
OPEN

ORIGINAL ARTICLE

Serotonin versus catecholamine deficiency: behavioral and
neural effects of experimental depletion in remitted depression
P Homan1, A Neumeister2, AC Nugent3, DS Charney4, WC Drevets5,6 and G Hasler1

Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic
neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression.
Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or
catecholamine neurotransmission hold the potential to optimize the prescriber’s selection among currently available treatment
options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in
serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical
neuroimaging procedures with [18F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and
catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind,
randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD
induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose
metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD
specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct
associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between
neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have
common and differential roles in the pathophysiology of depression.
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INTRODUCTION
Almost all available antidepressants bring about their effects by
increasing monoamine neurotransmission, and many drugs that
increase monoamines in the synaptic cleft have been shown to
have antidepressant properties.1 Despite the considerable noise in
placebo-controlled clinical trials, such trials showed a statistically
significant advantage for switching patients with selective
serotonin reuptake inhibitor (SSRI)-resistant depression to a non-
SSRI rather than another SSRI antidepressant,2 which suggests
important interindividual variation in the response to specific
monoaminergic drugs. As a result, biomarkers predicting out-
comes of specific monoaminergic drug classes have the potential
to reduce the current trial-and-error method that commonly
delays effective treatment. However, until now no such marker has
been consistently identified for any monoaminergic antidepres-
sant class. Thus, studies are needed that build a framework for
guiding the selective, personalized antidepressant therapy by
relating clinical symptoms and brain circuitry responses to
serotoninergic and catecholaminergic neurotransmission.
In this study, we applied tryptophan depletion (TD) and

catecholamine depletion (CD) to elucidate the common and
differential symptoms and regional cerebral glucose metabolic
changes these challenges induce in subjects with a history of
major depressive disorder (MDD). The study compared data

acquired in two previously published experiments from the same
laboratory that used the identical neuroimaging procedure with
positron emission tomography (PET) and [18F] fluorodeoxyglucose
(18FDG) after TD or CD in subjects with fully remitted MDD (rMDD).
TD, which putatively lowers central serotonergic transmission, was
induced by depleting the serotonin precursor, tryptophan,
through oral loading with all essential amino acids, except
tryptophan. CD, which is expected to reduce central dopamine
and norepinephrine neurotransmission, was achieved by admin-
istering α-methyl-paratyrosine (AMPT),3 a competitive inhibitor of
tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of
catecholamines.4 CD has been shown to induce depressive
symptoms in a relatively high proportion of subjects with rMDD,
but generally does not affect mood in healthy controls.5

On the basis of previous studies suggesting functional
interactions between serotonin and norepinephrine neurons in
animal models of depression,6–8 reductions of serotoninergic and
catecholaminergic neurotransmission by means of TD and CD are
likely to induce both common and distinct effects on the
spectrum of depressive symptoms.3,6,9–19

Previous neuroanatomical findings of serotonin,20

norepinephrine21 and dopamine22 have suggested that mono-
aminergic neurotransmission is involved in a wide range of
cerebral functions including cognition, attention, mood, reward
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processing, appetite and sleep. As a result, deficiency of
monoamines may conceivably explain the wide range of
depressive symptoms including cognitive dysfunction, depressed
mood and appetite and sleep disturbances. Functional neuroimag-
ing studies have associated the reductions of specific monoamines
with changes in hemodynamic or metabolic activity in distinct
cerebral networks.23 The limbic–cortical–striatal–pallidal–thalamic
network is of particular interest. This network connects the
orbitofrontal cortex (OFC), medial prefrontal cortex (PFC), amyg-
dala, hippocampus, ventromedial striatum, ventral pallidum and
the mediodorsal and midline thalamic nuclei23–26 that showed
altered neurotransmission under the depletion of serotonin27 and
catecholamines.28 In an exploratory fashion, the current study
investigated how this altered neurotransmission differed quantita-
tively between TD and CD, and how these differences related to
the type and severity of induced symptoms.

MATERIALS AND METHODS
The current study compared two previously published experiments. The
first study applied TD,27 the second study used CD in subject samples
selected via the same entrance criteria.28

Participants
Both studies (TD and CD) used the identical study procedure with respect
to the study design and participant selection, that is, a double-blind,
placebo-controlled crossover design in fully remitted, unmedicated
depressed patients (rMDD). TD compared the effects of TD versus placebo
and CD compared the effects of CD versus placebo. During the depletion
procedures, the cerebral glucose metabolism was measured by PET and
18FDG. The experimental group in both studies comprised individuals aged
18–56 years who met DSM-IV criteria for MDD in full remission (rMDD). The
healthy controls had no history of any psychiatric disorder and no major
psychiatric disorder in first-degree relatives. Diagnosis was established by
the Structured Clinical Interview for DSM-IV29 and confirmed by an
unstructured interview with a psychiatrist. The subjects were recruited
through the outpatient clinical services of the National Institute of Mental
Health and by advertisements in local newspapers and posters on the
National Institutes of Health campus. Exclusion criteria included major
medical illnesses, pregnancy, psychotropic drug exposure (including
nicotine) within 3 months, substance abuse within 1 year, lifetime history
of substance dependence, psychiatric disorders other than MDD and
structural brain abnormalities on magnetic resonance imaging (MRI).
Inclusion criteria required that rMDD subjects had remained in remission
without medications for at least 3 months and had manifested depression
onset before 40 years of age. Written informed consent was obtained as
approved by the institutional review board of the National Institute of
Mental Health. With the exception of two rMDD subjects and five healthy
controls who participated in both studies, the TD and CD study comprised
independent subject samples. The TD study included 28 rMDD subjects (19
women, 9 men) and 27 healthy controls (18 women, 9 men). The CD study
comprised 17 rMDD subjects (16 women, 1 man) and 13 healthy controls
(12 women, 1 man). There were significantly more men in the rMDD group
in the TD compared with the CD study (P=0.04). No PET data were
obtained in one subject with rMDD and one healthy control subject in the
TD study, and in two subjects with rMDD in the CD study.

Tryptophan depletion
Subjects underwent two identical sessions that were separated by at least
8 days to avoid carryover effects. TD was induced by administration of 70
white capsules containing an amino-acid mixture consisting of isoleucine
(4.2 g), leucine (6.6 g), lysine (4.8 g), methionine (1.5 g), phenylalanine
(6.6 g), threonine (3.0 g) and valine (4.8 g) at 0700 hours (see Neumeister
et al.27 for details). Placebo administration at 0700 hours comprised 70
white capsules with 31.5 g of lactose. Patients were restricted from eating
upon completion of PET at about 1600 hours on day 1. Behavioral
measures included the Hamilton Scale of Depression (HAMD), the
Montgomery–Åsberg Depression Rating Scale (MADRS) and the Beck
Anxiety Inventory (BAI). Study raters were blinded.

Catecholamine depletion
Subjects underwent two identical sessions separated by at least 1 week, in
which they received either a body-weight-adjusted AMPT dose or placebo
(see Hasler et al.28 for details). To reduce risk of adverse reactions, a body-
weight-adjusted AMPT dose of 40mg kg− 1 of body weight orally, to a
maximum of 4 g, over 22 h was used. Each session took 3 days and was
performed on an inpatient basis at the National Institutes of Health Clinical
Center. To reduce the risk of crystalluria during AMPT administration,
subjects received sodium bicarbonate, drank at least 2 l of water daily and
underwent urinalysis twice daily. Behavioral measures included the HAMD,
the MADRS and the BAI. Study raters were blinded.

Statistical analysis of behavioral data
To compare the depletion effects of TD and CD on behavioral measures,
differences in behavioral measures (ΔHAMD, ΔMADRS and ΔBAI) between
challenge and placebo were calculated first for each subject and time
point. These behavioral differences (ΔHAMD, ΔMADRS and ΔBAI) were
then modeled with full factorial linear mixed models with restricted
maximum likelihood estimations to account for the repeated measure-
ments in the same subjects. Schwarz’s Bayesian criteria were used to
determine the best fitting covariance structure for each set of measures in
cases where the typical compound symmetry approach used by analysis of
variance did not provide the appropriate structure for the data. The effects
of depletion type, diagnosis, depletion type-by-diagnosis and time on the
ΔHAMD, ΔMADRS and ΔBAI scores were assessed with linear mixed
models with an autoregressive covariance structure. Subject number and
depletion sequence were included as random effects in all models. In
addition, the factor gender was included in all models to regress-out this
possible confounder since there were significantly more male subjects in
the TD study. Furthermore, a post hoc analysis involving only the females
alone was performed to prove that the statistical analysis adequately
controlled for the gender difference. Post hoc t-tests involved a Tukey
correction for multiple comparisons. Additional analyses assessed the
different items measured with the HAMD, the MADRS and the BAI in detail
using t-tests in rMDD to test for differences between TD and CD across
symptom dimensions. The significance thresholds for these contrasts were
set at alpha= 0.05, two tailed. SAS 9.3 (SAS Institute, Cary, NC, USA) was
used for all analyses. The means of the data are reported with their
associated s.e.

PET imaging
The PET imaging methods have been described in detail in our previous
reports on the same participant cohort.27,28 Both studies used the same
procedures with respect to PET imaging. The PET images were acquired
when the peak behavioral response was expected, that is, in the TD study,
PET was measured 6 h after the administration of the amino-acid mixture/
placebo, because the peak effects were expected at 5–7 h; in the CD study,
PET images were acquired 30 h after the administration of the first AMPT/
placebo dose, which corresponded to the time period when peak
behavioral response was expected.3 Scanning was performed with a GE
Advance scanner in three-dimensional mode (35 contiguous slices,
4.25mm thick; three-dimensional resolution= 6mm full-width at half-
maximum; GE Healthcare, Waukesha, WI, USA) and a slow bolus (over
2 min) injection of 18FDG. In order to obviate the need for arterial blood
sampling, cerebral glucose utilization was quantified using a method that
combines the left ventricular chamber time–tissue radioactivity data that
were measured with dynamic PET imaging of the heart with venous blood
sampling in order to provide 18FDG input function.30 This method has
been validated previously by comparing it to more invasive approaches
that use arterial plasma sampling.30 During image processing, the left
ventricular time–radioactivity curve was extended in time to include the
time of the brain emission scan by obtaining venous blood samples 25, 30,
35 and 50min after the 18FDG injection. The mean radioactivity of these
samples was divided by the mean left ventricular radioactivity concentra-
tion between 25 and 35min post injection. This ratio was used to scale the
50-min venous sample concentration, which then was appended to the left
ventricular curve in order to complete the input function that was used to
generate parametric images of the regional cerebral metabolic rates for
glucose (rCMRglu), as described by Moore et al.30 To provide an anatomical
framework for the analysis of the PET images, structural MRI scans were
acquired with a 3.0-T scanner (Signa; GE Medical Systems, Waukesha, WI,
USA) applying a three-dimensional magnetization-prepared rapid
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acquisition gradient-echo sequence (echo time 2.982ms; repetition time
7.5 ms; inversion time 725ms; voxel size 0.9 × 0.9 × 1.2 mm).

PET imaging: region-of-interest analysis
To compare the effects of TD versus placebo with CD versus placebo on
cerebral metabolism, first a region of interest (ROI)-based analysis (with P-
values corrected for the number of ROIs), and then a voxelwise analysis
(with P-values corrected for the number of independent comparisons
across the entire brain) were performed. For the ROI analysis, MEDx
(Medical Numerics, Sterling, VA, USA) software was used. ROIs were
selected according to previous results in rMDD5,31 and untreated,
symptomatic patients with MDD,32 which showed alterations in the OFC,
posterior cingulate cortex (PCC), medial thalamus, and dorsolateral
prefrontal cortex (DLPFC), ventral striatum, anterior PFC, pregenual PFC,
subgenual PFC, ventrolateral PFC, anteromedial PFC, amygdala, hippo-
campus and anterior insula. The ROIs were defined a priori on an MRI
template and were placed on each patient's registered MRI, using
anatomical definitions described previously.27 A binary mask of the gray
matter was used to restrict all further analyses to gray matter voxels. To
account for nonspecific global effects, the whole-brain metabolism was
used to normalize the regional measures (the quantitative measures of
whole-brain metabolism obtained under each depletion type revealed no
significant difference in global metabolism for either CD or TD, as reported
previously27,28). The normalized mean metabolic activity was then
obtained for each ROI in each subject and each session, and the regional
differences (ΔrCMRglu) between sessions (TD versus placebo and CD
versus placebo) were calculated for each subject. The statistical models
that were applied to compare the ΔrCMRglu in each ROI included the main
effects of depletion, diagnosis and their interaction. The significance level
was Bonferroni corrected for the number of 13 ROIs. The significance
threshold was set at alpha= 0.05, two tailed. All P-values are reported
before correction for multiple comparisons.

PET imaging: voxelwise analysis
For the whole-brain analyses, we used Matlab (Matlab version 8, release 14;
The MathWorks, Natick, MA, USA), SPM8 (Wellcome Trust Centre for
Imaging, London, England; http://www.fil.ion.ucl.ac.uk/spm/software/
spm8), and the toolbox aslm.33 PET images were coregistered to the MRIs
and spatially normalized to the Montreal Neurological Institute brain
template with SPM8. Images were filtered with a 6-mm Gaussian
smoothing kernel in order to compensate for interindividual anatomical
variability. The statistical analysis of whole-brain metabolism involved a
flexible factorial model in SPM8 with the factors depletion, diagnosis and
subject. Two additional regressors were included to account for the
oversampling of female subjects in the CD study and for the nonspecific
fluctuations in the whole-brain metabolism. Clusters with a voxel-level
threshold of Po0.05, whole-brain corrected for false discovery rate are
reported for regions without a priori hypotheses.

PET imaging: correlational analysis
Depression and anxiety items showing significant differences between TD
and CD were analyzed in an exploratory post hoc analysis. Spearman rank
correlations were calculated that assessed associations between those
items and metabolism in the ROIs in rMDD subjects. The significance
threshold was set at alpha= 0.05, two tailed.

RESULTS
The clinical and demographic characteristics of the subject
samples are detailed in Table 1.

Behavioral effects of TD compared with CD
Both TD and CD induced more depressive symptoms in rMDD
subjects compared with controls, but the depletion effect of TD
compared with CD did not differ significantly as measured on
either the HAMD (P= 0.37) or the MADRS (P= 0.27). In addition,
there was no depletion type (TD versus CD)-by-diagnosis
interaction on either scale’s total score. Furthermore, TD and CD
induced more anxiety symptoms as assessed using the BAI in
subjects with rMDD compared with controls, but the effect did not
significantly differ between depletion types (P= 0.14). There was
no depletion type-by-diagnosis interaction evident on the change
in anxiety ratings. Repeating the analyses in female subjects alone
did not alter the results.
To assess the between-subject variation between the TD and

CD study, we also calculated one-factor analyses of variance with
the factor depletion type (two levels; TD and CD) and the
dependent variables MADRS and BAI, respectively, including all
measures during the placebo conditions. There were no significant
differences in between-subject variations in MADRS scores
(F(1,167) = 2.53, P= 0.11) and BAI scores (F(1,166) = 0.42, P= 0.52),
respectively.

Detailed analysis of HAMD and MADRS items in rMDD subjects
Individual items from the HAMD and the MADRS showing
significant differences in the TD effect compared with the CD
effect in rMDD are displayed in Figure 1a. Compared with CD, TD
induced stronger effects on depressed mood (t (1,254) = 2.52,
P= 0.01), hopelessness (t (1,252) = 3.15, P= 0.002), apparent sad-
ness (t (1,254) = 2.56, P= 0.01) and reported sadness
(t (1,254) = 3.07, P= 0.002). The depletion effect of CD was stronger
compared with TD on work and activities (t (1,254) = 2.85,
P= 0.005), concentration difficulties (t (1,254) = 2.92, P= 0.004)
and lassitude (t (1,252) = 2.89, P= 0.004).
Repeating the analyses in female subjects only weakened the

stronger effects of TD compared with CD on depressed mood
(t (1,194) = 1.77, P= 0.08) and apparent sadness (t (1,194) = 1.93,
P= 0.06), potentially due to the reduction in sample size. In
addition, TD had stronger effects on hypochondriasis
(t (1,194) = 2.21, P= 0.03) and CD had stronger effects on the
inability to feel (t (1,194) = 2.01, Po0.05) in females. The results for
the other items remained unchanged between the entire-group
comparison versus the females-alone comparison.

Detailed analysis of BAI items in rMDD subjects
Anxiety items showing significant differences in the TD effect
compared with the CD effect in rMDD are displayed in Figure 1b.
Compared with the TD condition, CD induced significantly greater
feelings of flushing (t (1,248) = 2.44, P= 0.02), palpitations
(t (1,248) = 2.07, P= 0.04), fear (t (1,248) = 3.38, P= 0.0008), choking
(t (1,248) = 2.55, P= 0.01), tremulousness (t (1,248) = 3.03,
P= 0.003), dyspnea (t (1,247) = 2.39, P= 0.02) and diaphoresis
(t (1,248) = 2.05, P= 0.04). In the analyses limited to female
subjects, no significant difference was found on either the

Table 1. Demographic and clinical characteristics of unmedicated
subjects with remitted major depressive disorder (rMDD) and healthy
controls

Characteristic TD (n=55) CD (n=30)

HC rMDD HC rMDD

Sex no., f/m 18/9 19/9 12/1 16/1
Age, mean (s.d.), years 34.2

(11.2)
39.8
(12.7)

39.1
(9.6)

39.2 (10.8)

MADRS at study entry 0.6 (1.2) 1.4 (1.8) 0.4 (0.9) 1.6 (1.9)
HAMD at study entry 0.9 (1.1) 1.3 (1.4) 0.4 (0.8) 1.6 (1.1)
BAI at study entry 0.8 (1.2) 2.3 (2.6) 0.5 (1.1) 1.9 (1.7)

Abbreviations: BAI, Beck Anxiety Inventory; CD, catecholamine depletion;
f/m, female/male; HAMD, Hamilton Depression Scale; HC, healthy control;
MADRS, Montgomery–Åsberg Depression Rating Scale; NA, not applicable;
no., number; TD, tryptophan depletion.
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palpitations or the diaphoresis items, but the results on the other
items were similar to those found in the entire sample.

ROI analyis of PET data
No difference was found between TD- and CD-induced effects on
mean whole-brain glucose metabolism (P= 0.26). Figure 2 shows a
priori defined ROIs that showed a significant difference in the TD
compared with the CD effect on normalized regional metabolism.
In the OFC there was a decrease in metabolism induced by CD
compared with TD across groups (left: F (1,76) = 20.7, Po0.0001;
right: F (1,76) = 17.4, Po0.0001). In addition, glucose metabolism
in the left OFC in rMDD subjects was higher than in healthy
controls (F (1,76) = 7.30, P= 0.009). In the right PCC, there was a
significant depletion type-by-diagnosis interaction (F (1,74) = 6.99,
P= 0.01) that was attributable to a higher TD effect than CD effect
in rMDD and higher metabolism induced by TD in rMDD
compared with controls. The right medial thalamus showed
increased metabolism in rMDD compared with controls across
studies (F (1,68) = 8.58, P= 0.005). The CD-induced increase in
metabolism in the ventral striatum was higher than the increase
under TD (left: F (1,76) = 5.53, P= 0.02; right: F (1,76) = 10,
P= 0.002). There was a significant depletion type-by-diagnosis
interaction on the regional glucose metabolism of the left anterior
PFC (F (1,76) = 4.82, P= 0.03) that was attributable to a CD-induced
metabolic increase compared with a TD-induced metabolic
decrease in rMDD subjects. In the pregenual PFC, female subjects
showed a significant higher metabolism compared with male
subjects across studies and groups (left: F (1,76) = 5.8, P= 0.02;
right: F (1,76) = 6.61, P= 0.01). The right subgenual PFC showed a
higher metabolism across groups induced by TD (F (1,76) = 3.98,
Po0.05) and a significant depletion type-by-diagnosis interaction

(F (1,76) = 4.78, P= 0.03) that was attributable to a higher
metabolism induced by TD compared with CD in controls; in
addition, female subjects showed a higher metabolism in this
region compared with male subjects across studies and groups
(F (1,76) = 4.42, P= 0.04). The left ventrolateral PFC showed a
TD-induced increase in metabolism across groups compared with
a decrease in the CD study (F (1,76) = 5.26, P= 0.02). In the right
anterior insula, there was a significant depletion type-by-diagnosis
interaction (F (1,76) = 5.26, P= 0.02) that was attributable to a
decreased metabolism induced by CD in rMDD subjects compared
with controls and an increased metabolism induced by CD
compared with TD in controls. After applying Bonferroni correc-
tions, the effects in the right and left OFC and in the right ventral
striatum remained significant. After repeating the analyses in
female subjects alone, the depletion type-by-diagnosis interaction
in the left anterior PFC was reduced to a nonsignificant trend
(P= 0.13); the depletion type-by-diagnosis interaction in the right
anteromedial PFC (P= 0.08) and the right subgenual PFC (P= 0.06)
and the effect of depletion type on the left ventrolateral PFC
(P= 0.06) remained as trend effects. In females only, metabolism
was higher after CD compared with TD across groups in the right
anterior PFC (F (1,57) = 11.92, P= 0.001) and in the right
hippocampus (F (1,57) = 5.05, P= 0.03), and higher after TD
compared with CD across groups in the PCC (left: F (1,57) = 4.27,
P= 0.04; right: F (1,55) = 6.31, P= 0.02). All other results remained
essentially unchanged from the comparisons involving the entire
group with respect to statistical significance.

Voxelwise analysis of PET data
A depletion type-by-diagnosis interaction was evident in the right
lingual gyrus that survived applying correction for false discovery

Figure 1. Depression and anxiety items showing significant differences in the tryptophan depletion effect compared with the catecholamine
depletion effect in remitted major depressive disorder subjects are displayed with means and s.e. Items were sampled using the Hamilton
Scale of Depression and Montgomery–Åsberg Depression Rating Scale (a) and the Beck Anxiety Inventory (b). Significant at *Po0.05;
significant at **Po0.01.
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rate (peak: t (1,83) = 4.65, size = 34 voxel, Po0.05, Brodmann area
18). Post hoc tests showed this interaction was attributable to a
significant decrease in regional metabolism under CD in the rMDD
subjects (t (1,54) = 2.04, Po0.05) but not in the controls (P= 0.68),
and no change under TD in either the rMDD subjects (P= 0.25) or
the controls (P= 0.56).

Correlational analysis of depression and anxiety items with PET
data
Table 2 shows Spearman rank correlations (rho) of depression and
anxiety symptoms where significant differences between TD and
CD had been found, and the corresponding regional glucose
metabolism changes in the ROIs. As there were no significant
correlations of TD-induced changes in depression and anxiety
symptoms with corresponding changes in regional glucose
metabolism, all values correspond to findings that were induced
by CD. After applying Bonferroni corrections, only the correlation
between the apparent sadness and the left anterior PFC remained
significant. We also assessed how the relationship between
changes in specific depression and anxiety items and changes in
regional glucose metabolism were moderated by the depletion

type and thus the differences in neurotransmitter levels. Results
can be found in the Supplementary Information (Supplementary
Table S1). In addition, we compared the significant correlation
coefficients with the corresponding coefficients of the ROI in the
complementary hemisphere; results can be found in the
Supplementary Information (Supplementary Table S2).

DISCUSSION
We believe the current study is the first to compare the behavioral
and neural effects of TD versus CD in unmedicated rMDD subjects
and healthy controls. These challenges putatively reflected
depletions in serotoninergic and catecholaminergic neurotrans-
mission, respectively, which are of interest in patients with MDD
because currently available antidepressant treatments enhance
the function of one or both of these systems. Table 3 displays the
main findings of this study. Although brain activity was correlated
with distinct depressive symptoms following CD, there was no
direct relationship between specific symptoms and brain activity
following TD.
The behavioral and neural effects of CD and TD showed some

shared effects that are compatible with the literature.3,6,9–18

Figure 2. The mean percent change (with s.e.) in normalized regional glucose metabolism induced by tryptophan depletion (TD) and
catecholamine depletion (CD) in a priori defined regions of interest (ROIs) in subjects with remitted major depressive disorder (rMDD) and
healthy controls (HCs). Normalized values were obtained by dividing each mean value by the corresponding whole-brain glucose metabolism
value to factor out nonspecific global effects. Significant depletion effect at Po0.05: a; significant diagnosis effect at Po0.05: b; significant
depletion-by-diagnosis interaction at Po0.05: c; significant sex effect at Po0.05: d. OFC, orbitofrontal cortex; PCC, posterior cingulate cortex;
PFC, prefrontal cortex; rCMRglu, regional cerebral metabolic rates for glucose.
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However, the different study design of the current study has to be
considered as it was conducted in fully rMDD patients. Both
depletion methods induced depressive symptoms as measured
using the HAMD and MADRS, and both increased cerebral glucose
metabolism in the medial thalamus, the OFC and the ventral
striatum. These findings suggest that interactions between the
monoamine systems are involved in the pathogenesis of
depression. The medial thalamus has an important relay function
in connecting sensory and basal ganglia inputs with prefrontal
cortical structures. The abundant serotoninergic and dopaminer-
gic innervation of the thalamus has been shown to participate in
complex synergistic or opposing interactions, potentially con-
tributing to the similar impact of TD and CD on thalamic glucose
metabolism, and conceivably on several depressive symptoms. For
example, the thalamus receives serotonergic afferents from the
dorsal and median raphe nucleus,34,35 which participate in the
neural processing underlying anxiety-related behaviors36,37 and
the generation of various stages of the sleep–wake cycle.38 In
addition, the dopaminergic system modulates neural transmission
within the limbic–thalamo–cortical circuits that involve regions of
the medial and orbital prefrontal cortex, ventral striatum and
amygdala, which modulate reward-related learning and
motivation.39

Dysfunction of this pathway may underlie a range of depressive
symptoms including lack of motivation, including problems
related to work and activities. For example, the OFC contains
dopaminergic terminals and receptors40 and blockade of these
receptors reduces the break point of rats responding on a
progressive ratio schedule of reinforcement, a classic test of
incentive motivation.41 In addition, dopamine depletion in the
OFC impaired responding for delayed reward.42 Moreover, the
OFC also receives serotonergic innervation from the dorsal and
median raphe nuclei, and the reciprocal innervation from the OFC
enables the OFC to regulate not only its own serotonin input but
the serotonin input to the rest of the forebrain, which has been
associated with the capability of animals to adapt to changing
reward contingencies.43 Notably, depletion of serotonin has been
shown to impair this flexibility of the reward system.43 In addition,
it has been suggested that serotonin and dopamine modulate
different functions in the OFC with orbitofrontal serotonin
preventing competing, task-irrelevant stimuli from biasing task-
based responding, processes that may hold relevance for the
attentional biases toward negative stimuli extant in MDD.44,45 Our
results further appear in line with the clinical observation that
motivational deficits and the inability to concentrate are closely
connected.46

TD more specifically induced symptoms of sadness and
depressed mood. Serotonin has a well-known function in the
emotional inhibition and regulation, and acute TD has been
shown to induce a negative attentional and mnemonic bias both
in rMDD subjects and in healthy controls.47–49 In the right PCC, TD
compared with CD induced a metabolic increase compared with a
decrease in rMDD and a significant difference between rMDD and
controls in TD only. The PCC has a specific role in the regulation of
pain, which has been related theoretically to negative effect.
Consequently, serotonin deficiency may both increase negative
emotion and reduce emotional control. In addition, given that the
PCC is a critical node in serotonin neurotransmission50 and is also
implicated in self-referential processes as a hub of the default
mode network, this study adds to the evidence that serotonin
deficiency has an important role in default mode network
overactivity in depression.51 Nevertheless, the correlation between
TD-induced changes in regional metabolism and TD-induced
depressive symptoms was not significant, suggesting that the
relationship between serotonin, brain metabolism and sad/
depressed mood is complex.
CD specifically induced symptoms of reduced activity, impaired

concentration and lassitude and specifically increased brainTa
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metabolism in specific PFC regions and the ventral striatum.
Dopamine depletion in monkeys leads to cognitive and attention
deficits in the primate PFC,52,53 potentially resembling the
concentration problems encountered in some depressed humans.
This is supported by our study that found that the CD-induced
increase in brain metabolism in the anterior PFC was correlated
with concentration difficulties induced by CD. The findings of
increased lassitude and of work and activity problems conceivably
support hypotheses54,55 that a dopamine deficit underlies
dysfunctional reward processing, which leads to amotivation-
related symptoms in MDD. As shown in Table 2, the CD-induced
increase in brain metabolism in the striatum was directly
associated with lassitude, and the CD-induced increase in brain
metabolism in the ACC was associated with self-reported sadness.
This argues for a relatively direct mechanistic relationship
between lack of dopamine and/or norepinephrine in the
pathogenesis of distinct depressive symptoms.
In the left anterior PFC, the glucose metabolism increased under

CD but decreased under TD. The anterior PFC has been linked to
the processing of affective salience of sensory stimuli in previous
studies,56,57 which may relate to reduced activity and lassitude
depressive symptoms. However, this effect was weakened to a
trend level when repeating the analysis in female subjects only.
One of the most consistent functional imaging findings in MDD

is increased metabolism in the subgenual and ventrolateral
PFC.58–60 We found metabolic increases in these brain regions to
be more pronounced under TD compared with CD, suggesting
that serotonin deficiency is more important in the pathogenesis of
the hyperactivity of these brain regions that are both part of the
extended visceromotor networks, which participates in regulating
the neuroendocrine, autonomic and experiential aspects of
emotion.24

We found some interhemispheric differences in our correla-
tional analysis of CD-induced changes in mood and neurotrans-
mission, with the most prominent being the positive correlation
between changes in depressed mood and changes in regional
glucose metabolism in the left DLPFC and a corresponding
negative correlation in the right DLPFC. Interhemispheric differ-
ences in the DLPFC have been reported in several studies
measuring resting state25,61 and have been the neurobiological
basis for therapeutic brain stimulation paradigms with transcranial
magnetic stimulation62 and transcranial direct current
stimulation.63 Specifically, hypoactivity in the left DLPFC has been
linked to negative emotional judgment and hyperactivity in the
right DLPFC to attentional modulation.64 Our findings suggest that
interhemispheric differences in the DLPFC in depression are
related to a deficit in catecholaminergic neurotransmission.
Unexpectedly, the voxelwise analysis identified reduced glucose

metabolism under CD in the right lingual gyrus in the
unmedicated rMDD sample. Reductions in this region have been

previously reported in a study in young MDD adults65 and
abnormal focal magnetic low-frequency activity has been found in
untreated patients with MDD.66 The current study adds that
abnormality in this brain region is associated with reduced
catecholaminergic neurotransmission.
Interestingly, no difference was found in the current study

between TD and CD on global levels of anxiety, as measured with
the BAI. We found stronger effects of CD compared with TD on
several anxiety items including greater feelings of flushing,
palpitations, fear, choking, tremulousness, dyspnea and diaphor-
esis. A possible explanation for this observation is that somatic
anxiety symptoms in response to threat and stress are modulated
more potently by central catecholaminergic pathways than via
central serotonergic pathways.67

The current study had several strengths that are noteworthy.
First, it compared two experiments that took place at the same
scanning site and used the same PET imaging procedure for both
the TD and the CD studies. Second, the fact that a sample of
subjects with rMDD off medication was assessed allowed us to
investigate behavioral and neural effects of serotonin- and
catecholamine-related pathways unbiased by medication. Further,
we could interpret the findings as risk factors for a depressive
relapse. Finally, in contrast to our findings, previous studies
involving SSRI and norepinephrine reuptake inhibitor pharma-
cotherapy of MDD patients found surprisingly small differences
between serotoninergic and catecholaminergic agents on depres-
sive symptoms.68 Possible reasons for this discrepancy could be
the insufficient specificity of chronic SSRI and norepinephrine
reuptake inhibitor administration, as the 6–8-week duration of
therapeutic trials allows for adaptive changes to occur in other
neurotransmitter systems and for a placebo effects to increase,
which both may blur differences across challenges.69 The shorter
time frame needed for comparing the effects of acute TD versus
acute CD thus may offer greater sensitivity than clinical trials using
monoaminergic antidepressant drugs, because the acute nature of
both depletion methods ensures a higher specificity for serotonin
and catecholamine systems, respectively, along with relatively
smaller placebo effects. In future studies, refining our approach
using a placebo-controlled, double-blind, crossover design would
enable within-subject comparisons with increased power to
detect differences between depletion paradigms.
The current study had several limitations that merit comment.

The study sample was relatively small and contained a majority of
female subjects. We took this into account by including a
regressor for gender in each analysis and by repeating all analyses
with female subjects only. In addition, PET imaging of glucose
metabolism did not specifically assess central serotonin or
catecholamine concentrations. Instead, we assessed the central
effect of TD indirectly by measuring plasma total and free
tryptophan levels and the central effect of CD by assessing serum

Table 3. Summary of the main findings of the study, categorized by common and differential effects. Effects on behavior relate to subjects with
remitted depression only

Common effects Differential effects

TD4CD CD4TD

Behavior Global HAMD
Global MADRS
Global BAI

Depressed mood
Sadness

Work and activities
Concentration difficulties
Lassitude

Cerebral glucose metabolism Whole brain
Ventral striatum
Medial thalamus, right
OFC, left

Pregenual PFC, right
Ventrolateral PFC, left
PCC, right
OFC

Anterior PFC, left
Subgenual PFC, right

Abbreviations: BAI, Beck Anxiety Inventory; CD, catecholamine depletion; HAMD, Hamilton Depression Scale; MADRS, Montgomery–Åsberg Depression Rating
Scale; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PFC, prefrontal cortex; TD, tryptophan depletion.
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prolactin levels, which is the standard method to assess the effect
of central CD.28,70 A preferable design would have been a within-
subjects design, whereby all participants underwent both deple-
tion procedures. However, the two experiments took place at the
same scanning site and used the same PET imaging procedure for
both the TD and the CD studies, increasing the comparability of
the two studies. In addition, an analysis of between-subject
variance between TD and CD during the placebo condition did not
reveal any significant differences. Finally, a noninvasive method
for comparing the depth of CD versus TD within the brain is not
available. Given the similar amount of depressive symptoms
induced by both methods and the similar effect of both methods
on metabolism in at least some brain structures, we assumed that
TD and CD, as used in our study, were comparable regarding the
hypotheses we aimed to test.
Taken together, these data suggest that serotonin and

catecholamines have both common and distinct roles in the
neurobiology of depressive symptoms. This study further suggests
that the development of psychopathological and neuronal
markers predicting response to selective monoamine inhibition
may be feasible. Finally, this study provides a rationale for the use
of antidepressants with primary pharmacological actions involving
both serotonergic and catecholaminergic mechanisms in some
patients.71
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