for community input. Network construction has relied on
comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways
activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-
inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like
receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of
interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213
edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with
PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for
updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the
network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This
emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated
responses to pathogen detection.

Conclusions: This map represents a navigable aid for presenting a consensus view of the current knowledge on
dendritic cell signaling that can be continuously improved through contributions of research community experts.
Because the map is available in a machine readable format, it can be edited and may assist researchers in data
analysis. Furthermore, the availability of a comprehensive knowledgebase might help further research in this area
such as vaccine development. The dendritic cell signaling knowledgebase is accessible at http://tsb.mssm.edu/
pathwayPublisher/DC_pathway/DC_pathway_index.html.

Background
The innate immune system represents the first line of
defense against attack by viral, bacterial, and parasitic
infections. Dendritic cells (DCs), which are found in

abundance in peripheral tissues such as skin, lung, and
mucosal surfaces, act as a bridge between the innate
and adaptive immune systems: recognition of a ‘danger’
signal initiates the maturation of DCs, which ultimately
activate cells of the adaptive arm of the immune system,
B and T cells [1-3]. DCs express receptors that recog-
nize and bind a large array of epitopes or antigens com-
mon to many bacterial or viral pathogens; once an
antigen is recognized, it is internalized, processed, and
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presented at the cell surface in association with mole-
cules of the major histocompatibility complex (MHC).
DC maturation is characterized by up-regulation of the
MHC molecules, production of cytokines, chemokines
and co-stimulatory molecules, and migration of DCs to
lymphoid tissues, i.e. the spleen and the lymph nodes
(for review, see [3,4]). Research efforts have aimed at
understanding the DC signaling and effector pathways
that direct this cell’s crucial role in immunity. A graphi-
cal representation of those signaling pathways as a bio-
logical system would provide an easily accessible,
integrated view of the literature in this field to the scien-
tific community.
DCs detect pathogens via pattern recognition recep-

tors (PRRs), which recognize various molecular struc-
tures referred to as pathogen-associated molecular
patterns (PAMPs), e.g. lipopolysaccharides, lipoteichoic
acids, flagellin and nucleic acids. Membrane-associated
PRRs, like the Toll-like receptors (TLRs) and C-type lec-
tin receptors (CLRs) respond to extracellular pathogens,
while cytosolic PRRs, including RIG-I-like receptors
(RLRs) and NOD-like receptors (NLRs) sense intracellu-
lar pathogens [5-7]. Pathogen recognition activates an
intracellular signaling cascade, which results in the
expression of type I interferons (IFNs), as well as other
inflammatory response genes. Secreted IFNs bind to cell
surface receptors and activate the JAK-STAT pathway
in an autocrine and paracrine fashion [8,9]. A resource
that facilitates access to information on the molecular
networks that underlie DC signaling responses to var-
ious pathogens would assist research on antibacterial
and antiviral therapy. Furthermore, it might benefit the
development of DC vaccines against cancers and auto-
immune diseases, as manipulating DCs in vitro and ren-
dering them responsive to tumor antigens may lead to
tumor regression [10]. Traditional representations of
molecular pathways may be found in reviews. A web-
based pathway diagram complements these reviews by
giving more direct access to continually updated litera-
ture information in a pathway format. Also a pathway-
based resource can be used directly for computational
studies. SBML is a computer-readable format for repre-
senting models of biological processes [11]. Therefore,
an optimal pathway diagram should focus on a whole
biological system rather than a part of it, comply with a
standard format, such as the Systems Biology Mark-up
Language (SBML; http://sbml.org/), and be accessible to
the community for updates and corrections.
Current databases of signaling networks of the innate

immune response include free online resources such as
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway database http://www.genome.jp/kegg/pathway.
html[12], Reactome, which is a curated knowledgebase
of biological pathways http://www.reactome.org/cgi-bin/

frontpage?DB=gk_current[13], Science’s Signal Trans-
duction Knowledge Environment (STKE; http://stke.
sciencemag.org/cm/) biological pathways database, and
Ingenuity Systems, a commercial subscription-based
knowledgebase. The KEGG pathways do not integrate
all PRRs, but rather depict each type of PRR-derived
pathway separately and with little detail. Although Reac-
tome is abundantly annotated and organism-specific, it
does not provide cell-type specific information. STKE
features 19 immunity-related pathways, the majority of
which, however, have not been updated in recent years.
Similar to Reactome, Ingenuity Systems offers a great
diversity of annotations, including literature references
from various biological models and many other database
resources, yet it presents a fairly basic version of each
signaling network and is not cell-type specific. In con-
trast, the group of Kitano [14] constructed a compre-
hensive map of TLRs and interleukin 1 receptor
signaling networks based on published literature; the
TLR pathway map, created in CellDesigner [15], is com-
prised of 652 species and 444 reactions and complies
with SBML. However, it lacks a means for community-
wide feedback, which would considerably help experts
in the field to directly participate in the map update,
and is not cell-type specific.
Based on a manual curation of the published litera-

ture, we have assembled an extensive and detailed map
of the signaling pathways involved in DC response to
pathogens, as described in human DCs and mouse mod-
els. The DC pathway map, which is web-accessible,
includes the following annotations: a list of interactions,
GeneIDs, PubMed IDs (PMIDs), along with summary
notes. In order to provide a discussion forum for the
community and an opportunity for direct feedback and
contribution, we have linked the DC map to a public
wiki. Thus, it should represent a valuable resource for
the research community, and conceivably initiate a com-
munity-wide interactive process. Additionally, using
computational methods we delineated the regulatory
motifs that are present in the DC signaling network.

Construction and content
To summarize the complexity of the pathogen recogni-
tion response in DCs, we have developed a map of sig-
naling events occurring in those cells upon viral and
bacterial infection. This map was assembled in CellDe-
signer, a free process diagram editor for gene-regulatory
and biochemical networks http://celldesigner.org/; it was
then web-published using BioPP, a software suite which
converts CellDesigner-SBML formatted pathways into a
web-viewable format [16]. Hence, this knowledgebase is
deposited into a public repository endowed with a path-
way navigator, which facilitates browsing through the
nodes and entities of the uploaded pathway. Each entity
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in the network is annotated with a complete list of
interactions in which it participates, and PMIDs sup-
porting those interactions (Figure 1). Entities are also
linked to NCBI Entrez Gene pages and to their respec-
tive wiki pages. Furthermore, users may download the
DC signaling pathway diagram from the BioPP website
in an xml format, which allows them to edit and/or
expand it in CellDesigner, based upon their own experi-
mental data or knowledge.
At present, the DC signaling network consolidates

manually curated information from 167 peer-reviewed
journal articles. Target publications are mainly reports
on human DCs and mouse models, as well as studies in
heterologous expression systems. In particular, as the
main interest of our research group is monocyte-derived
DCs obtained from human blood donors, namely con-
ventional DCs, we have not yet included plasmacytoid
DCs in the knowledgebase. To avoid adding more visual
complexity to the diagram, we have chosen not to depict
response genes, but rather represent their respective

RNAs. For simplicity, transcription factors and other
regulatory complexes are directly connected to the
RNAs of the response genes they activate. Additionally,
the molecular machinery required for the transportation
of transcription factors from the cytoplasm to the
nucleus and vice versa has been omitted. The network
consists of 249 entities or nodes and 213 reactions or
edges. Among the 118 protein species, 20 were classified
as receptors and 2 as truncated proteins, the remainder
being comprised of intracellular proteins as well as tran-
scription factors. The reactions can be classified into
122 state transitions (which include catalysis reactions),
9 heterodimer associations, 4 dissociations, 36 transcrip-
tional activations, 8 unknown transitions, 8 transport
reactions, 21 inhibitions, and 4 translations.

Main structural features of the map
The DC signaling network (Figure 2) can be divided into
four main pathways, each of which is activated by a dif-
ferent family of PRRs: the TLRs, CLRs, RLRs, and NLRs.

Figure 1 Web-accessible DC pathway navigator. Snapshot of the pathway navigator that displays a selected view of the DC signaling map.
Entities are clickable, such that corresponding annotations, namely the interactions in which those entities are involved, and the related PMIDs
are displayed in the bottom left-hand frame. Additionally, other frames include an Interaction list, a Protein list, a Gene list, and an RNA list.
Hyperlinks to the relevant NCBI Entrez Gene page(s) and DC wiki pages are also provided. A zoom rectangle located in the upper left corner of
the image facilitates navigation through the pathway.
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Besides being initiated by different PRRs, these pathways
involve distinct adaptors and lead to the expression of
genes in response to individual microbes. Those genes
encode inflammatory cytokines, such as interleukin-12
(IL-12, IL-6, IL-23), which are necessary to stimulate
T cells (T helper cells Th1, Th2, Th17, or Tregs) for the
adaptive immune response. Because T cell responses are
beyond the scope of the DC signaling network, they
were not illustrated on the DC map. Importantly, the
pathways often share common downstream signaling
molecules [17]. The pathway interconnectivity, which is
illustrated on the DC map (Figure 2) and detailed
further below, is presented in a more condensed form in
Figure 3. Likewise, we describe diverse negative regula-
tory mechanisms employed by DCs to control their PRR
responses to pathogens, and provide a basic depiction of
those mechanisms in Figure 4.
There are 13 different members in the TLR family of

proteins identified across mammalian species (TLR1-13).
We omitted TLR10, which is not functional in mice, and
TLR 12 and TLR13, which are lost in humans. TLRs
recognize a wide variety of PAMPs ranging from lipids,
lipoproteins, glucans to nucleic acids [18]. They are char-
acterized by leucine rich repeats (LRRs) that mediate
PAMP recognition and a cytoplasmic TIR domain that
transmits the signal downstream via adaptor molecules.

The main adaptors include MyD88, TRIF, TRAM and
TIRAP [19-24]. Individual TLRs mediate distinct
responses by association with a different combination of
adaptor molecules. Additionally, some TLR family mem-
bers can form heterodimers that recognize specific
microbial structures. For instance, TLR1 and TLR6 were
shown to form heterodimers with TLR2: TLR1/2 hetero-
dimers interact with bacterial triacyl lipopeptides, while
TLR2/6 heterodimers recognize diacyl lipopeptides and
lipoteichoic acid [25,26]. While nearly all TLRs recruit
MyD88, TLR3 mediates its response merely through
TRIF. The association of TLRs and MyD88 recruits
members of the IL-1 receptor-associated kinase (IRAK)
family. In turn, IRAK4 and IRAK1 activate transcription
factors NF�B and AP-1 through the canonical IKK com-
plex and the MAPK pathway, respectively. NF�B conse-
cutively stimulates the expression of inflammatory
cytokine genes, including TNFa, IL-6 and IL-1b [3].
In contrast with MyD88, TRIF interacts with protein
kinases IKKE and TBK1, which activate IRF3 and IRF7
[20,27]. Interestingly, TLR4 signals through both MyD88
and TRIF, leading to activation of NF�B and IRFs,
respectively [20,28].
The RLRs RIG-I and MDA5 activate NF�B and IRF3

independently of TLRs. RIG-I interacts with either
ssRNA or dsRNA through an RNA helicase domain,

Figure 2 Snapshot of the DC signaling pathway map. This map was created using CellDesigner ver.4.0.1, ver.4.0.a, and ver.4.1b http://
celldesigner.org/. The main symbols used may slightly differ from those implemented by CellDesigner ver.4.0.1 and ver.4.0.a, as indicated.
Interactions are color-coded: black filled arrows, stimulatory reactions; red bar-headed lines, inhibitory reactions; black dashed and double-dotted
lines, transcriptional activation reactions (instead of transcription reactions); pink round-headed lines, catalysis reactions; black filled arrows with a
bar, transport reactions. The presence of a question mark signifies that, whether the reactions are direct or indirect, is unknown. Translation
reactions are represented by dashed and single-dotted lines. Modification states of proteins, i.e. phosphorylation and ubiquitination, are
symbolized by P and Ub, respectively. Entities that are bordered with a dotted frame are considered in an active state. The following cellular
compartments are illustrated on the diagram, as indicated: cytoplasm, endosome, mitochondria, and nucleus. The color-coding of entities was
put together by us: pathogens and PAMPs in turquoise, TLRs in yellow, RLRs in purple, CLRs in pink, NLRs in orange, adaptors in grey,
transcription factors in light blue, kinases in light green, and negative regulators in red. The map can be more easily viewed on the web at
http://tsb.mssm.edu/pathwayPublisher/DC_pathway/DC_pathway_index.html.

Patil et al. BMC Systems Biology 2010, 4:137
http://www.biomedcentral.com/1752-0509/4/137

Page 4 of 13

http://www.biomedcentral.com/1752-0509/4/137
http://www.biomedcentral.com/1752-0509/4/137
http://tsb.mssm.edu/pathwayPublisher/DC_pathway/DC_pathway_index.html


and recruits adaptor MAVS via a CARD-CARD associa-
tion [29,30]. MAVS stimulates IKKE/TBK1, which in
turn activate IRF3 and IRF7. Consecutively, those IRF
family members induce type I IFN response by activat-
ing IFNb transcription [20,31].
CLRs recognize carbohydrate structures present on

bacterial or fungal pathogens (for review, see [32]). They
are characterized by a carbohydrate recognition domain
(CRD) involved in carbohydrate binding. Different CLRs,
such as MR, Langerin, Dectin-1 and MGL, interact with
different glucan structures. In our network diagram, we
chose to depict the Dectin-1-dependent pathway in

detail: Dectin-1 binds fungal b-glucans and recruits SYK
and CARD9, which leads to activation of NF�B, and
subsequent induction of inflammatory cytokines (for
review, see [33]).
The NLR family of intracellular PRRs includes NOD1,

NOD2, and NALP3. NOD1 and NOD2 recognize distinct
motifs derived from the peptidoglycan bacterial cell wall,
while NALP3 responds to multiple stimuli (for review,
see [34]). NOD1 and NOD2 possess a CARD domain
responsible for the signaling, whereas NALP3 has a pyrin
domain instead (for review, see [35]). Both NOD1 and
NOD2 recruit adaptor RICK, which activates TAK1.

Figure 3 Cross talks between signaling pathways downstream of PRRs. (a) Cross talk between different TLRs. The diagram illustrates the
cross talks between TLR3 and TLR 7-9, and between TLR4 and TLR7-9. For instance, TLR4 (in pink) and TLR7-9 (in yellow, light purple, and blue,
respectively) signaling pathways converge at both IKKs and MAPKs. (b) Cross talk between TLR3 and RLRs (RIG-I and MDA5). (c) Cross talk
between TLR4 and NLRs (NOD1 and NOD2). (d) Cross talks between TLRs and CLRs. The diagram illustrates the cross talks between TLR2 and
Dectin-1, and between TLR4 and Dectin-1. Symbols: black or color-coded filled arrows, stimulatory reactions; black dashed and double-dotted
lines, transcriptional activation reactions; black filled arrows with a bar, transport reactions. The presence of two forward slashes signifies that
known stimulatory reactions (i.e. intermediate reactions) were omitted. PRR entities that are bordered with a dotted frame are considered in an
active state.
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Figure 4 Negative regulations of PRR responses. (a) Negative regulation of TLR3-, RIG-I-, and MDA5-induced pathways by A20. (b) Negative
regulation of RIG-I- and TLR3-induced pathways by SIKE. (c) Negative regulation of TLR3- and RIG-I-induced pathways by PIN1. (d) Negative
regulation of MDA5 and RIG-I signaling by both RNF125 and NLRX1. (e) Negative regulation of JAK/STAT signaling by SOCS proteins, and of
TLR4 signaling by SOCS1. In this diagram, transcriptional activation reactions were represented by black dashed and double-dotted lines, and
protein phosphorylation was signified by P.
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TAK1 activates the MAPK cascade and NF�B, which in
turn induce genes of the IL-1 family of inflammatory
cytokines. In response to diverse stimuli such as bacterial
RNA or endogenous danger signals (extracellular ATP,
uric acid crystals), NALP3 forms an inflammasome. The
NALP3 inflammasome contains NALP3, ASC, Cardinal,
and Caspase-1, and leads to activation of Caspase-1 and
subsequent maturation of the pro-inflammatory cytokine
IL-1b [36]. Here, we intentionally represented the
NOD1- and NOD2-dependent pathways.

Cross talk and synergy between the signaling pathways
downstream of PRRs
Multiple PRRs can recognize a specific pathogen, thereby
activating separate or shared pathways. Generally, the
collaboration between PRRs typically results in enhanced
transcriptional and cellular responses, i.e. synergistic
inflammatory responses, as compared to each PRR. The
fact that several receptors may be involved in pathogen
recognition renders the system more robust against
immune evasion by the pathogenic microbe. Not only
can it scale up the inflammatory response, but it may
also tailor it to the type of microbe encountered. Impor-
tantly, a better understanding of the effective interplay
between DC signaling pathways may eventually be
exploited in the development of vaccines. Hence, TLRs,
RLRs, NLRs, and CLRs can cross talk and synergize to
orchestrate immune responses effectively. Cross talks
observed between PRRs that belong to the same family,
or between different types of PRRs, are detailed below
and on the DC map (Figure 2). Additionally, a reduced
version of those cross talks is presented in Figure 3.
TLR3/4 synergize with endosomal TLR7-9 to increase

the production of Th1- polarizing cytokine IL-12p70 by
more than 20-fold compared to either receptor alone;
the mechanisms underlying this synergy are not fully
understood [37-39]. It is conceivable that activation of
IRF transcription factors by dual TLR engagement may
enhance IL-12 transcription. Additionally, TLR7 and
TLR4 synergize for the production of inflammatory
cytokine IL-1b [39]. Napolitani et al. speculated that
synergistic TLR stimulation may result from sustained
signaling, or possibly imply complementary signaling
pathways that have yet to be identified [39]. The cross
talk pathways that may contribute to TLR signaling
synergy are illustrated in Figure 3a.
TLR3 and RLRs have been shown to be important in

recognizing RNA viruses in different cellular compart-
ments. TLR3 is present in endosomal membranes and
binds to the dsRNA phagocytosed from viral infected
apoptotic cells [40-42]. In contrast, RIG-I/MDA5 func-
tions as a sensor that detects actively replicating viruses
in the cytoplasm [43-46]. Although the pathways trig-
gered by TLR3 and RLRs are independent, they

converge further downstream and result in the activa-
tion of key transcription factors, such as NF�B, IRF3
and 7, and AP-1 (c-Jun/ATF2), which ultimately induce
the expression of IFNb [47,48] (Figure 3b). Recently,
Perrot and his coworkers reported that concomitant
engagement of TLR3 and RLR on myeloid DCs by poly
(I:C) dsRNA is required to induce high levels of IL-12
and type I IFN, which in turn lead to an optimal pro-
duction of IFNg by NK cells [49].
Activation of NF�B and of the MAPK cascade occurs

in the TLR and NLR signaling pathways (for review, see
[34]) (Figure 3c). NOD2 agonist, MDP and TLR4 ago-
nist, LPS have a synergistic effect on the production of
inflammatory cytokine TNFa, which is apparently due
to removal of a block in translation of the TNFa mRNA
expressed in response to MDP [50]. NOD1 and NOD2
also act in synergy with TLRs 3, 4, and 9 in human DCs
to induce IL-12p70 production and promote Th1 cell
differentiation [51].
TLR2 and Dectin-1 are synergistic in mediating IL-12

and TNFa production [52] (Figure 3d). Interestingly,
Dectin-1 can also promote synthesis of IL-2 and IL-10
in DCs through the recruitment of Syk kinase in
response to zymosan, a cell-wall preparation of yeast
[53]. Hence, during pathogenic infection, stimuli from
either a single antigen or different antigenic components
from a single pathogen could activate different PRRs
[53]. The final immune response is the combined effect
produced through activation of multiple PRRs and cross
talks between the signaling pathways activated through
these receptors.

Network control and negative regulation of PRR
responses
Appropriate and accurate PRR responses to pathogen sig-
nals are essential for the host defense. Yet over-activated
cytokine responses to infection can be detrimental to the
host. In order to generate an effective but non-toxic
response, control mechanisms that negatively regulate
the degree and duration of PRR responses are needed.
Such surveillance mechanisms operate at different nodes
in the PRR-induced signaling cascades. Regulatory
mechanisms, which include degradation, sequestration,
or inhibition of signaling molecules, are represented
schematically in Figure 4. Proteins such as A20, SIKE and
PIN1 negatively regulate both TLR and RLR signaling
pathways, while others inhibit a specific pathway. For
instance, LGP2 interferes with the recognition of viral
RNA by RIG-I and MDA5. LGP2 is a RIG-I-like RNA
helicase that sequesters dsRNA away from RIG-I. Thus,
it acts as a negative regulator of RIG-I signaling. Unlike
RIG-I and MDA5, LGP2 lacks the CARD domain
required for the interaction with the MAVS adaptor and
for signal transduction [54].
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A20 functions as a feedback negative regulator of the
TLR3 pathway by inhibiting TRIF-mediated induction of
NFkB and IFNb transcription (Figure 4a). It was demon-
strated to interact with the adaptor protein TRIF by co-
immunoprecipitation experiments, and targets it for
degradation [55,56]. Moreover, A20 was shown to
restrict TLR-induced TRAF6 ubiquitination, most likely
by deconjugating ubiquitin chains onto TRAF6, thereby
inhibiting the activation of NF�B signaling [57-60]. A20
was also shown to inhibit RIG-I-induced antiviral state,
namely gene expression of IRF3, IRF7, and NF�B via its
C-terminal ubiquitin ligase domain. According to Lin
and collaborators, the inhibitory effect of A20 occurred
upstream of the IKKE/TBK1 kinases, yet its biological
target had yet to be identified [55]. It is noteworthy that
A20 was previously shown to interact with TBK1 and
IKKE by co-immunoprecipitation, thereby inhibiting
IRF3 phosphorylation and subsequent dimerization;
nevertheless, the molecular mechanism involved in this
negative regulation by A20 was not entirely unraveled
[61]. RIP1 is a key mediator of TLR3-induced NF�B
activation [62]. Interestingly, A20 downregulates NF�B
signaling through the cooperativity of its two ubiquitin-
editing domains: one domain de-ubiquitinates RIP at
Lys63, while the other poly-ubiquitinates RIP at Lys48,
thereby targeting it for proteasomal degradation [60].
SIKE was demonstrated to associate with IKKE and

TBK1 by co-immunoprecipitation (Figure 4b). Overex-
pression of SIKE inhibits IKKE- and TBK1-mediated
antiviral response by disrupting their interaction with
signaling components TRIF and IRF3. Indeed, those two
kinases play a crucial role in RIG-I- and TLR3-triggered
activation of IRF3 [63].
PIN1 is a peptidylprolyl cis-trans isomerase that pro-

motes proteasomal degradation of phosphorylated IRF3
by augmenting its poly-ubiquitination [64] (Figure 4c).
RNF125 is a ubiquitin ligase that negatively regulates
RIG-I signaling, by targeting RIG-I for proteasomal
degradation; likewise, RNF125 conjugates ubiquitin to
MDA5 [65] (Figure 4d). NLRX1 is a potent inhibitor of
the MAVS-mediated expression of the IFNb gene (Fig-
ure 4d). It localizes to the mitochondrial outer mem-
brane and disrupts the interaction between RIG-I and
its adaptor MAVS [66].
SOCS proteins inhibit cytokine-mediated signal trans-

duction by targeting JAK/STAT signaling (Figure 4e).
Cytokines include various interleukins and IFNa/b/g.
Their transcription is induced by cytokine activity,
which qualifies them as inducible feedback inhibitors.
SOCS1 and SOCS3 inhibit JAK activity: SOCS1 binds to
JAK2 and acts as a pseudo-substrate, while SOCS3 spe-
cifically binds to gp130 (signal transducer) cytokine
receptors such as the IL-6 receptor (for review, see
[67]). A study by Mansell and coll. indicated that

SOCS1 may also poly-ubiquitinate and degrade TIRAP
in TLR4 signaling, thereby resulting in an impaired
NF�B response [68], whereas another report suggested
that SOCS1 is part of a ubiquitin ligase complex, which
directly interacts with NF�B in the nucleus, leading to
its ubiquitination and degradation [69]. We chose to
solely represent the interaction between SOCS1 and
TIRAP. Concerning non-gp130 cytokine receptors like
the IFNg receptor, SOCS3 was shown to inhibit STAT1
phosphorylation [70].
Additional negative regulators include IRAK-M and

phosphatases. IRAK-M negatively regulates TLR signal-
ing by preventing the dissociation of IRAK1 and
IRAK4 from MyD88 and the formation of IRAK1-
TRAF6 complexes, as revealed by co-transfection
experiments into heterologous cells followed by co-im-
munoprecipitation [71]. The authors proposed that
IRAK-M may either inhibit IRAK1 and IRAK4 phos-
phorylation, or stabilize the TLR-MyD88-IRAK1-
IRAK4 complex. Phosphatases were shown to be impli-
cated in the regulation of PRR responses. Protein
phosphatase 2C (PP2C) was demonstrated to depho-
sphorylate and thus inactivate TAK1 in vitro, and
co-immunoprecipitation experiments indicated the
association of PP2C with TAK1 [72,73]. Earlier studies
demonstrated that PP2A plays a negative regulatory
role in the activation of IKK and NF�B in response to
various cellular stimuli [74,75]. However, more recent
studies suggested a positive regulatory role, involving a
physical interaction between PP2A and IKK [76,77].

Computational motif detection analysis of the DC
network
To identify motifs in our DC signaling network, we used
a fully connected directed graph that was reconstructed
from our DC map, as described in detail in Additional
file 1, followed by a motif search using several detection
methods [78-80]. We employed the FANMOD software
[80] to identify motifs of size 3, 4, 5 and 6. Motifs with
z-scores > 2 were considered as significantly overrepre-
sented if obtained with a p-value < 0.005 in 1000
shuffled networks. No significantly overrepresented
motifs of size 3 were detected. Among the significantly
overrepresented motifs of size 4, 5 and 6, the bifan and
the feedforward motifs were the top most enriched
motifs detected (Additional file 2). The rest of the signif-
icantly overrepresented motifs contained generalizations
of these two types as well as the multi-input conver-
gence (MIC) motif. An example of each motif type is
shown in Figure 5. Figure S2 in Additional file 1 illus-
trates instances of bifan motifs in the entire graph. Simi-
lar motifs of node size 5 and 6 were also found (data
not shown). We observed that feedback motifs were not
enriched in this network.
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Motifs have been shown to functionally implement sig-
nal processing within larger networks [81,82]. Obtaining
an outline of the regulatory motifs that are part of the
DC network may provide further insight into this com-
plex system. Bifan motifs, which support cross talk, and
feedforward loops, which favor signal persistency and
noise filtering have been shown to be prevalent in biolo-
gical networks [78,83-85]. Overrepresentation of MIC
motifs suggests another control mechanism whereby
several routes lead to the regulation of the same target.

Utility & Discussion
The DC pathway map is a public knowledgebase that
offers a platform for the curation, diffusion, and update
of information about the signaling cascades activated
upon viral and bacterial infection in DCs. Its manual
curation is based on extensive literature searches, and
its dissemination relies on the availability of a navigable
map of nodes and edges through the internet. Pathway
layout has been optimized manually in order to provide
more clarity to the diagram. In particular, we have put
nodes that interact with one another in close proximity.
In the web-published diagram, each node is clickable
and links to a complete list of interactions in which it is

involved; interactions themselves are supported by
hyperlinked PMIDs. Moreover, each node that belongs
to either a Protein or RNA category has one or more
hyperlinked GeneIDs, and is tied to a wiki page, which
lists all interactions in which it is engaged. Wiki pages
allow experts to contribute their remarks, suggestions or
literature updates. We expect to update the map regu-
larly with new data derived from the literature as well as
experts’ intellectual contributions on the wiki. Hence,
the DC map represents both an online resource and an
opportunity for community-wide collaboration. An xml
version of the pathway is available for download on the
website to allow biologists to modify and expand it in
accordance with their own experimental observations.
This xml file (also available as Additional file 3) includes
the PMIDs supporting interactions and GeneIDs
describing entities.
Recently, Pico et al. created an open platform for the

curation of biological pathways referred to as WikiPath-
ways [86]. The use of wiki pages to represent the path-
ways allows limited access to the knowledgebase and
does not support presentation of large networks, in con-
trast to our approach, which is to use the wiki to facili-
tate discussion.

Figure 5 Schematic representation of motifs and examples. Upper panels: Overrepresented motifs; lower panels: network motif examples.
Only motifs of 4 nodes are shown.
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Kitano’s group previously created a comprehensive
map of macrophage molecular interactions including
ligands such as PAMPs and interleukins as input signals,
and the release of cytokines and lipids as output signals
[87]. In the present work, we included pathogens and
PAMPs as inputs, as well as cytokines like IFNa and
TNFa. As outputs, the induction of inflammatory cyto-
kine expression, such as IL-6 and IL-12 was depicted. In
their comprehensive map of TLR signaling, Kitano’s
group employed a top-down approach to build a model
that emphasizes signal convergence [14]. We used a
multi-centric approach to build the DC signaling net-
work, beginning with the curation of induction of IFNb
enhanceosome through activation of the key transcrip-
tion factors IRF3, NF�B, AP1 upon viral invasion. Paral-
lel signaling shows cross talk at several points and
network branches in many directions. In that respect,
our approach is similar to that of Raza and coll. [88].
However, we also provide simplified diagrams that illus-
trate the major cross talk and negative regulatory
mechanisms that are part of the DC signaling network.
These schematics complement our comprehensive net-
work by extracting the main information and presenting
a simpler version of the complex mechanisms taking
place in DCs.
This mechanism for generating specific pathways also

improves upon the offerings that exist in such reposi-
tories as Science’s STKE biological pathways database or
KEGG. While STKE “pathway authorities” can be
reached to with regards to pathway alterations, the pro-
cess suffers from a lack of transparency and from the
review article dilemma of being too biased in specificity
or too general in the canonical pathways that may have
stagnated in the repository. While repositories like Reac-
tome and KEGG provide output in many usable formats
for modelers, they lack transparency and focus despite
the inclusion of specific reaction modules.
As we were finalizing this manuscript, a new commu-

nity-based platform named Payao http://www.payaologue.
org was developed by CellDesigner for sharing pathway
models. Payao provides a web-based interface for adding
tags and comments to curated pathway models. In con-
trast to our wiki system, it assigns privileges to specific
community members [89]. As parallel approaches to the
biocuration of pathway models may be taken, the
research community is encouraged to share its knowledge
and support curators in their efforts to assemble and edit
pathway diagrams. The wiki system is robust and reliable
in a sense that it keeps track of the changes made by
contributors. As biocuration is gradually gaining more
recognition, we reckon that our platform as well as others
will each play a part in improving community-driven
pathway enrichment [90].

With these tools to address the issues of curated net-
work processes for use in modeling, we offer a curated
signaling pathway of DCs undergoing viral infection.
This pathway does not compare to current complexity
and richness of Kitano’s Toll-like receptor network [14].
However, manual curation from our community has
produced an easily parsable network with the possibility
of scaling for unforeseen future applications. The high
degree of curation in this network offers a framework
for incorporation of private or public experimental data
as well as well represented evidence to enhance the
validity in modeling. As a community-driven process,
we hope that specific networks can rapidly grow and
overcome the hurdles of increased data saturation and
complexity, while meeting the needs of experimentalists,
modelers and computational biologists.
We performed an automated motif detection analysis

of the entire DC network. This analysis revealed an
over-representation of motifs favoring mechanisms such
as cross talk, signaling persistence, and signal conver-
gence. In particular, the families of bifan, feedforward
and MIC motifs were enriched. Bifans allow for cross
talk between the different regulators and may be an
important control mechanism for activating the same
pathway by multiple types of triggers. The feedforward
loops allow for noise reduction from transient activation
of the general regulator and are effective only once
there are enough signals to activate the specific regula-
tor [78,83-85]. Finally, the MIC motif also provides
another variation of the bifan control mechanism
whereby several pathways lead to the regulation of the
same target. As DCs need to coordinate signals triggered
by various pathogens to produce the specific immune
response, the prevalence of bifan, feedforward and MIC
motifs may be providing DCs with mechanisms to sup-
port their proper function.

Conclusions
In this report, we present a comprehensive network map
of the DC signaling network. Based on a detailed and
thorough search of the relevant literature, we manually
curated a pathway map of the signaling events triggered
upon viral and bacterial infection. In addition to TLR-
dependent pathways, cascades deriving from CLRs,
RLRs and NLRs are depicted. The map is intended to be
comprehensive and help researchers to unravel the sig-
nal transduction pathway and gene response mechan-
isms occurring in the DC in response to pathogens. We
anticipate updating the map regularly using data drawn
from newly published studies, as well as through
exchanges with researchers whose area of expertise is
cellular and molecular immunology. Those exchanges
will be made possible by the availability of a wiki, which
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will let experts suggest corrections or additions through
their feedback and comments.

Availability and requirements
The DC signaling pathway map is accessible at http://
tsb.mssm.edu/pathwayPublisher/DC_pathway/
DC_pathway_index.html.

Additional material

Additional file 1: Supporting Methods & Figures S1-S2. This file
describes the method employed for the computational motif detection
analysis of the DC network. It also illustrates examples of motifs identified
in the DC network in Figure S1, and instances of bifan motifs found in
the entire graph in Figure S2.

Additional file 2: FANMOD size 4 output. This output file, obtained
using the FANMOD program, contains all overrepresented motifs of size 4.

Additional file 3: DC signaling pathway. This file is an xml version of
the DC signaling pathway map, which allows biologists to edit and/or
expand it in accordance with their own experimental observations.
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