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Simple Summary: Bladder cancer is one of the most frequently diagnosed cancers worldwide and
due to non-specific symptoms, it is often detected at a late stage. For this reason, possible diagnostic
alternatives that could be used for non-invasive screening are still being sought. In recent years,
metabolomics approach has been frequently used for this type of research, using urine or blood
collected from two groups: patients with a given disease and healthy volunteers. Usually, to minimize
the impact of between-subject differences, participants of the study are matched in terms of age,
gender, or BMI. Another way to rule out the impact of this variability is to analyze samples taken
at intervals from the same patient. Therefore, the aim of our study was to validate results obtained
using the traditional approach on a small group of patients, from whom samples were taken before
and after resection of the bladder tumor, in a given time frame.

Abstract: The incidence of bladder cancer (BCa) has remained high for many years. Nevertheless, its
pathomechanism has not yet been fully understood and is still being studied. Therefore, multiplatform
untargeted urinary metabolomics analysis has been performed in order to study differences in the
metabolic profiles of urine samples collected at three time points: before transurethral resection
of bladder tumor (TURBT), the day after the procedure and two weeks after TURBT. Collected
samples were analyzed with the use of high-performance liquid chromatography hyphenated with
time-of-flight mass spectrometry detection (HPLC-TOF/MS) and gas chromatography coupled with
triple quadrupole mass spectrometry detection (GC-QqQ/MS, in a scan mode). Levels of metabolites
selected in our previous study were assessed in order to confirm their potential to differentiate the
healthy and diseased samples, regardless of the risk factors and individual characteristics. Hippuric
acid, pentanedioic acid and uridine confirmed their potential for sample differentiation. Based
on the results of statistical analysis for the paired samples (comparison of metabolic profiles of
samples collected before TURBT and two weeks after), a set of metabolites belonging to nucleotide
metabolism and methylation processes was also selected. Longitudinal studies proved to be useful
for the evaluation of metabolic changes in bladder cancer.

Keywords: metabolomics; bladder cancer; urine; TURBT; time series analysis; metabolic fingerprinting;
untargeted metabolomics

1. Introduction

Age-standardized incidence rates (ASR) of bladder cancer (BCa) increased from 5.3 per
100,000 in 2012 to 5.6 per 100,000 in 2020 [1,2]. This indicates that the incidence of BCa is not
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only not declining but is still a very pressing problem worldwide. Additionally, statistics
show that the presence of at least one BCa risk factor increases the risk of developing the
disease even several times. For example, about 90% of BCa cases are diagnosed in people
over the age of 55. The risk of developing the disease is also more than four times higher
in men than in women, and the proportion is similar in terms of mortality (3.2/100,000
in men and 0.9/100,000 in women). Smoking, the most important known BCa risk factor,
increases the chance of developing the disease by about four times. In addition, it has been
shown that cigarette smoking reduces the chances of recovery when cancer relapses and
increases the risk of developing an invasive stage of the disease [2,3].

Each of the above-discussed risk factors, along with BMI value, accompanying dis-
eases, etc., is also reflected in metabolic profiles determined by untargeted metabolomics
analysis [4–6]. This is why it is so important to collect epidemiological data for any
metabolomics-related experiment. In contrast to experiments with animals or microorgan-
isms, research projects using human tissues or body fluids cannot be designed in a way that
excludes the influence of non-studied factors on the metabolic fingerprint. There are three
ways to design such a study involving human participants which are the most common.
The first approach assumes minimizing the impact of age, gender, BMI and other important
factors on the acquired profiles, by means of matching participants of studied groups on
the basis of the collected epidemiological data. However, the selection of samples in this
manner is very often impossible due to a restricted number of available study volunteers.
There is also difficulty in collecting complete data on each participant (such as information
about consumed drugs, dietary supplements, eating habits or stimulants). That is why the
second approach, which requires inclusion of the complete set of epidemiological data in
the model, is becoming more and more popular. All the collected data are introduced to
the model to create the variables and explain the variability associated with them. Another
way to minimize the influence of non-disease factors on the metabolic fingerprint (the
third approach) is to schedule a longitudinal study [7–10]. This type of study allows the
observation of participants over a period of time and aims to understand the mechanisms
of a given change and of influencing factors.

In terms of metabolomics studies, BCa is quite an intensively studied disease en-
tity [11,12]. However, a detailed pattern of development and progression of BCa is still
not elucidated. This is why the main aim of the study was to assess changes in urinary
metabolic profiles of samples obtained from BCa patients before and after resection of
the bladder tumor, e.g., observation of disturbed energy metabolism, altered amino acid
metabolism or elevated levels of modified nucleosides. High-performance liquid chro-
matography hyphenated with time-of-flight mass spectrometry detection (HPLC-TOF/MS)
and gas chromatography coupled with triple quadrupole mass spectrometry detection (GC-
QqQ/MS), in a scan mode) were utilized in order to obtain data sets covering metabolic
profiles in a comprehensive manner. The studied group consisted of non-muscle-invasive
BCa patients, from which the samples were taken at three time points: before transurethral
resection of bladder tumor (TURBT), the day after TURBT was performed and at the
follow-up visit two weeks after the resection.

The proposed study will enable a preliminary assessment of the differences in metabo-
lite levels caused by the presence of a tumor. In addition, an evaluation of results obtained
previously by our research group will be possible [13]. Briefly, comprehensive (by means
of HPLC-TOF/MS, GC-QqQ/MS and proton nuclear magnetic resonance (1H NMR))
metabolomics analysis of urine samples obtained from healthy volunteers (n = 24) and
patients diagnosed with muscle-invasive high grade BCa (n = 24) enabled the selection of
seventeen metabolites-discriminating studied groups. A significant number of the selected
compounds constitute the metabolites participating in energy and amino acid metabolism.
The observation of previously selected metabolites will serve as a validation of previous
results and help to determine which of them have the potential to distinguish healthy
individuals from those with neoplastic changes, regardless the existing risk factors. More-
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over, through the results of this project, it will be possible to select specific metabolites or
biochemical pathways for targeted metabolomics analysis, carried out on a larger scale.

2. Materials and Methods
2.1. Characteristics of the Subjects Included into Study

All the subjects participating in the study were patients at the Urology Clinic of
the Medical University of Gdańsk diagnosed with non-muscle-invasive bladder cancer
(NMIBC). NMIBC accounts for approximately 70% of newly diagnosed cases [14]. Stan-
dard procedure in such a diagnosis involves transurethral resection of the bladder tumor
(TURBT). TURBT constitutes a gold standard for NMIBC initial diagnosis, evaluation and
treatment of choice [2,15]. TURBT is also used for resection of the tumor (aiming at com-
plete resection if it is technically possible and safe for the patient). Risk stratification and
treatment strategy is subsequently determined. In addition, due to high BCa recurrence
rates and the risk that not all the neoplastic tissue is completely resected, TURBT is often
repeated. All of the subjects were enrolled in a scheduled TURBT and were admitted to the
hospital the day before the procedure.

The studied group consisted of 8 men and 2 women (due to the ASR proportions
for women and men [1,2]). Participants were at the age of 69.6 (±5.6) and most of them
smoked cigarettes (5 were current smokers, 4 had a long history of smoking and one
had never smoked cigarettes). The average BMI value was 26.06 (±5.23). Four patients
were of healthy weight, 3 were overweight and 3 were obese. All participants gave their
informed consent to participate in the study. The presented study was also performed
following the principles included in the Declaration of Helsinki and was approved by
the Independent Committee of Bioethical Research at the Medical University of Gdańsk
(numbers of consents: NKBBN/542/2017 and NKBBN/543/2017).

2.2. Samples’ Collection

Three samples were collected from each patient. First sample was collected on the
morning of TURBT. Samples for the second time point were collected 1 day after the
procedure. Third sample collection was scheduled for the follow-up visit, which was
2 weeks after TURBT. All samples were collected from the first morning urine, vortex-
mixed for 15 s at 4 ◦C, transferred to tightly closed Eppendorf tubes and frozen at −80 ◦C.
Simplified scheme illustrating samples’ collection process is presented in Figure 1.

Figure 1. Scheme illustrating sample collection process. Legend: “1” (first time point, first morning
urine samples collected on the day of TURBT, before the procedure), “2” (second time point, first
morning urine samples collected the day after TURBT), “3” (third time point, first morning urine
samples collected 14 days after TURBT).

An undoubted limitation of the presented research is the number of its participants.
However, the premise of the project was that samples for all time points should be collected
from each participant. Unfortunately, only about 20% of patients who were sampled at time
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points 1 and 2 (n = 53) showed up to the follow-up visit (within 2 weeks of discharge from
the hospital, fasting, with the first morning urine collected). This situation was caused by
the fact that for control visits patients often came to medical centers closer to their domicile,
and could also be caused by the ongoing pandemic. This non-compliance also resulted in
the inability to collect additional time points (after another 3 and 6 months).

2.3. Sample Preparation
2.3.1. HPLC-TOF/MS

Thawed urine samples were vortex-mixed for 1 min and then centrifuged (2469× g,
15 min, 4 ◦C). Subsequently, 500 µL of deionized water (or acetonitrile in the case of
analyses in HILIC mode) was added to 500 µL of urine sample. Then, samples were
centrifuged (2469× g, 15 min, 4 ◦C) and filtered with the use of nylon filters (pore size
0.22 µm) directly to HPLC vials.

2.3.2. GC-QqQ/MS

Thawed urine samples were vortex-mixed for 1 min and then centrifuged (2469× g,
15 min, 4 ◦C). Then, to 200µL of supernatant, 50µL of urease solution in water (600 units/1 mL)
was added and samples were then incubated (37 ◦C, 30 min). Subsequently, deproteiniza-
tion was performed by the addition of 800 µL of cold methanol (kept for at least 30 min
in −80 ◦C) and 10 µL of solution of pentadecanoic acid in methanol (1 mg/mL) as inter-
nal standard was added. Samples were vortex-mixed (5 min) and centrifuged (2469× g,
15 min, 4 ◦C). Next, 200 µL of supernatants were transferred to glass inserts and evapo-
rated to dryness (30 ◦C, 2 h). Two-step derivatization process was applied. First, 30 µL of
methoxyamine in pyridine (15 mg/mL) was added. Samples were vortex-mixed (10 min)
and incubated in a dark place (16 h, room temperature). As a second step, 30 µL of
BSTFA with 1% TMCS was added and samples were vortex-mixed (5 min). Then, samples
were incubated (1 h, 70 ◦C), 70 µL of heptane was added and samples were vortex-mixed
(10 min) again.

2.3.3. Quality Control Samples

Quality control samples (QCs) were obtained by pooling the same amount of all
studied samples. The sample preparation procedures for QCs were identical to those for
the real samples presented above.

2.4. Materials and Apparatus
2.4.1. HPLC-TOF/MS

Analyses were performed with 1200 HPLC 6224 TOF/MS system (Agilent Technolo-
gies, Waldbronn, Germany) with dual electrospray ionization source (Dual-ESI). Com-
pound separation was possible due to Zorbax Extend-C18, Rapid Resolution HT column
(2.1 × 100 mm; 1.8 µm) and Poroshell 120 HILIC column (4.6 mm × 50 mm; 2.7 µm) appli-
cation. The injection volume was set to 2 µL. In case of analysis in RP mode, mobile phase
flow rate and time of analysis were set to 0.35 mL/min and 18 min, respectively. Mobile
phase (A—0.1% formic acid in water and B—0.1% formic acid in acetonitrile) gradient
program was: 3–6 min from 98% to 80% of A, 6–9 min from 80% to 55% of A, 9–14 min from
55% to 2% of A and from 14–18 min 2% of A. The column was equilibrated for 10 min and
the column temperature was set to 35 ◦C. In case of analysis in HILIC mode, mobile phase
flow rate and time of analysis were set to 0.4 mL/min and 15 min, respectively. Mobile
phase (A—10 mM ammonium buffer (pH 3.44) and B—acetonitrile) gradient program was:
3–6 min from 30% to 35% of A, 6–9 min from 35% to 40% of A, 9–12 min from 40% to
45% of A and from 12–15 min 45% of A. The column was equilibrated for 7 min, and its
temperature was set to 25 ◦C. The mass spectrometer for LC-MS analyses was operated in
a scan mode with the m/z range from 50 to 1100, in both positive and negative ionization
modes. The capillary and fragmentor voltage were 3250 V and 150 V, respectively.
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2.4.2. GC-QqQ/MS

Analyses were performed with the GC TQ8030 system (Shimadzu, Kyoto, Japan) equipped
with electron ionization (EI) ion source and Zebron ZB-5MS column (30 m × 0.25 mm, 0.25 µm;
Phenomenex, Torrance, CA, USA) with helium as a carrier gas. Sample injection volume
was 1 µL and the injector temperature was set to 250 ◦C. The temperature gradient program
was: 60 ◦C (1 min), 60 320 ◦C (8 ◦C/min), 320 ◦C (5 min), with a total analysis time of
38.5 min. The mass spectrometer was operated in a scan mode with the m/z range from 50
to 600. The ion source voltage and temperature were set to 70 eV and 200 ◦C, respectively.
At the beginning of the sequence run, the mixture of alkanes (from C10 to C40, even carbon
number) was analyzed, as it is required for retention indices calculation, retention time
alignment and metabolite identification.

2.5. Data Processing and Statistical Analysis
2.5.1. Data Pretreatment

The LC-MS data pretreatment procedure included deconvolution of all collected
analytical signals with the use of the Molecular Feature Extraction (MFE) algorithm in
MassHunter Qualitative Analysis software version B.04.00 and DA Reprocessor B.04.00
(B371) from Agilent Technologies. As a next step, feature extraction was performed based
on charge value, isotopic pattern and presence of dimers and adducts (+H, +Na in positive
ionization mode; -H, +HCOO in negative ionization mode; and neutral water loss -H2O).
Subsequently, Mass Profiler Professional B. 02.01 software (MPP; Agilent Technologies,
Santa Clara, CA, USA) was used for feature alignment, with 1% shift in the retention time
and 20 ppm error in measured mass considered as acceptable. The data filtration step
was based on the quality assurance criteria (presence in 50% of QC samples, coefficient of
variance (CV) in QCs lower than 20%) [16,17].

For GC-MS data deconvolution and identification the Automated Mass Spectral Decon-
volution and Identification System (AMDIS; National Institute of Standards and Technology,
Gaithersburg, MD, USA) was used. Retention indices (RI) calculation, retention time (RT)
alignment (applied RT window: ± 0.1 min) and compound identification based on the
NIST11 spectra library were performed. Similarly to the LC-MS, data filtration was per-
formed using Mass Profiler Professional B.02.01 (MPP; Agilent Technologies, Santa Clara,
CA, USA). Quality assurance criteria included presence of the metabolite signal in 50% of
QC samples, CV in QCs < 30%.

After assessment of systems stability (Figure 2), additional data filtration was per-
formed. For LC-MS data, features for which a minimum of 80% pairs of results were
obtained between the 1st and 3rd time points were selected and for GC-MS: 70%. After-
wards, signal intensities were normalized with the use of specific gravity (SG) value. SG,
along with creatinine (CR) concentration, is commonly used to correct measured levels of
metabolites in urine samples. Their unquestionable advantage is the low cost of the test or
high data availability. However, due to the fact that CR concentration may vary due to age,
race or gender of the patient, SG was our normalization method of choice [18,19].

2.5.2. Metabolites Annotation

Annotation of metabolites detected with the use of the LC-MS technique was per-
formed with the use of a freely available tool for their overview—CEU Mass Mediator ver-
sion 3.0 (http://ceumass.eps.uspceu.es/ accessed on 6 December 2021) [20]. It corresponds
to level 2 of confidence system for identification of metabolites for studies concerning
untargeted metabolomics by Metabolomics Standards Initiative. In classification proposed
by Schrimpe-Rutledge et al. it would fit in level 3 [21].

In case of GC-MS technique, compounds’ tentative identification was performed by
comparison of the obtained MS spectra with NIST11 spectra library, with the use of AMDIS
software (level 2).

http://ceumass.eps.uspceu.es/
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Figure 2. Exemplary score plots of the Principal Component Analysis models (built with the use
of SIMCA-P+ 13.0.3 (Umetrics, Umeå, Sweden)) presenting the clustering of QCs. The clustering
assessment was made in order to verify systems stability for analysis using (a) LC-HILIC-MS in
positive ionization mode and (b) LC-RP-MS in positive ionization mode. Legend: green circles—“1”
(first time point, samples collected before TURBT), blue stars—“2” (second time point, samples
collected the day after TURBT), red triangles—“3” (third time point, samples collected 14 days after
TURBT), yellow pentagons—QCs. The number of samples: “1” = 10, “2” = 10, “3” = 10, QCs = 7.

2.5.3. Semi-Targeted Analysis

For semi-targeted analysis, LC-MS data were processed using MassHunter Profinder
B.06.00 software (Agilent Technologies, Santa Clara, CA, USA). The Batch Targeted Anal-
ysis option was used with the compounds library, built based on previously published
results [13]. The library included both compound formula and molecular mass. During
data inspection the quality of the MS spectra was verified as well as the comparison of
metabolites retention times with those obtained previously was made. Visual inspection of
the mass spectra allowed the elimination of false-positive results in the created data matrix.

For GC-MS data the compounds were selected from data matrix prepared for untar-
geted analysis.

Selected signal intensities (from LC-MS and GC-MS analyses) were normalized in
three ways: with the use of SG values, creatinine (CR) concentration (both measured with
the use of portable urine analyzer: Urit 31, URIT Medical Electronic Co., Guangxi, P.R.
China) or by using the abundance of creatinine MS signal obtained during analyses. A
comparison of results of statistical analysis performed on those 3 datasets can show whether
results will differ depending on the selected method of normalization.

3. Results
3.1. Semi-Targeted Metabolomics Analysis

In the first stage, levels of previously chosen metabolites (which have shown statisti-
cally significant differences between BCa patients and healthy individuals in the previous
study [13]) were assessed. Some of the differences in the intensity of the signals at three
time points were immediately apparent (Figure 3). It was observed that the levels of some
metabolites determined the day after TURBT (second time point) clearly differed both from
the state before surgery and two weeks after TURBT. Urine levels of propanoic acid had
increased more than tenfold the day after surgery, but had decreased back after two weeks
(Figure 3a). Similar observations were made for 2-deoxy-ribonic acid and benzenediol. On
the other hand, the level of meso-erythritol determined at the second time point decreased
several times in comparison to the first one. At the third time point, its level approached
the state from before TURBT. Moreover, the level of S-adenosylmethionine were too low to
be determined in the first and third time points, and a signal derived from this compound
was only observed in samples collected at the second time point. The observed differences
might be directly associated with the performed procedure and administered medications,
changed diet related to hospitalization or inflammation caused by the procedure. Such
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observations also assured us that further comparisons should be made between the first
and third time points.

Figure 3. Differences in metabolite abundance at three time points for (a) propanoic acid, (b) meso-
erythritol, (c) uridine. Signal intensities were normalized by SG. p-values, indicating the statistical
significance of the differences in abundance between time points “1” and “3”, for propanoic acid,
meso-erythritol and uridine were 0.52, 0.22 and 0.02, respectively. Legend: Line segments, blue
and red boxes represent consecutive quartiles. Time points: “1”—samples collected before TURBT;
“2”—samples collected the day after TURBT; “3”—samples collected at follow-up visit (14 days after
TURBT). The number of samples: “1” = 10, “2” = 10, “3” = 10.

Processed semi-targeted data were subjected to three normalization strategies (Table 1).
In order to evaluate the differences in metabolites abundance, univariate test for paired
measurements was applied. Based on its results (Table 1), 3 metabolites were selected as
those that show the greatest potential for differentiating neoplastic samples from healthy
ones, namely: hippuric acid, pentanedioic acid and uridine (p-value ≤ 0.05). Additional
attention could be paid also to diacetylspermine, glutamine, phenylacetylglutamine and
uric acid (p-value ≤ 0.10, for at least 2 normalization strategies).

Table 1. A summary of the significance of differences in metabolite levels (point 1 vs. point 3)
and resulting from applied normalization strategy. Signal intensities were normalized by specific
gravity or creatinine level; SG—specific gravity; CR (PUA)—creatinine level measured with the use
of portable urine analyzer; CR (MS)—creatinine signal measured with the use of LC-TOF/MS.

Metabolite
p-Value

SG CR (PUA) CR (MS)

Benzenediol 0.78 0.76 0.75
2-deoxy-ribonic acid 0.67 0.83 0.59

Diacetylspermine 0.08 0.10 0.08
Meso-erythritol 0.22 0.17 0.19

Glutamine 0.06 0.06 0.07
Hippuric acid 0.03 0.07 0.07

Lactic acid 0.72 0.78 0.46
Pentanedioic acid 0.06 0.11 0.02

Phenylacetylglutamine 0.06 0.08 0.11
Pipecolic acid 0.07 0.15 0.11

Propanoic acid 0.57 0.99 0.55
Threonic acid 0.10 0.12 0.12

Tyrosine 0.57 0.68 0.59
Uric acid 0.09 0.07 0.06
Uridine 0.02 0.04 0.07
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Metabolites, differentiating the studied time points the most, belong to amino acid
metabolism. Due to the fact that amino acids play various roles in the tumor and its mi-
croenvironment, their reprogrammed metabolism in cancer development and progression
has been reported many times [22,23]. The role of amino acids in cell proliferation was
also highlighted in the case of BCa [24]. In brief, the elevated level of pentanedioic acid
(glutaric acid) might be due to a disturbed metabolism of lysine or tryptophan. Pentane-
dioic acid is known for its action as an acidogen and metabotoxin, when present in high
concentrations [25]. Differences in hippuric acid level might be associated with distur-
bances in phenylalanine metabolism, associated with the increased energy demand of
proliferating cells, and were previously observed in urine of BCa patients [26]. However,
one must also take into account the fact that altered levels of hippuric acid might occur
due to microbiome- or diet-related changes. Altered levels of uridine supports the thesis
of enhanced metabolism of nucleic acids, hence the overactivity of cancer cells. A more
detailed description of the changes in the levels of all the above-mentioned metabolites
and their possible explanation was presented in our previous study [13]. The observed
changes confirm previous reports and induce further examination of the concentrations of
the selected metabolites in urine samples.

3.2. Untargeted Metabolomics Analysis

Features selected during data pretreatment, with a sufficiently high percentage of
complete pairs of measurements (for the first and third time points), were subjected to
univariate statistical analysis for paired measurements. Over one hundred features met
the criteria of statistical significance of differences between the first and third time points.
More than 20 of them were annotated (see Section 2.5.2), narrowing the variables to those in
which the error related to the mass measurement was less than 5 ppm. Such data selection
allowed the analysis of metabolic pathways and biochemical considerations. Detailed
characteristics of differences in levels of annotated metabolites is presented in Table 2.

Table 2. A summary of the significance of differences in annotated metabolite levels (before TURBT
(point 1) vs. after TURBT (point 3)). Signal intensities were normalized by SG and scaled.

Metabolite p-Value Average Signal Intensity
Diff SD Diff

Before TURBT After TURBT

N-Acetylneuraminic acid 0.02 0.58 0.31 0.27 0.30
Androsterone 3-glucuronide 0.03 0.35 0.25 0.10 0.11

Creatine riboside 0.01 0.48 0.19 0.29 0.25
Creatinine 0.05 0.51 0.27 0.24 0.27

5,6-Dihydrouridine 0.03 0.55 0.30 0.25 0.26
N6,N6-Dimethyl-L-Lysine 0.04 0.43 0.28 0.15 0.20

1,3-Dimethyluracil 0.02 0.54 0.19 0.35 0.39
Glucosylgalactosyl hydroxylysine 0.04 0.33 0.18 0.15 0.17

Glutarylcarnitine 0.02 0.32 0.11 0.21 0.24
Guanidinosuccinic acid 0.03 0.47 0.22 0.25 0.26

Indolelactic acid 0.02 0.24 0.16 0.08 0.10
Indoxyl sulfate 0.01 0.32 0.18 0.14 0.14

N6-Methyladenosine 0.01 0.47 0.23 0.24 0.24
3-Methylglutarylcarnitine 0.02 0.34 0.10 0.24 0.27

1-Methylguanine 0.04 0.52 0.31 0.21 0.27
1-Methylinosine 0.02 0.38 0.19 0.19 0.19

N6-Methyl-L-Lysine 0.04 0.62 0.33 0.29 0.38
Succinylcarnitine 1 0.01 0.51 0.27 0.24 0.22

N-Methylnicotinamide 0.04 0.44 0.23 0.21 0.28
N1-Methyl-2-pyridone-5-carboxamide 2 0.01 0.64 0.22 0.42 0.32

L-Glutamic acid 0.04 0.64 0.40 0.24 0.32
O-Sebacoylcarnitine 0.03 0.54 0.17 0.37 0.34
Succinyladenosine 0.02 0.50 0.26 0.24 0.22

Tryptophan 0.02 0.25 0.16 0.09 0.10
L-Valine 3 0.04 0.50 0.18 0.32 0.37

1 /Methylmalonylcarnitine; 2 /N1-Methyl-4-pyridone-3-carboxamide; 3 /Norvaline.
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As seen in Table 2, a great number of metabolites, differentiating urine samples
collected before TURBT and those collected two weeks after the procedure, belong to amino
acid metabolism. Moreover, the differences observed in the conducted study confirm
previously observed changes in the metabolic pathways related to purine and pyrimidine
metabolism. Most of the metabolites whose levels were observed as altered in the study
are molecules that take part in processes required for extensive growth and proliferation of
BCa cells [27].

4. Discussion

Purines and pyrimidines participate in a wide range of biological processes, e.g., in
cell proliferation [28]. Their abnormal metabolism may point to tumor development or
progression [29,30]. Elevated levels of methylguanine, observed in the presented study,
might be associated with enhanced nucleic acid turnover or their intensified methylation.
An increased presence of methyladenosine, one of the most common modifications of RNA,
was also previously reported in cancer [31,32], including BCa [33]. Its important role in
tumorigenesis and the progression of cancer was described in detail by He et al. [32].

It can be noticed that methylated metabolites account for almost half of the annotated
compounds. Altered levels of many of them have already been reported in various types
of cancer and other diseases [34–39]. The obtained results are also in line with previous
reports of abnormal levels of urinary nucleosides during pathophysiological conditions,
e.g., urinary tract cancers and breast cancer [34]. It can be seen that levels of dimethylated
uracil (Figure 4a) are significantly elevated in the first time point compared to the third
one. The same applies to N1-methyl-2-pyridone-5-carboxamide (Figure 4b), which is a
metabolite of nicotinamide and its intermediate metabolite, methylnicotinamide (MNA).
The mechanism of action of nicotinamide N-methyltransferase and the overproduction of
MNA are important aspects of cancer cell function and have been intensively studied by
Ulanovskaya et al. [39].

Figure 4. Differences in metabolite abundances at time points “1” (samples collected before TURBT)
and “3” (samples collected 14 days after TURBT) for (a) 1,3-dimethyluracil and (b) N1-methyl-2-
pyridone-5-carboxamide. Signal intensities were normalized by SG. p-values, indicating statistical
significance of the differences in abundance between time points “1” and “3”, for 1,3-dimethyluracil
and N1-methyl-2-pyridone-5-carboxamide were 0.02 and 0.01, respectively. Legend: Line segments,
blue and red boxes represent consecutive quartiles. Time points: “1”—samples collected before
TURBT; “2”—samples collected the day after TURBT; “3”—samples collected at follow-up visit
(14 days after TURBT). The number of samples: “1” = 10, “2” = 10, “3” = 10.

As the methylation process indicates the presence and intensity of metabolic aberra-
tions, the potential for the determination of methylated metabolites in metabolomics studies
was recognized and resulted in the development of a method for their quantitation [40]. Fur-
thermore, it was recently applied for BCa cells and confirmed their up-regulation in cancer.
The potential role of methylated metabolites as diagnostic markers of BCa was highlighted
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in several studies (as a result of intensified processes of DNA methylation) [41]. The mech-
anism of alterations in methyl metabolism and related pathways is shown schematically in
Figure 5.

Figure 5. Scheme illustrating methylation process, potentially enhanced during BCa, along with
related metabolic pathways. Based on [35,36,39].

It is worth noting the fact that few of the determined metabolites (N-acetylneuraminic
acid, creatine riboside or indoxyl sulfate) were previously reported as possible markers of
intrahepatic cholangiocarcinoma, lung cancer or adrenal neoplasms [42–44]. In addition,
the elevated level of glutarylcarnitine in cancer is consistent with the observations regarding
the increased level of pentanedioic acid [13].

5. Conclusions

The presented preliminary study showed that the implementation of longitudinal data
in metabolomics analysis is of great importance and provides valuable information. The
conducted study enabled the validation of results of previous experiments and the selection
of metabolites with the highest potential for differences between urine levels in healthy
and BCa patients, regardless of the risk factors and inter-individual differences. Taking
into account the observed differences in the levels of putatively annotated metabolites, as
well as our previous findings, it will be most meaningful to focus the next step on amino
acids, nucleotides metabolism and methylation process. However, being aware of the
limitations of our study, collecting a larger pool of samples and additional time points for
each subject would allow for a more accurate assessment of the observed changes and
would be preferred for further research.
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