
Asian Journal of Andrology (2014) 16, 618–622  
© 2014 AJA, SIMM & SJTU. All rights reserved 1008-682X

www.asiaandro.com; www.ajandrology.com

onset of prostate cancer,16 increased tumor grade and increased risk 
of extra‑prostatic extension.11

AR contains an exonic polymorphic trinucleotide CAGn in which 
95% of individuals have a germ line allele length between 16 and 29 
CAGn.17 However, it is unknown whether the number of repeats are static 
or change during the life span. AR CAGn are inherently genomically 
unstable; in humans the CAG microsatellite region expands leading to 
the increased number of CAGn.18‑20 Models have confirmed that this 
instability that leads to expansion and contraction is propagated by both 
DNA replication and DNA damage response.21,22 The instability in the 
CAG region in humans and mice can occur in post‑mitotic cells, leading 
to somatic mosaicism and tissue‑specific trinucleotide repeat instability.22 
Therefore, the current study postulates that with age, the number of 
CAGn changes within an individual and the AR response might also 
be altered. Such genetic heterogeneity can introduce AR somatic 
functional mosaicism, which can have important physiological effects 
within specific organs.23 For example, in the case of AR, different sexual 
organs might react differently to the same serum androgen levels. More 
importantly, the AR sensitivity might change with age. Hence, the clinical 
signs and symptoms of hypogonadism associated with age can be quite 
variable. For example, the loss of libido, depression, erectile dysfunction 
and diabetes mellitus occurs at different testosterone concentrations.24 
This observed difference is linked to specific risk factors,25 and some of 
these risk factors operate independently of AR function.

The size of both the spinal nucleus of the bulbocavernosus (SNB) 
motor neurons and the target organ, bulbocavernosus muscle (BCM), 
require androgen for proper development and to be maintained in 

INTRODUCTION
Androgens and their mediated effect through the androgen receptor (AR) 
are critical to the development of the male phenotype. An AR is a 
member of the steroid nuclear receptor superfamily of ligand‑activated 
transactivation factors, and is encoded by eight exons located on 
chromosome Xq11‑12.1,2 The AR is expressed in the developing human 
penis, urethra and multiple other organs.3 The gene exhibits two 
polymorphic sites in exon 1, characterized by varying numbers of CAG 
and GGC repeats, resulting in different lengths of polyglutamine and 
polyglycine stretches in the N‑terminal region of the AR protein. This 
region normally ranges from 11 to 31 amino acids,4 and varies with race.2,4

The suggested inverse association between AR sensitivity and 
length of CAG repeats (CAGn) is based on the androgen resistance 
in men with spinobulbar dystrophy  (Kennedy syndrome),5 and is 
further supported by in vitro studies.6,7 There is mounting evidence 
that patients with increased CAGn, as exhibited by patients with spinal 
bulbar muscular atrophy, have reduced AR function and suffer from 
under virilization, testicular atrophy and possibly reduced fertility 
presenting as oligospermia or azoospermia.8–12 This inverse correlation, 
where shorter length of CAGn displays an increase in androgen 
sensitivity13 and longer repeats lead to more androgen resistance with 
under‑masculinized genitalia in XY males,14 has been demonstrated in 
multiple studies. Men with CAGn lengths above 26 exhibit substantially 
shorter anogenital distance when compared to men with shorter 
CAGn.15 Short AR CAG alleles are associated with prostate cancer that 
is androgen‑dependent. Moreover, shorter number of CAGn results 
in abnormally high stimulation of prostatic tissue and earlier age of 
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Serum testosterone does not correlate with androgen tissue activity, and it is critical to optimize tools to evaluate such activity in males. 
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adulthood. Castration will reduce the size of the SNB and BCM, while 
androgen treatment reverses this effect, indicating that SNB motor 
neurons and their target muscles are sensitive to androgens.26,27 BCM is 
highly sensitive to androgen and commonly used to assess androgenic 
activity. Male rats carrying a testicular feminization mutation, a 
ubiquitous mutation that causes androgen insensitivity or treated 
with an AR antagonist have a feminine SNB system and a BCM that 
are completely absent.27 Many groups have examined the relationship 
between the length of the polyglutamine repeat in the AR and male AR 
activity.28 Most of the published literature on CAGn in AR is focused 
on predicting the phenotype from the number of CAGn. However, no 
studies evaluated the effect of instability and somatic mosaicism on the 
function of the AR. The objective of the current study is to determine 
the relationship between the BCM measurement and the AR CAGn in 
healthy volunteers, and to determine whether age has an effect on the 
length of the AR repeat.

MATERIALS AND METHODS
Healthy men (18–65  years) were prospectively evaluated at a single 
tertiary care center in the United States according to an Institutional 
Review Board‑approved protocol. Volunteers responded to  the 
American Urological Association/International Prostate Symptom 
Score, International Index of Erectile Function‑15 and Male Sexual 
Health Questionnaires  to rule out any confounding medical or 
urological history, including orgasmic, erectile and ejaculatory 
dysfunction. Baseline hormonal evaluation and transperineal 
ultrasonography recording of the BCM was performed. Inclusion 
criteria were normal erectile, ejaculatory, orgasmic and voiding 
function without use of prescribed or over‑the‑counter medications. 
All subjects had normal psychiatric history and were capable of consent. 
All subjects were compensated for their time.

Genital measurements
Genital measurements were performed by placing the patient in the 
supine position, with slight frog‑legged position of the lower extremities. 
Transperineal ultrasound was performed to measure the BCM length 
and thickness with MyLab 25 Gold  (Esaote North America, Inc; 
Indianapolis, IN) ultrasound machine as depicted in Figure 1. The 
BCM area was calculated using the initial measurements. From the 
same position, stretched penile length (PL) and erect PL were measured 
from the base of the dorsal surface of the penis to the tip of the glans. 
Previously published studies have shown no evidence for measurement 
error being proportional to the magnitude of the measurement.29 Most 
measurements were reproducible when done by the same clinician.

Hormone values
Morning testosterone  (Beckman Coulter, Webster, TX, USA), 
luteinizing hormone  (Beckman Coulter, Webster, TX, USA), 
follicle‑stimulating hormone  (ALPCO, Salem, NH, USA), 
epinephrine  (Rocky Mountain Diagnostics, Colorado Springs, CO, 
USA), dehydroepiandrosterone  (Beckman Coulter, Webster, TX, 
USA), dehydroepiandrosterone sulfate  (Alpco, Salem, NH, USA), 
dopamine (Rocky Mountain Diagnostics, Colorado Springs, CO, USA), 
estradiol (ALPCO, Salem, NH, USA), inhibin B (Beckman Coulter, 
Webster, TX, USA), norepinephrine (Rocky Mountain Diagnostics, 
Colorado Springs, CO, USA), prolactin (Beckman Coulter, Webster, 
TX, USA), serotonin (Rocky Mountain Diagnostics, Colorado Springs, 
CO, USA) and sex hormone binding globulin (ALPCO, Salem, NH, 
USA) were collected on all subjects. All baseline hormone assays 
were obtained, at minimum, 12 h prior to ultrasound recording. All 
specimens were processed by our laboratory with validated assays for 

Figure 1: Method to measure BCM’s length, thickness and area using 
ultrasound images. BCM: bulbocavernosus muscle.

these tests, and assays’ details are listed in Table 1. Testosterone assay 
was validated with liquid chromatography‑tandem mass spectrometry.

DNA isolation and analysis
Genomic DNA from all study subjects was extracted from peripheral 
blood leukocytes to examine the length of CAGn. Primers for 20S 
nucleotide amplicon encompassing polyglutamine‑repeat track in 
exon 1 of the AR were designed (L‑5’‑CGCGAAGTGATCCAGAACC‑3’ 
and R‑5’‑CTTGGGGAGAACCATCCTC‑3’). AR amplicons were 
generated through standard PCR technique using patient genomic 
DNA as a template. The amplified products were then analyzed for size 
determination using a non‑denaturing method of high performance 
liquid chromatography with the Transgenomic Wave™ System 
platform (Transgenomic, Inc., Omaha, NE, USA). Ten microliters of 
each sample was injected and run through the high performance liquid 
chromatography column at 50°C using sizing method. Chromatogram 
of each run was then analyzed and retention times were recorded. The 
number of CAGn was directly calculated (interpolated) with Graph Pad 
Prism™ (GraphPad Software, Inc, La Jolla, CA, USA) using a standard 
curve generated from eight male control samples whose amplified 
products were sequenced for exact size determination and CAGn 
content. The results obtained by this method were confirmed using direct 
sequencing of exon 1 of the AR gene in 10 randomly selected subjects.

Statistical analysis
Descriptive analysis, scatter plot with linear regression and logistic 
regression was completed. Paired t‑test and Student’s t‑test were 
performed to compare the mean of the CAGn between each of 
the categories. All statistical analysis was performed using JMP, 
Version 10.0 (SAS Institute Inc, Cary, NC, 1989–2011).
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RESULTS
Forty‑eight men had CAGn analysis performed. Twenty‑five men 
were younger than 30 years (range 19–29  years) with a mean age of 
23.7  years (standard deviation (s.d.) 3.24) and 23 men were older than 
45  years (range 45–65  years) with a mean age of 53 years (s.d. 5.58). 
Eight percent of the cohort were Asian, 34% black, 14% Hispanic and 
44% white non‑Hispanic. The median number of repeats was 21 (range 
13–29), with a mean of 21.35 and a mode of 22. The frequency and 
distribution of the CAGn in all 48 men is shown in Figure 2.

Subjects were divided into CAGn ranges: low (13–18), mid (19–24) 
and high (25 or greater) based on bimodal distribution of the results. 
The number of repeats is summarized with the mean measurement 
for rigid PL, flaccid PL, BCM area and BCM thickness in Table 2. 
Statistical significance was noted in the BCM area (cm2) when extreme 
high and low ranges were compared. BCM was higher when CAGn was 
less than 18, as compared when CAGn was greater than 24 (P = 0.04). 
However, there was no statistically significant difference between the 
one‑dimensional measurement  (thickness and length) between the 
groups with CAGn less than 18 and greater than 25 repeats (anterior 
posterior thickness P = 0.46, left thickness P = 0.09 and right thickness 
P = 0.18). There was also no difference in the flaccid and the rigid 
PL between CAGn groups. Linear regression analysis to evaluate the 
relationship between the number of CAGn and BCM area showed a 
statistically significant linear correlation (P = 0.01, R2 = 16%) [Figure 3]. 
On further statistical analysis, the cohort was divided into two groups. 
In the younger group (18–30  years) no correlation was found between 
the BCM area and number of CAGn (P = 0.36, R2 = 4%). However, in 

the older age group (45–65  years) a much stronger negative correlation 
was identified (P = 0.01, R2 = 29%). In this age group it was also found 
that the number of CAGn and age were positively correlated (P = 0.01, 
R2 = 32%). Hence, it is plausible that CAGn increases with age secondary 
to microsatellite instability in the CAG region.

Each subject’s hormonal profile was evaluated, and all evaluated 
subjects had values within the normal range. The mean hormonal values 
for the group with a CAGn number less than 21 were compared to the 
mean hormonal values for the group with CAGn greater than 21. In the 
current cohort, no correlation was found between the pituitary, adrenal or 
testicular hormones and the number of the CAGn in the AR as shown in 
Table 1. Furthermore, all subjects had testosterone in the normal range and 
the testosterone levels were not correlated with the BCM area. Thus, this 
indicates that the BCM area is heavily dependent on the length of the CAGn.

DISCUSSION
The role of CAGn in androgen signaling is the source of unprecedented 
interest in recent years because CAG expansion beyond 40 leads to 

Figure 2: Frequency of the number of CAG repeats.

Table  1: Number of CAG repeats  (CAGn) and correlation to hormone levels

Repeats (n) Manufacturer Company location Catalogue 
number

CAGn<21 
(n=10) a

CAGn>21 
(n=14) a

P value

Epinephrine (pg ml−1) Rocky Mountain Diagnostics Colorado Springs, CO BA 10‑1601 3.3 3.2 0.92

DHEA (ng ml−1) Beckman Coulter Webster, TX DSL‑10‑9000 8.4 10.9 0.29

DHEA‑S (µmol ml−1) Alpco Salem, NH 11‑DHEHU‑E01 2.9 2.4 0.50

Dopamine (pg ml−1) Rocky Mountain Diagnostics Colorado Springs, CO BA 10‑1603 4.8 6 0.36

Estradiol (pg ml−1) ALPCO Salem, NH 20‑DR‑4399 14.2 19.5 0.28

FSH (mIU ml−1) ALPCO Salem, NH 11‑FSHHU‑E01 3.6 2.3 0.24

Inhibin B (pg ml−1) Beckman Coulter Webster, TX A81301 154.6 155.4 0.98

LH (mIU ml−1) Beckman Coulter Webster, TX DSL‑10‑4600 5.6 4.6 0.54

Norepinephrine (pg ml−1) Rocky Mountain Diagnostics Colorado Springs, CO BA 10‑1602 43.7 36.9 0.48

Prolactin (µg l−1) Beckman Coulter Webster, TX DSL‑10‑4500 4.9 7.9 0.12

Serotonin (ng ml−1) Rocky Mountain Diagnostics Colorado Springs, CO BA 10‑0900 174.4 181 0.87

SHBG (nmol l−1) ALPCO Salem, NH 11‑SHBHU‑E01 31.9 27.7 0.49

Testosterone free (pg ml−1) Beckman Coulter Webster, TX DSL‑10‑49100 69.9 63.5 0.73

Testosterone total (ng dl−1) Beckman Coulter Webster, TX DSL‑10‑4000 666.4 711 0.73

DHEA: dehydroepiandrosterone; DHEA‑S: dehydroepiandrosterone sulfate; FSH: follicle‑stimulating hormone; LH: luteinizing hormone; SHBG: sex hormone binding globulin. 
aMean hormone levels

Figure 3: (a) Scatter plot of CAG repeats vs BCM area (cm2) (R2 = 16%,  
P = 0.01), all subjects. (b) CAG repeats and BCM area (cm2) (R2 = 4%,  
P = 0.36), 18–30 years age group. (c) CAG repeats and BCM area (cm2) 
(R2 = 29%, P = 0.01), 45–65 years age group. (d) CAG repeats and age 
(R2 = 32%, P = 0.01), 45–65 age group. BCM: bulbocavernosus muscle.

a b

c d
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multiple fatal neuromuscular diseases.5 Furthermore, increases in the 
AR CAGn have been associated with androgen resistance, decreased 
virilization, oligospermia or azoospermia, testicular atrophy8‑11 
and abnormal sperm parameters in normal men.13,30,31 One of the 
major challenges of clinical andrology is differentiating men with 
clinical hypogonadism and normal testosterone levels from classic 
hypogonadism and low testosterone. The authors believe that there is 
a group of men with normal testosterone with hypogonadal symptoms 
because of AR dysfunction secondary to an increase in the AR CAGn. 
Definitive diagnosis of the number of CAGn is limited to CAGn analysis, 
such as sequencing. And there are very few clinical tools available to 
screen patients who are suspected to have an increased number of 
CAGn. A paucity of studies in the literature has attempted to correlate 
image findings with clinical and genetic data in this context. A study that 
looked at patients with trinucleotide repeat expansion diseases found 
substantial correlation of both the brain stem and cerebellar atrophy 
with CAGn length, age, disease duration and degree of disability. This 
and similar studies concluded that volumetric analysis of the brain 
might be used as a prognostic tool in the management of these patients.32

In the current study, the aim was to identify a clinical or radiological 
finding that may further support the CAGn in AR role in BCM 
parameters and determine androgen activity at the tissue level. The 
results indicate that an increased number of CAGn is associated with 
decreased BCM area. The authors’ technique of ultrasound measurement 
of BCM can be a reliable screening tool for patients suspected to have 
CAG expansion and AR resistance. BCM ultrasonography may prevent 
the indiscriminate use of CAGn analysis that tends to be expensive 
and not covered by most health insurances.33 Even though androgenic 
activity can be inferred from a patient’s symptoms, objective clinical 
measurement at the tissue level is proven to be difficult to measure. 
Proxy measures like frequency of shaving, morning erections, second 
to fourth digit ratio and so on, have been used with little success.34 
Multiple studies have indicated the inverse correlation between the 
number of CAGn and virilization.13,14 However, most clinicians do not 
use this information in clinical decision‑making and there is a critical 
need to measure androgenic activity in an objective way. Therefore, 
measurement of anogenital distance,15 or BCM area, to determine the 
presence of CAG expansion  (CAG > 25) and the level of androgen 
activity at the tissue level will be of clinical value. The use of area over 
one dimensional measurement when assessing BCM mass minimizes 
variation and intraobserver bias. Therefore, the use of BCM area, 
a three‑dimensional measurement will minimize the potential for 
errors and variation. In this study, no correlation was found between 
testosterone levels and the number of the CAGn in the AR. Other studies 
that have evaluated the interaction of AR CAGn polymorphism and 
serum testosterone levels collaborate these findings, and do not find 
any association between testosterone levels and the number of CAGn.35

This study is the first, to the authors’ knowledge, in the published 
literature to evaluate the relationship between BCM parameters and 

CAGn in humans. The BCM measurement is an efficient, bed‑side, 
point‑of‑care measurement that can guide physician decision‑making. As 
have been shown in the current results, BCM area can be used as a proxy 
to help determine the CAGn range and tissue level androgen activity. Men 
with BCM area above 72 mm2 indicate good androgen activity.

In the current cohort, the number of CAGn increases with 
age, similar to what is demonstrated in the published literature 
illustrating CAG region expanding.36,37 This increase in the number of 
CAGn confirms previous models that indicate the presence of CAG 
microsatellite instability.21,22 The instability in the number of CAGn 
occurs in both humans and mice leading to somatic mosaicism and 
tissue‑specific trinucleotide repeat polymorphism.22 Such genetic 
heterogeneity can introduce AR somatic functional mosaicism and 
polymorphic physiological effects of androgens on end organs.23 In the 
case of AR, different sexual organs may react differently to the same 
serum androgen levels. As the number of CAGn change with age, 
the response of the AR to androgens might also be altered, and it is 
conceivable that older men with normal testosterone levels and longer 
AR CAGn lengths will have a higher risk of developing andropausal 
symptoms.35 The number of CAGn and BCM area may vary by race.2 The 
older age group of the current study was from a mixed group of ethnic 
backgrounds, therefore, minimizing its effect as a confounding factor.

Age‑related loss of skeletal muscle mass and strength has been 
well‑established. However, in elderly men, the decrease in muscle strength 
outweighs the decrease in muscle mass. Change in muscle mass is 
dependent on multiple factors, such as physical activity, tobacco smoking, 
individual wellbeing and age.38 The age‑related decline in muscle mass 
usually does not start until the 7th decade of life, and the detection of loss 
of muscle mass is highly influenced by the method and indices used to 
assess body composition.39 Moreover, muscle mass is highly dependent on 
androgen levels, and testosterone administration is associated with dose 
dependent increase in muscle mass.40 In the current cohort, all subjects 
were healthy, under the age of 65 years, with normal testosterone levels 
who BCM mass was mainly dependent on androgen activity.

This study is the first to look at the BCM muscle parameters 
and the number of CAGn to determine androgen activity at the 
tissue level. The authors have further presented that the number of 
CAGn is susceptible to changes with age and this might account for 
andropausal symptoms in men. However, this is a very small study and 
further longitudinal studies are necessary to fully elucidate the effect 
of age on the number of CAGn and androgen activity. Moreover, it is 
critical for future studies to examine the interactions among serum 
testosterone level as well as other androgens, AR CAGn length and 
age. A larger sample size than the current study would be required to 
provide sufficient data to examine these interactions and to further 
define our findings, including patients with CAGn disease and erectile/
ejaculatory dysfunction. However, it can be concluded that the BCM 
area can be correlated with the number of CAGn in the AR and this 
relationship can be used to assess androgen status of the patient.

CONCLUSIONS
This study of normal male subjects indicates that an increased number 
of CAGn is associated with decreased BCM area and androgen activity. 
This supports prior studies demonstrating that longer CAGn in ARs 
have been shown to result in reduced AR activity and decreased 
virilization. Furthermore, the possible increase in the number of CAGn 
over age might account for andropausal symptoms which older men 
may experience. The association of AR CAGn with BCM is a novel 
finding that may help to select the most appropriate patients for AR 
CAGn testing in the future. Further, the findings of this study may be 

Table  2: CAG repeats and BCM measurement

CAGn Penis 
rigid 
(cm)

Penis 
flaccid 
(cm)

BCM 
area 

(mm2)

BCM 
thickness 

(mm)

Thickness 
AP 

(mm)

Thickness 
left 

(mm)

Thickness 
right 
(mm)

(L) 13–18 16.2 13.6 74.3 22.8 2.0 5.3 5.2

(M)19–24 16.9 13.2 96.5 22.6 1.8 4.1 4.1

(H) 25–29 16.9 12.9 53.2 22.2 1.8 4 4.1

P value 
(L vs H)

0.65 0.28 0.04 0.24 0.46 0.09 0.18

AP: anterior posterior; BCM: bulbocavernosus muscle; CAGn: CAG repeats ; L: low; M: mid; H: high



Asian Journal of Andrology 

Assessing androgen activity 
AA Dabaja et al

622

used for future comparison in other populations with known CAGn 
disease and erectile and ejaculatory pathology.
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