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Abstract

Background: Postoperative hypoxemia is quite common in patients with acute aortic dissection (AAD) and is
associated with poor clinical outcomes. However, there is no method to predict this potentially life-threatening
complication. The study aimed to develop a regression model in patients with AAD to predict postoperative
hypoxemia, and to validate it in an independent dataset.

Methods: All patients diagnosed with AAD from December 2012 to December 2017 were retrospectively
screened for potential eligibility. Preoperative and intraoperative variables were included for analysis. Logistic
regression model was fit by using purposeful selection procedure. The original dataset was split into training
and validating datasets by 4:1 ratio. Discrimination and calibration of the model was assessed in the validating
dataset. A nomogram was drawn for clinical utility.

Results: A total of 211 patients, involving 168 in non-hypoxemia and 43 in hypoxemia group, were included
during the study period (incidence: 20.4%). Duration of mechanical ventilation (MV) was significantly longer in
the hypoxemia than non-hypoxemia group (41(10.5140) vs. 12(3.75,70.25) hours; p = 0.002). There was no difference in
the hospital mortality rate between the two groups. The purposeful selection procedure identified 8 variables including
hematocrit (odds ratio [OR]: 0.89, 95% confidence interval [CI]: 0.80 to 0.98, p = 0.011), PaO2/FiO2 ratio (OR: 0.99, 95% CI:
0.99 to 1.00, p = 0.011), white blood cell count (OR: 1.21, 95% CI: 1.06 to 1.40, p = 0.008), body mass index (OR: 1.32, 95%
CI: 1.15 to 1.54; p = 0.000), Stanford type (OR: 0.22, 95% CI: 0.06 to 0.66; p = 0.011), pH (OR: 0.0002, 95% CI: 2*10− 8 to 0.
74; p = 0.048), cardiopulmonary bypass time (OR: 0.99, 95% CI: 0.98 to 1.00; p = 0.031) and age (OR: 1.03, 95% CI: 0.99 to
1.08; p = 0.128) to be included in the model. In an independent dataset, the area under curve (AUC) of the prediction
model was 0.869 (95% CI: 0.802 to 0.936). The calibration was good by visual inspection.

Conclusions: The study developed a model for the prediction of postoperative hypoxemia in patients undergoing
operation for AAD. The model showed good discrimination and calibration in an independent dataset that was not
used for model training.
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Background
Acute aortic dissection (AAD) represents a life-threatening
condition that can be encountered in emergency and crit-
ical care setting [1]. Many factors can influence the clinical
outcomes of these patients such as the comorbidities, com-
plications, organ dysfunction and site of dissection. Surgical
operation is usually needed to avert catastrophic complica-
tions of aortic dissection [2]. Postoperative hypoxemia has
long been noted in substantial proportion of patients with
AAD and has been found to be associated with poor clin-
ical outcomes such as prolonged mechanical ventilation, in-
creased length of stay (LOS) in the intensive care unit
(ICU) and hospital [3–5]. Also, several studies have
attempted to identify preoperative risk factor of hypoxemia
[4, 5]. However, there is no report on training a model for
early prediction of postoperative hypoxemia. Since early
prediction of post-operative hypoxemia makes early inter-
vention possible, it is of clinical utility to train and validate
such a prediction model. The study aimed to develop a
model for early prediction of postoperative hypoxemia. Dis-
crimination and calibration of the model were validated in
an independent dataset that was not used for model train-
ing. A nomogram was depicted for clinical use.

Methods
Study design and settings
The study was retrospective in design. All patients diag-
nosed as AAD from December 2012 to December 2017
were screened for potential eligibility. The patients
were identified from the electronic healthcare record
(EHR) of our hospital. Patients with initial suspected
diagnosis of AAD as denoted by ICD9 code of 443.21
were identified. Exclusion criteria included one of the
following items: 1) patients did not undergo surgery; 2)
patients who were pregnant, or had neuromuscular dis-
ease, 3) confirmed complications such as heart failure,
massive bleeding, pneumothorax, tracheal hemorrhage,
atelectasis and pneumonia; and 3) patients had missing
values on more than 50% variables. Data were extracted
from EHR and deidentified before analysis. The study
was approved by the ethics committee of Sir Run Run
Shaw hospital (20180611–7). Informed consent was
waived due to retrospective nature of the study.

Variables included for analysis
Demographic variables including age, gender, body
weight, height, body mass index (BMI) were obtained
for the hospital admission with surgical repair of the
aorta artery. Past histories of smoking, hypertension
and diabetes mellitus were also included. The admis-
sion type included emergency and non-emergency
admissions.
Preoperative laboratory tests were obtained within

24 h before surgery, which included albumin, hematocrit

(HCT), pH, lactate, PaCO2, PaO2/FiO2 ratio (P/F),
serum creatinine (Scr), total bilirubin, white blood cell
count (WBC), C-reactive protein (CRP), troponin, creat-
ine kinase (CK), creatine kinase isoenzymes (CKMB),
lactate dehydrogenase (LDH), aspartate aminotransferase
(AST). If there were two or more measures of these vari-
ables before operation, the one nearest to the operation
was employed.
Intraoperative variables included aortic clamping

time, cardiopulmonary bypass (CPB) time, duration of
the operation, fluid input and output during operation,
and the minimum body temperature.
Clinical outcomes were LOS in ICU and hospital,

duration of postoperative mechanical ventilation, and
hospital mortality.
Postoperative hypoxemia was defined as P/F < 200 for

the first 2 days after operation.

Statistical analysis
Continuous variables were expressed as mean and
standard deviation for normally distributed data, and as
median and interquartile range (IQR) for non-normal
data. Categorical variables were expressed as number
and percentage. Comparisons between hypoxemia and
non-hypoxemia groups were performed using student t
test or rank sum test as appropriate. Chi-square or
Fisher’s exact test was employed for categorical vari-
ables [6, 7].
Postoperative hypoxemia was employed as response

variable assuming a binomial distribution, and covariates
were included in the model if their p values were less than
0.05 in univariate analysis [8]. Other variables such as age,
CPB time and pH were entered due to clinical expertise.
Variables with p > 0.2 in the multivariable model were ex-
cluded. The initial dataset was randomly split into the
training and validating dataset by 4:1 ratio (there were 36
cases of hypoxemia in the training set). The training set
was used to develop the model, and the validating set was
used to validate the model. Model discrimination was rep-
resented by the area under receiver operating characteris-
tic curves (AUC), with an AUC greater than 0.8 indicating
a good discrimination [9]. Model calibration was visually
assessed by plotting fitted logistic calibration curve and a
smooth nonparametric fit using lowess and grouped pro-
portions vs. mean predicted probability in group [10].
Other statistics were also reported with the R package Re-
gression Modeling Strategies (rms), such as Somers’D_{xy},
rank correlation between predicted probability and ob-
served probability, Nagelkerke-Cox-Snell-Maddala-Magee
R-squared index, the 0.9 quantile of same (E90), the Spie-
gelhalter Z-test for calibration accuracy, and its two-tailed
P-value [11, 12].
A nomogram was drawn based on the fitted logistic

regression model and each patient could be mapped
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onto the nomogram for the prediction of the occur-
rence of postoperative hypoxemia [13]. We drew the
nomogram that converts each effect in the model to a 0
to 100 scale which is just proportional to the log odds.
These points are added across predictors to derive the
“Total Points,” which are converted to linear predictor
and then to predicted probabilities [12]. The distribu-
tion of covariates in the model, and of the total regres-
sion score, are superimposed on the nomogram scales.
Also, the values of a sample patient were superimposed.
Binomial distribution with logit link function was
employed for the model fit.
All statistical analyses were performed using R (version

3.4.3). Two-tailed p value less than 0.05 was considered
as statistical significance.

Results
Patient inclusion
A total of 287 patients with initial suspicion of AAD
were initially identified from HER, and 49 were ex-
cluded because they did not undergo surgery during
hospital stay, were ruled out for AAD, had neuromus-
cular disease. Furthermore, we excluded 27 patients
with preoperative complications such as heart failure,
massive bleeding, pneumothorax, atelectasis and pneu-
monia. As a result, a total of 211 patients were finally
included for analysis (Fig. 1).

Baseline characteristics
There were 168 patients in the non-hypoxemia group
and 43 in the hypoxemia group, with an incidence rate

of 20.4%. Patients in the hypoxemia group appears to
be elder than non-hypoxemia group, but the statistical
significance was not reached (Table 1). Patients with
hypoxemia showed significantly greater BMI than those
in non-hypoxemia group (26.82 ± 3.84 vs. 24.94 ±
3.86 kg/m2, p = 0.006). All patients (100%) with hypox-
emia were admitted from emergency setting, versus
86% for the non-hypoxemia group (p = 0.005).

Preoperative laboratory test
For preoperative laboratory tests, hypoxemia patients
showed significantly lower P/F ratio than non-hypoxemia
patients (median, interquartile range [IQR]: 174(148.5237)
vs. 249(183.75,367.25); p < 0.001). Other laboratory tests
such as serum creatinine (103(77.5145) vs. 76.5(61,104)
mmol/l; p < 0.001), total bilirubin (16.7(11.9,25) vs.
13.2(9.57,18.9) mmol/l; p= 0.016), WBC (12.9(9.3,15.5) vs.
8.9(6.8,11.65) ^109/l; p < 0.001), CRP (58.9(10.6118.3) vs.
23.4(4.57,60.38) mg/l; p= 0.003) and CK (109(62,228) vs.
72(48.75,136.25) U/l; p= 0.023) were significantly higher in
the hypoxemia group than that in the non-hypoxemia
group.
Intraoperative variables were not significantly different

between hypoxemia and non-hypoxemia groups.

Clinical outcomes
The LOS in ICU (10(5.5,14) vs. 7(4,11) days; p = 0.079)
and hospital (18(12.5,24) vs. 19(13,25) days; p = 0.775)
were not significantly different between the two groups.
Duration of MV was significantly longer in the hypox-
emia than non-hypoxemia group (41(10.5140) vs.
12(3.75,70.25) hours; p = 0.002). There was no differ-
ence in the hospital mortality rate between the two
groups (Table 1).

Model training
Logistic regression model was fit with the training set.
The purposeful selection procedure included 8 variables
as determined by clinical importance and statistical sig-
nificance (Table 2). The preoperative HCT (odds ratio
[OR]: 0.89, 95% confidence interval [CI]: 0.80 to 0.98, p
= 0.011), P/F ratio (OR: 0.99, 95% CI: 0.99 to 1.00, p =
0.011), WBC (OR: 1.21, 95% CI: 1.06 to 1.40, p = 0.008),
BMI (OR: 1.32, 95% CI: 1.15 to 1.54; p < 0.001), Stan-
ford type (OR: 0.22, 95% CI: 0.06 to 0.66; p = 0.011), pH
(OR: 0.0002, 95% CI: 2*10− 8 to 0.74; p = 0.048), and
CPB time (OR: 0.99, 95% CI: 0.98 to 1.00; p = 0.031)
were significantly contributing to the prediction accur-
acy of the model. Age was not significantly associated
with the outcome, but it remained in the model by clin-
ical judgement.

Fig. 1 Flow chart of patient selection
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Table 1 Comparison between hypoxemia and non-hypoxemia groups

Total (n = 211) Non-hypoxemia (n = 168) Hypoxemia (n = 43) p

Demographics

Age, median (IQR) (years) 50 (43,63) 50 (42,64) 52 (46.5,59) 0.654

Male, n (%) 151 (0.72) 116 (0.69) 35 (0.81) 0.158

Height, median (IQR) (cm) 170 (163,174) 170 (162.75,174) 169 (165,174) 0.647

Weight, median (IQR) (kg) 70 (62,80) 70 (60,80) 80 (65,89.5) 0.005

BMI, mean ± SD (kg/m2) 25.32 ± 3.92 24.94 ± 3.86 26.82 ± 3.84 0.006

Smoking history, n (%) 59 (28) 47 (28) 12 (28) 0.998

Hypertension, n (%) 134 (64) 102 (61) 32 (74) 0.137

Diabetes, n (%) 13 (6) 11 (7) 2 (5) 0.998

Stanford A, n (%) 133 (63) 97 (0.58) 36 (84) 0.003

Emergency admission, n (%) 188 (89) 145 (86) 43 (1) 0.005

Laboratory tests before operation

Albumin, mean ± SD (mg/l) 36.6 ± 4.65 36.75 ± 4.76 36 ± 4.22 0.316

Hematocrit, mean ± SD (%) 36.09 ± 5.71 36.26 ± 5.4 35.41 ± 6.82 0.452

pH, median (IQR) 7.37 (7.34,7.4) 7.37 (7.34,7.4) 7.37 (7.32,7.38) 0.205

Lactate, median (IQR) (mmol/l) 2.1 (1.5,2.9) 2.05 (1.48,2.8) 2.30 (1.9,3.1) 0.082

PaCO2, median (IQR) (mmHg) 41 (37.55,45.55) 41 (37.88,45.23) 40.9 (36.5,47.7) 0.916

P/F ratio, median (IQR) 235 (176,355) 249 (183.75,367.25) 174 (148.5237) < 0.001

Scr, median (IQR) (mmol/l) 81 (64,113) 76.5 (61,104) 103 (77.5145) < 0.001

Total bilirubin, median (IQR) (mmol/l) 13.7 (10,22.25) 13.2 (9.57,18.9) 16.7 (11.9,25) 0.016

WBC, median (IQR) (^109/l) 9.5 (7.4,12.6) 8.9 (6.8,11.65) 12.9 (9.3,15.5) < 0.001

CRP, median (IQR) (mg/l) 28.3 (5.75,68.75) 23.4 (4.57,60.38) 58.9 (10.6118.3) 0.003

Troponin, median (IQR) (ng/ml) 0.01 (0.01,0.01) 0.01 (0.01,0.01) 0.01 (0.01,0.12) 0.028

CK, median (IQR) (U/l) 78 (51,150.5) 72 (48.75,136.25) 109 (62,228) 0.023

CKMB, median (IQR) (U/l) 10 (8,16) 10 (8,16) 10 (6.5,14.5) 0.249

LDH, median (IQR) (U/l) 218 (171,283) 208.5 (165,274.25) 253 (196.5312.5) 0.013

AST, median (IQR) (U/l) 22 (16.5,34.5) 21 (15,31.25) 31 (18.5,44.5) 0.007

Intraoperative variables

Aortic clamping time, mean ± SD (min) 127.91 ± 40.82 128.84 ± 40.7 124.26 ± 41.59 0.519

CBP time, median (IQR) (min) 178 (140,211) 180 (146.75,210) 169 (132.5221) 0.749

Duration of operation, median (IQR) min 295 (120,390) 285 (90,390) 300 (242.5420) 0.072

Minimum temperature, median (IQR) (°C) 36.2 (35.6,36.55) 36.2 (35.4,36.6) 36.3 (36,36.5) 0.250

Input, median (IQR) (ml) 6250 (5150,7587.5) 6090 (5150,7332.5) 6380 (4775,8170) 0.651

Output, median (IQR) (ml) 4850 (3600,5800) 4900 (3575,6000) 4500 (3675,5600) 0.358

Clinical outcomes

LOS in ICU, median (IQR) (days) 7 (4,12) 7 (4,11) 10 (5.5,14) 0.079

LOS in hospital, median (IQR) (days) 19 (13,24.5) 19 (13,25) 18 (12.5,24) 0.775

Duration of MV, median (IQR) (hours) 15 (5,82) 12 (3.75,70.25) 41 (10.5140) 0.002

Mortality, n (%) 7 (3) 6 (4) 1 (2) 0.997

Note: continuous variables were expressed as mean and standard deviation for normal data, and as median and interquartile range for non-normal data.
Categorical variables were expressed as number and percentage. Comparisons between hypoxemia and non-hypoxemia groups were performed using student t
test or rank sum test as appropriate. Chi-square or Fisher’s exact test was employed for categorical variables
Abbreviations: No. number, Prop. proportion, ICU intensive care unit, LOS length of stay, WBC white blood cell count, CRP c-reactive protein, Scr serum creatinine,
BMI body mass index, CK creatine kinase, CKMB creatine kinase isoenzymes, LDH lactate dehydrogenase, AST aspartate aminotransferase, MV mechanical
ventilation, CPB cardiopulmonary bypass, IQR interquartile range, SD standard deviation
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Model validation in a separate dataset
In the validation dataset, the fitted model showed a
good discrimination in distinguishing hypoxemia from
non-hypoxemia patients (area under curve [AUC] =
0.869, 95% CI: 0.802 to 0.936). Model calibration was
shown in Fig. 2. The non-parametric curve fits well
to the ideal line, indicating the observed probability
was in line with the predicted probability. However,
the model may not predict well for patients with
lower risk of postoperative hypoxemia. Also, the Fig. 3
shows that the predicted probability of hypoxemia is
in agreement with the observed proportion.

Nomogram for predicting postoperative hypoxemia
Nomogram for the prediction of postoperative hyp-
oxemia is shown in Fig. 4. The distribution of each
variable was shown above each line. A representative
patient was shown to illustrate how to use the
nomogram. Given values of the 8 predictors, the pa-
tient can be mapped to the nomogram. Note there is
a red dot in each line, representing the value of each
of the 8 predictors for the patient. Regression coeffi-
cient of each predictor was scaled to points within
the range of 0 to 100, and the relative importance
(weight) of each predictor can be reflected by its

Table 2 Logistic regression model for the prediction of postoperative hypoxemia

Variables Odds ratio Lower limit of 95% CI Upper limit of 95% CI P value

BMI 1.32 1.15 1.54 < 0.001

PF 0.99 0.99 1.00 0.011

Stanford (A as reference) 0.22 0.06 0.66 0.011

WBC 1.21 1.06 1.40 0.008

Age 1.03 0.99 1.08 0.128

HCT 0.89 0.80 0.98 0.016

CBP time 0.99 0.98 1.00 0.031

pH 0.0002 2*10−8 0.74 0.048

Note: The logistic regression model was selected by using stepwise forward selection procedure, AIC was used to decide the inclusion of a variable. The odds ratio
was reported for each one unit increase for each variable
Abbreviations: CI confidence interval, WBC white blood cell count, PF PaO2/FiO2, BMI body mass index, CBP cardiopulmonary bypass, HCT hematocrit
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points. Points was translated into probability by logit
transformation.

Discussion
The study included patients with AAD who had under-
gone operation for the repair of the dissection. Risk fac-
tors for postoperative hypoxemia were identified via
purposeful selection procedure. These factors included
age, lactate, preoperative P/F ratio, WBC, BMI and
CRP. Internal validation was performed for the model,
which showed good discrimination and calibration. A
nomogram was established for clinical utility.
The incidence of hypoxemia was lower than those re-

ported in the literature (20% vs. 30%) [4, 14]. Different
definitions of postoperative hypoxemia may explain its
different incidences. For example, Wang’s study defined
hypoxemia as P/F ratio less than 200 at 24 h after oper-
ation and they reported an incidence of 49.5% [5]. Sev-
eral studies have been conducted to explore risk factors
for postoperative hypoxemia. Consistent with our
study, the study by Liu and colleagues also showed the
preoperative P/F ratio and WBC were independently
associated with postoperative hypoxemia [4]. It is not
surprising that preoperative P/F ratio is independently
associated with postoperative hypoxemia. Furthermore,
WBC is a biomarker reflecting systemic inflammatory
response, and higher responses may contribute to the
respiratory dysfunction. There is empirical evidence
that inflammatory response is associated with hypox-
emia in patients with aortic dissection [15]. Further-
more, we also found CRP was associated with
hypoxemia. CRP is a well-known biomarker of inflam-
matory response, which is more specific and sensitive

than WBC [16, 17]. However, the effect of CRP disap-
peared after adjusting for covariates. Liu’s study also
included time from symptom onset and deep
hypothermic circulatory arrest time in their regression
model. None of the intraoperative variables were asso-
ciated with hypoxemia in univariate analysis, but the
CPB time was associated with hypoxemia in multivari-
able regression model. BMI was identified as an inde-
pendent predictor of postoperative hypoxemia in the
study, consistent with the study by Sheng and col-
leagues [14]. Actually, the association of obesity and
hypoxemia is not limited to aortic surgery [18]. In a
large cohort of noncardiac surgery, Kendale SM and
colleagues found that the odds of experiencing hypox-
emia increased significantly with increasing categories
of BMI [19]. Similar results were documented in other
studies [20, 21]. BMI is an important determinant of re-
spiratory function and studies show morbidly obese pa-
tients have a typical restrictive pattern with a reduction
of forced vital capacity (FVC), forced residual capacity
(FRC) and total lung capacity (TLC) with a decreased
expiratory reserve volume (ERV) [22–24]. Sex has been
found to be related to postoperative hypoxemia in AAD
(women were more likely to have hypoxemia than
man), which was not replicated in our study. Most
probably, the associated was confounded by other fac-
tors and the authors failed to adjust for these potential
confounding factors [25].
An interesting finding in our study was that serum

lactate was associated with postoperative hypoxemia in
patients with AAD. Hyperlactatemia is an indicator of
tissue ischemia [26]. In cardiac surgery patients, there
is evidence that hyperlactatemia is associated with a
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compromised respiratory function and prolonged
mechanical ventilation. Also, hyperlactatemia can ex-
plain organ dysfunction in our study [27–29]. However,
the effect of lactate disappeared in multivariable model,
indicating that the effect could be explained by pre-
operative P/F ratio, as lactate was a biomarker of hyp-
oxemia. Similarly, preoperative P/F ratio can explain
the elevations of biomarkers of acute organ injury such
as Scr, bilirubin and ALT. That was why the significant
associations in univariate analysis disappeared in the
multivariable regression model.
The potential utility of our prediction model is that in-

terventions such as anti-inflammatory agents can be
given to patients with high risk of postoperative hypox-
emia. Furthermore, the model can be employed to de-
sign clinical trials to identify high risk patients who will
benefit the most from treatment [30].

There were some limitations in the present study that
must be acknowledged. First, the study was retrospective
single center study. Although the prediction model was
validated in a separate dataset that was not used for
model training, its external validity was still unknown.
In different cardiac centers, the healthcare process can
be quite different and the predictive accuracy of a newly
developed model needs to be tested [31, 32]. This is also
our future work to perform a multicenter study to exam-
ine the external validity of the model. Second, postoper-
ative hypoxemia reported in the study was defined by P/
F ratio less than 200 for consecutive 2 days. While this
definition was simple to perform, it suffers from
case-mix. Some patients may have intensive respiratory
support, and their P/F ratio is not comparable to those
with spontaneous breathing. Thus, the definition of post-
operative hypoxemia needs to be further explored.
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Fig. 4 Nomogram for the prediction of postoperative hypoxemia. The logistic regression model were described as a series of straight lines with a
common linear scale in the nomogram, with the scale factors of the individual lines given by the coefficients (beta) of the covariates in the
model.The distribution of each variable is superimposed on each scale. A representative patient was shown to illustrate how to use the
nomogram. Given values of the eight predictors, the patient can be mapped onto the nomogram. Note there is a red dot at each scale,
representing the value of each of the 8 predictors for the patient. The total point of the patient was 370, corresponding to a probability of 0.7 for
developing postoperative hypoxemia
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However, in order to make our results comparable to
that in the literature [4], we opt to use this simple def-
inition. Third, the retrospective design of the study
suffers from its inherent limitation of selection bias.
Some patients were excluded because they did not
perform operation in our hospital. They might go to
other hospital for further evaluation. Thus, the in-
cluded patients may not well represent the whole tar-
get population of AAD, but they represent those who
are willing to undergo operation in our hospital. Fi-
nally, the sample size of the study was small that only
43 patients had the event of interest. As a rule of
thumb, 10–20 events per variable should be used [33].
However, the primary purpose of this rule is to pre-
vent overfitting [34]. We addressed the problem of
overfitting by validating the model in a dataset that
was not used for model training (e.g. an overfitting
model performs poorly in the validation dataset). The
results showed that the developed model can predict
accurately in the validation dataset with an AUC of
0.869. Further studies by employing multicenter data
are mandatory to endure generalizability of the model.

Conclusion
In conclusion, the study developed a model for the
prediction of postoperative hypoxemia in patients
undergoing operation for AAD. Eight variables of age,
BMI, WBC, HCT, CPB time, pH, Stanford type and P/
F ratio were included in the model. The model showed
good discrimination and calibration in an independent
dataset that was not used for model training.
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