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Abstract: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a dismal prognosis
and a high rate of recurrence and mortality. Therapeutic options are limited. In some cases, the
distinction of ACCs from benign adrenal neoplasms with the existing widely available pathological
and histopathological tools is difficult. Thus, new biomarkers have been tested. We conducted a
review of the recent literature on the advances of the diagnostic, prognostic and therapeutic role
of miRNAs on ACC patients. More than 10 miRNAs validated by multiple studies were found to
present a diagnostic and prognostic role for ACC patients, from which miR-483-5p and miR-195 were
the most frequently met biomarkers. In particular, upregulation of miR-483-5p and downregulation
of miR-195 were the most commonly validated molecular alterations. Unfortunately, data on the
therapeutic role of miRNA are still scarce and limited mainly at the experimental level. Thus, the role
of miRNA regulation in ACC remains an area of active research.

Keywords: microRNAs; adrenocortical carcinoma; biomarkers; diagnosis; prognosis; therapy

1. Introduction

Adrenocortical tumors are common and are detected in 5–7% of the general popula-
tion [1] and up to 10% in the elderly [2]. Adrenocortical carcinoma (ACC) is an uncommon
endocrine malignancy with an annual incidence of 1–2 cases per million [3] and with an
extremely dismal prognosis with a 5-year survival rate of less than 35% [4]. Currently, the
only curative therapy for localized ACC is surgery, although local recurrence is common,
ranging from 19 to 34% [5]. Adjuvant treatments, including chemotherapy and radiother-
apy, have shown limited therapeutic effectiveness [6]. The most widely used classification
system (tumor, lymph node and metastasis (TNM)) seems to be inadequate for predicting
patient outcome and survival [7].

MicroRNAs (miRNAs) are small noncoding RNAs of 21–25 nucleotides that regulate
genes expression in a sequence-specific manner, inhibiting their expression by targeting
the 3′-untranslated region (3′-UTR) of target messenger RNA (mRNA) [8]. MiRNAs are
considered epigenetic regulators, involved mainly in the post-transcriptional regulation
of gene expression [8], and they are found not only in tissues but also in body fluids [9].
More than 50% of protein-coding human genes are predicted to be modulated by miRNAs.
Deregulation of miRNAs has been implicated in the pathogenesis of many human diseases,
particularly cancer. The link between miRNAs and cancer was brought about by the
seminal observation of Croce’s group, who reported that miR-15 and miR-16, two miRNAs

Biomedicines 2021, 9, 1501. https://doi.org/10.3390/biomedicines9111501 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-5606-5303
https://orcid.org/0000-0003-0906-3617
https://doi.org/10.3390/biomedicines9111501
https://doi.org/10.3390/biomedicines9111501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9111501
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9111501?type=check_update&version=1


Biomedicines 2021, 9, 1501 2 of 21

located in chromosome 13 (13q14), are frequently deleted in chronic lymphocytic leukemia
and function as tumor suppressors [10]. Since then, miRNAs have been studied more
intensively in the field of cancer, and growing evidence suggests that altered miRNA
expression is involved in the pathogenesis of various types of cancers.

Recent studies have identified miRNAs that have a functional role in adrenal tumorige-
nesis, including benign and malignant adrenocortical tumors and pheochromocytomas [11].
The role of miRNA deregulation in ACC was first suggested in 2007, when it was discov-
ered that a long noncoding RNA H19 gene transcript [12] was detected in the 11p15 locus,
where IGF2 is also located and associated with Beckwith–Wiedemann syndrome, which
leads to the development of pediatric ACC [13]. Since then, a number of studies have
been performed comparing miRNA expression in ACCs with normal adrenal cortex and
adrenocortical adenomas (ACAs) [14]. Given the biological heterogeneity of ACCs and the
limitations of the currently used treatments, a better understanding of miRNAs function
may serve as a diagnostic, prognostic and potentially therapeutic tool in the management
of these patients. In this systematic review, we present a critical summary of the recent
observations describing miRNA dysfunction, focusing on their prognostic role in ACCs.

2. Methods

This systematic review was carried out according to the Preferred Reporting Items for
Reviews and Meta-Analyses (PRISMA) statement.

2.1. Data Sources and Search Strategy

To identify studies and determine their eligibility, a systematic search was conducted
in the PubMed and Cochrane Databases from 1 April to 15 April, 2021. The references of
review articles and of included original publications were also screened for potentially
relevant studies. Search terms included the following: “miRNAs”, “adrenal tumours”,
“adrenal neoplasms”, “adrenocortical carcinoma”, “molecular biomarkers” and “epige-
netics”. The above keywords were also combined with the Boolean operators AND and
OR.

2.2. Eligibility Criteria for Articles of Inclusion

A total of 1033 articles were retrieved from the search of the databases. After removing
duplicates and non-English literature, 887 articles remained. Two of the authors (C.M
and A.A) independently examined all potentially eligible titles and abstracts, from which
735 articles were excluded to identify 152 articles of interest. Studies on children (we
included only 66 adults >19 years of age), as well as studies including other adrenal
diseases or neoplasms (pheochromocytoma, benign adrenal neoplasms or hyperplasia
(n = 60)) than ACC and nonoriginal articles, were excluded. Articles assessing molecular
biomarkers other than miRNAs were also removed. Full manuscripts were obtained as
necessary to finalize eligibility (studies that were available only as abstracts were excluded).
The articles were limited to those that presented information on the diagnostic, prognostic
and therapeutic role of miRNAs in adrenocortical carcinoma. Twenty-nine studies qualified
for inclusion in our study (Figure 1).
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Figure 1. PRISMA flow diagram.

2.3. Data Collection Process

The full texts were carefully reviewed by the same reviewers who applied inclusion
criteria. We collected the following data if available: the year of publication and name of
the first author, the number of study participants, the pathologies, the study inclusion and
exclusion criteria, the characteristics of the study participants, the type of samples that
were used (tissue specimens or blood samples), the methods of miRNA isolation and the
statistically significant test results.

3. Results
3.1. The Diagnostic Role of miRNAs

Twenty-two studies investigated the role of miRNAs in the diagnosis and prognosis of
ACCs (Table 1). Fourteen studies [15–28] evaluated miRNAs’ expression in adrenal tissues
frozen or paraben embedded, six studies in blood samples [29–34] and two in both tissue
and blood samples of patients diagnosed with adrenocortical tumors [35,36].
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Table 1. Comparison of miRNAs’ expression in adrenocortical carcinomas (ACCs), adrenocortical adenomas (ACAs) and/or normal adrenal cortices (NACs).

Study Cohort (n) Method of
miRNA Isolation

Sample

Dysregulated miRNAs p-Value
(for All

Comparisons)
ACC vs. ACA ACC vs. NAC

Upregulation Downregulation Upregulation Downregulation

Soon et al.,
2009 [15]

NAC(6), ACA(27),
ACC(21)/
VC:ACA (9), ACC (10)

Microarray
VC: RT-q-PCR FFT

Microarray:
miR-339-5p,
miR-130b,
miR-483-5p,
miR-106b,
miR-148b, miR-93,
miR-135a,
miR-320a,
miR-503,
miR-450a,
miR-542-3p,
miR-143,
miR-181b,
miR-542-5p

Microarray:
miR-335,
miR-195,
miR-557,
miR-708,
miR-29c,
miR-617,
miR-647,
let-7c,
miR-202,
-VC: miR-195,
miR-335, miR-7
-Both: miR-195,
miR-335

nd VC: miR-7 (0.035)

<0.0001 (for
comparisons with
microarray
analysis)
<0.003 (for
comparisons via
RT-PCR)

Tombol et al.,
2009 [16]

NAC(10)
ACA(19),
ACC(7)

TLDA FFT miR-184, miR-210,
miR-503

miR-214, miR-511,
miR-375 miR-184, miR-503

miR-214,
miR-511,
miR-375

<0.05

Patterson et al.,
2010 [17]

NAC(21),
ACA(26),
ACC(10)/
VC:ACA(35), NAC(21),
ACC(31)

Microarray
VC: RT-PCR FFT

Microarray:
5 miRNAs
upregulated
-VC: miR-483-5p
-Both: miR-483-5p

Microarray:
18 miRNAs
downregulated
-VC: miR-100,
miR-125b,
miR-195
-Both: miR-100,
miR-125b,
miR-195

nd nd

<0.01 (for
comparisons via
microarray
analysis)
<0.05 (for
comparisons via
RT-PCR)
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Table 1. Cont.

Study Cohort (n) Method of
miRNA Isolation

Sample

Dysregulated miRNAs p-Value
(for All

Comparisons)
ACC vs. ACA ACC vs. NAC

Upregulation Downregulation Upregulation Downregulation

Ozata et al.,
2011 [19]

NAC(4), ACA(26),
ACC(22)/
VC: NAC(10), ACA(43),
ACC(25)

Microarray
VC: RT-qPCR FFT

-Microarray:
55 miRNAs
dysregulated
-VC: miR-483-3,
miR-483-5,
miR-210, miR-21
-Both: miR-483-3p,
miR-483-5p,
miR-210, miR-21

Microarray:
55 miRNAs
dysregulated
-VC: miR-1974,
miR-195, miR-497
-Both: miR-1974,
miR-195, miR-497

Microarray:
42 miRNAs
dysregulated
-VC: miR-483-3,
miR-483-5,
miR-210,
miR-21
-Both: miR-483-3,
miR-483-5, miR-210,
miR-21

Microarray:
42 miRNAs
dysregulated
-VC: miR-1974
(miR-195,
miR-497,
-Both: miR-1974,
miR-195, miR-497

<0.05 (for
comparisons via
microarray
analysis)
<0.03 (for
comparisons via
RT-PCR)

Schmitz et al.,
2011 [18]

NAC(4),
ACA(9),
ACC(7)/
VC: ACT(15)

Microarray
VC: RT-qPCR FFPE

Microarray: 89
miRNAs
upregulated (vs.
Conn syndrome),
35 miRNAs
upregulated (vs.
Cushing
syndrome)

Microarray:
38 miRNAs
downregulated
(vs. Conn
syndrome),
159 miRNAs
downregulated
(vs. Cushing
syndrome)
-VC: miR-335,
miR-675,
miR-139-3p
-Both: miR-335,
miR-675,
miR-139-3p

Microarray:
62 miRNAs
upregulated

Microarray:74
miRNAs
downregulated
-VC: miR-139-3p,
miR-335, miR-675
-Both: miR-335,
miR-675,
miR-139-3p

<0.05 (for
comparisons via
microarray
analysis)
<0.001 (for
comparisons via
RT-PCR)
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Table 1. Cont.

Study Cohort (n) Method of
miRNA Isolation

Sample

Dysregulated miRNAs p-Value
(for All

Comparisons)
ACC vs. ACA ACC vs. NAC

Upregulation Downregulation Upregulation Downregulation

Chabre et al.,
2013 [35]

ACA(6),
ACC(12)/
VC: NAC(3), ACA(10),
ACC(18)

Microarray
VC: RT-qPCR FFT

Microarray:
miR-503, miR-514,
miR-509-3p,
miR-93, miR-148B,
miR-508-3p,
miR-513A-5p
-VC: miR-483-5p

Microarray:
miR-335, miR-195,
miR-497,
miR-199a-3p,
miR-199a-5p
-VC: miR-335,
miR-195
-Both: miR-335,
miR-195

nd nd <0.05

Chabre et al.,
2013 [35]

NAC(19),
ACA(14),
ACC(23)

RT-qPCR Serum miR-139-5p miR-195, miR-335,
miR-376a nd miR-195, miR-335,

miR-376a <0.05

Patel et al.,
2013 [30]

ACA(22),
ACC(17) RT-qPCR Serum miR-34a

miR-483-5p - nd nd <0.011

Szabo et al.,
2013 [29]

ACA (12), ACC (13)/
VC: ACA(4), ACC(4)

Microarray
VC: RT-qPCR Serum

VC: miR-100,
miR-181b,
miR-184, miR-210,
miR-483-5p

Microarray:
miR-192, miR-197 nd nd <0.05

Assie et al.,
2014 [20] NAC(3), ACC(45) RNA sequencing FFT Nd Nd

miR-483-3,
miR-483-5p, miR-210,
miR-503,
miR-184,
miR-139-5P,
miR-376a

miR-195, miR-335,
miR-214, miR-497 Nd

Duregon et al.,
2014 [21]

ACA(47),
ACC(51) RT-qPCR FFT

miR-483-3p,
miR-483-5p,
miR-210

miR-195 nd nd <0.0001

Wang et al.,
2014 [22]

ACA(25),
ACC(25)

In situ
hybridization FFPE miR-483-3p - nd nd <0.001
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Table 1. Cont.

Study Cohort (n) Method of
miRNA Isolation

Sample

Dysregulated miRNAs p-Value
(for All

Comparisons)
ACC vs. ACA ACC vs. NAC

Upregulation Downregulation Upregulation Downregulation

Feinmesser et al.,
2015 [23]

ACA(25)
ACC(8)/
VC: ACA(4), ACC(11)

Microarray
VC: RT-qPCR FFPE

Microarray: Over
a dozen miRNAs
dysregulated
-VC: miR-503
-Both: miR-503

Microarray: Over
a dozen miRNAs
dysregulated
-VC: miR-34a, and
miR-497
(combination)
miR-335,
miR-195
-Both: miR-34a
and miR-497
(combination)
miR-335
miR-195

nd nd <0.05

Gara et al.,
2015 [24]

NAC(21),
ACA(26),
ACC(10)

Microarray FFT

miR-9, miR-25,
miR-124, miR-183,
miR-185,
miR-206

-
miR-9, miR-25,
miR-124, miR-183,
miR-185, miR-206

- <0.05

Wu et al., 2015 [25] ACA(21)
ACC(11) RT-qPCR Tissue - miR-205 nd nd 0.008

Zheng et al.,
2016 [26]

NAC(120)
ACC(79) RNA sequencing FFT Nd Nd

miR-10-5p, miR-483-5,
miR-22-3p,
miR-508-3p,
miR-509-5p,
miR-340,
miR-146a,
miR-21-3p,
miR-21-5p,
miR-509-3p,

- <0.05
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Table 1. Cont.

Study Cohort (n) Method of
miRNA Isolation

Sample

Dysregulated miRNAs p-Value
(for All

Comparisons)
ACC vs. ACA ACC vs. NAC

Upregulation Downregulation Upregulation Downregulation

Koperski et al.,
2017 [27]

NAC(8)
ACA(8)
ACC(7)/
VC: NAC(10), ACA(10),
ACC(8)

RNA sequencing
VC: RT-PCR FFPE

RNA sequencing:
miR-503-5p,
miR-450a-5p,
miR-542-5p,
miR-483-3p,
miR-542-3p,
miR-450b-5p,
miR-210,
miR-483-5p,
miR-421,
miR-424-3p,
miR-424-5p,
miR-598,
miR-148b-3p,
miR-184
miR-128
-VC: miR-483-3p
-Both: miR-483-3p

nd-

RNA sequencing:
miR-503-5p,
miR-450a-5p,
miR-542-5p,
miR-483-3p,
miR-542-3p,
miR-450b-5p,
miR-210,
miR-483-5p,
miR-421,
miR-424-3p,
miR-424-5p,
miR-598,
miR-148b-3p,
miR-184,
miR-128

- <0.05

Koduru et al.,
2017 [28]

ACA(30)
ACC(45) RNA sequencing Tissue

miR-483-3p,
miR-483-5p,
miR-153,
miR-135,
miR-514,
miR-210

miR-497,
miR-195,
miR-335,
miR-214,
miR-199

nd nd <9*10−6

Perge et al.,
2017 [32]

ACA(6), ACC(6)/
VC: ACA(18), ACC(16)

Microarray
VC: RT-PCR Plasma

Microarray:
miR-101,
miR-483-5p
-VC: miR-101,
miR-483-5p
-Both: miR-101,
miR-483-5p

- nd nd

<0.05 (for
comparisons via
microarray
analysis)
<0.0052 (for
comparisons via
RT-PCR)
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Table 1. Cont.

Study Cohort (n) Method of
miRNA Isolation

Sample

Dysregulated miRNAs p-Value
(for All

Comparisons)
ACC vs. ACA ACC vs. NAC

Upregulation Downregulation Upregulation Downregulation

Salvianti et al.,
2017 [31]

ACA(13), Stage 3
4

ACC(27),
NAC(10)

RT-PCR Serum miR-483 - miR-483 - <0.018

Decmann et al.,
2018 [36]

ACA(10),
ACC(10)/
VC: ACA(14), ACC(12)

Next-generation
sequencing
VC: RT-PCR

FFPE

Microarray:
miR-184
miR-483-5p
miR-483-3p
miR-183-5p
-VC: miR-184,
miR-483-5p,
miR-183-5p
-Both: miR-184,
miR-483-5p,
miR-183-5p

- - -

<0.001 (for
comparisons via
microarray
analysis)
<0.01 (for
comparisons via
RT-PCR)

Decmann et al.,
2018 [36]

ACA(11),
ACC(11) RT-PCR Plasma miR-483-5p,

miR-483-3p - - - <0.05

Perge et al.,
2018 [33]

ACA(26): NFA(13),
CPA(13),
ACC(9)

RT-PCR Plasma

miR-22-3p (related
to NFA,)
miR-27a-3p
(related to NFA),
miR-320b (related
to CPA and NFA)
miR-210-3p
(related to NFA)

- nd nd <0.05

Decmann et al.,
2019 [34]

ACA(23)
ACC(23) RT-PCR Serum miR-483-5p - Nd nd <0.0001

miRNAs found dysregulated in more than one study are highlighted in bold. Abbreviations: ACC, adrenocortical carcinomas; ACA, adrenocortical adenomas; NAC, normal adrenal cortices; ACT, adrenocortical
tumors; NFA, nonfunctioning adenomas; CPA, cortisol-producing adenomas; TLDA, TaqMan low-density array; VC, validation cohort; FFT, fresh frozen tissue; FFPE: formalin-fixed paraffin-embedded; nd,
no data.
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MiR-483-5p is one of the most investigated miRNAs in ACCs, as it was found to be sta-
tistically significantly upregulated in ACCs compared with ACAs and/or healthy controls
in 14 studies; 9 of them [15,17,19–21,26–28,35] included adrenal tissue samples, whereas the
remaining 4 studies included blood samples [29,30,32,34] and the last both tissue and blood
samples [36]. Furthermore, overexpression of miR-210 was also reported in ACCs com-
pared with ACAs and/or healthy controls in seven studies; six in tissue [16,19–21,27,28]
and one in blood samples [29]. MiR-483-3p and miR-503 were also overexpressed in
ACC tissue samples in six [19–22,27,28] and four [15,16,20,23] studies accordingly. MiR-
483-3p was also found overexpressed in ACC plasma samples compared with ACAs in
one study [36]. Furthermore, miR-184 was found upregulated in patients with ACC in
five studies, four in tissue [16,20,27,36] and one in blood samples [29]. MiR-542-3p and
miR-542-5p were also found upregulated in two studies in ACC tissues [15,27]. Finally,
miR-139-5p and miR-181b were found upregulated in both ACC tissues and blood sample
studies [15,20,29,35].

The most common downregulated miRNAs in ACCs compared with ACAs and/or
normal adrenal tissue samples included the following: the downregulation of miR-195
was validated in eight studies, all at the tissue level [15,17,19–21,23,28], except one study
that included both tissue and blood samples [35]. The downregulation of miR-335 was
validated in six studies; six in tissue samples [15,18,20,23,28,35], and the last also included
blood samples [35]. Finally, miR-497 and miR-214 were also found downregulated in tissue
samples in five [19,20,23,28,35] and in three [16,20,28] studies, respectively.

It is noteworthy that, in two studies, miRNA expression was studied through microar-
ray analysis solely, in eight studies through RT-PCR, and in eight studies, results were
validated by both microarray and RT-PCR analyses. However, in two studies, there were
differences between the results of microarray analysis and qRT-PCR. In particular, in the
study of Soon et al., the expression of miR-7 was found to be significantly lower in ACCs
compared with ACAs on qRT-PCR, a result that had not been found in microarray analy-
sis [15]. Additionally, in the study of Chabre et al., while microarray analysis indicated that
miR-483-5p expression was not significantly different between ACCs and ACAs, RT-qPCR
analyses revealed marked upregulation of miR-483-5p in ACCs compared with the ACAs
of the validation cohort [35].

Tissue- and blood-circulating miRNAs levels were not always concordant. In the
study of Patterson et al. [17], miR-100 was found downregulated in ACC tissue samples,
while in the study of Szabó et al. [29], miR-100 was upregulated in the blood of ACC
patients compared to patients with ACAs. A lower expression of miR-34a in ACC tumor
samples compared to ACA was also observed [23], while Patel et al. found a higher
expression of circulating miR-34a in the blood of ACC patients compared to patients with
ACA [30]. Moreover, in the study of Chabre et al., an inverse correlation between miRNA
expression in tumor samples and circulating blood levels was observed [35]. In particular,
although miR-376a levels were found upregulated in ACC tissue samples and mainly in
patients with aggressive ACC, its levels were significantly decreased in blood samples of
the same patients compared with controls or ACA patients. In the study of Decmann et al.,
differences in the expression between tissue and blood miRNA levels were observed [36].

Finally, in another study, circulating miR-483-5p levels were found significantly over-
expressed in the blood of ACC compared to ACA patients, whereas no significant difference
was observed in their urinary samples [34].

3.2. The Prognostic Role of miRNAs

Data from 10 studies, 7 in tissues [15,19–21,23,37,38], 2 in blood samples [31,39] and the
last in both tissue and blood samples [35], investigating the role of miRNAs as prognostic
biomarkers in patients with ACC, were analyzed (Table 2).
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Table 2. miRNAs as prognostic biomarkers in ACCs.

Study Cohort (n) Methodology Sample miRNAs Outcome Studied p-Value

Soon et al.,
2009 [15] 18 Microarray Tissue ↑miR-483-5p, ↓miR-195 OS

(log-rank test)
0.036
0.035

Ozata et al.,
2011 [19] 22 qRT-PCR Tissue ↑miR-503, ↑miR-1202, ↑miR-1275 OS

(log-rank test)

0.006
0.005
0.042

Chabre et al.,
2013 [35] 21 qRT-PCR Tissue ↑miR-139-5p, ↑miR-376a, ↑miR-376b, ↑miR-376c Local and distant recurrences

<0.0001
<0.0001
<0.05
<0.05

Chabre et al.,
2013 [35] 21 qRT-PCR Serum ↑miR-483-5p, ↓miR-195 RFS and OS

(log-rank test)
0.0004/0.0005
0.0014/0.0086

Assie et al.,
2014 [20] 45 RNA

sequencing Tissue ↑Mi3 miRNA cluster ↓miR-508-3p, ↓miR-509-3p, ↓
miR-513-3p, ↓miR-514 OS nd

Duregon et al.,
2014 [21] 51 qRT- PCR Tissue ↑miR-210 OS

(log-rank test/multivariate Cox model *) 0.046/0.2195

Faria et al.,
2014 [37] 28 qRT-PCR Tissue ↑miR-9 RFS and OS

(Log-rank test) 0.01/0.012

Feinmessser
et al., 2015 [23] 17 qRT-PCR Tissue

↑miR-483-3p, ↑miR-483-5p, ↑miR-10b, ↑miR-513-5p, ↑
miR-487a
↑miR-503, ↑miR-210, ↓ miR-497, ↓ miR-34a, ↓ miR-214, ↓
miR-99a, ↓miR-125b, ↓miR-195, ↓miR-30c, ↓miR-15a, ↓
miR-335, ↓miR-345, ↓miR-708, ↓miR-29c

Distant metastases and disease progression
(Spearman correlation) <0.05

Salvianti et al.,
2017 [31] 21 qRT-PCR Serum ↑miR-483-5p RFS and OS

(Log-rank test/multivariate Cox model **)
RFS: 0.027/0.026
OS: 0.001/ns

Agosta et al.,
2018 [38] 20 qRT-PCR Tissue ↑miR-139-5p OS

(log-rank test) <0.0001

Oreglia et al.,
2020 [39] 26 qRT-PCR Serum ↑miR-483-5p RFS and OS

(log-rank test/multivariate Cox model 6=)
RFS: 0.0005/0.011
OS: 0.007/0.150

Upwards arrows (↑) indicate upregulation and downwards arrows (↓) indicate downregulation of miRNAs. miRNAs found dysregulated in more than one study are highlighted in bold. * Multivariate model:
myxoid or classical histotype, mitotic count ≥ 11, Ki-67 proliferation index ≥ 20, SF-1 protein expression and miR-210. ** Multivariate model: age, sex and miR483-5p. 6= Multivariate model: tumor size, Ki67,
ENSAT stage and miR-483-5p. Abbreviations: aACC, aggressive adrenocortical carcinoma; naACC, nonaggressive adrenocortical carcinoma; nd, no data; OS, overall survival; RFS, recurrence-free survival;
qRT-PCR, quantitative real-time -PCR.
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These miRNAs used as diagnostic markers to discriminate ACCs from ACAs seem
to also differentiate aggressive from indolent ACCs. The upregulation of miR-483-5p in
two studies in tissue [15,23] and in three in blood samples [31,35,39] has been associated
with either short overall survival (OS), recurrence-free survival or disease progression.
One study showed that high circulating levels of blood miR-483-5p postoperatively was
associated with more than a four-fold increased risk of recurrence and was predictive of
poor OS for ACC patients [39].

Moreover, overexpression of miR-503, miR-210 and miR-139-5p in the adrenal
tissue of patients with ACC was associated with more aggressive behavior of the
disease [19,21,23,35,38]. In particular, high miR-210 levels were associated with tissue
necrosis and a high Ki-67 proliferation index [21]. The low expression of miR-195 was
also observed in patients with aggressive ACCs in three studies (two in tissues, one in
blood) [15,23,35]. MiR-139-5p and miR-376a levels were significantly upregulated in aggres-
sive ACCs compared with non-aggressive ACC tumors samples, although no differences
were observed in blood [35].

Eight out of ten studies [15,19,21,31,35,37–39] used Kaplan–Meier curves and the log-
rank test to associate the expression of miRNAs with prognosis, while three of
them [21,31,39] performed univariate and multivariate Cox proportional hazard anal-
ysis. One study [23] performed only Spearman correlation to analyze the correlation of
miRNAs with distant metastases and disease progression. Finally, Assie et al. [20] did not
select single miRNAs to assess their prognostic role in ACCs but identified miRNA clusters
correlated with groups of ACC patients with different prognoses.

3.3. The Therapeutic Role of miRNAs

The therapeutic potential of miRNAs was tested in two studies (Table 3). In the
first study [40], it was shown that miR-7 replacement in vivo inhibits ACC xenograft
growth in models derived from both the adrenocortical cell line (H295R) and primary ACC
cells. The second and more recent study attempted to identify differentially expressed
miRNAs between ACC patients responsive to adjuvant therapy (mitotane, chemotherapy
and radiotherapy) and ACC patients resistant to adjuvant therapy with progressive disease
on adjuvant treatment. MiR-431 was the most downregulated miRNA in the resistant
group when compared with the sensitive group. In vitro restoration of miR-431 enhanced
the cytotoxic effects of doxorubicin and mitotane [41].

Table 3. MiRNA-based ACC treatments.

Study Pathology miRNA-Based
Treatment

Functional Role of
miRNAs in ACC Type of Study Outcome

Glover et al.,
2015 [40]

Metastatic
ACC

Replacement
therapy: 10 doses

of miR-7

Cell proliferation
reduction by G1 cell

cycle arrest induction

In vivo:
Patient-derived

xenograft in mice
Tumor reduction

Kwok et al.,
2019 [41]

Metastatic
ACC

Replacement
therapy: miR-431

Cell death, EMT
reversal

In vitro: ACC H295R
cells and primary-
derived ACC cells

Increased ACC cell
response to doxorubicin

and mitotane

Abbreviations: EMT, epithelial–mesenchymal transition; ACC, adrenocortical carcinoma.

Several miRNAs were also validated as markers of treatment efficacy (Table 4). Circu-
lating postoperative miR-105 blood levels were increased, whereas miR-483-5p decreased
compared to preoperative levels in a small series of patients [35]. Postsurgical miR483
and miR-483-5p blood levels were also downregulated compared to presurgery levels in
27 ACC patients, although this decrease did not reach statistical significance [31]. Alter-
ation in the expression of circulating miR-483-5p, miR-210, miR-181b and miR-184 levels
was studied in four groups of patients with metastatic ACC: control, mitotane treated,
9-cis-retinoic acid treated and 9-cis-retinoic acid plus. It was found that only circulating
blood miR-483-5p levels were significantly suppressed by the combined 9-cisRA + mitotane
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treatment in the ACC xenograft mouse model after treatment [42]. On the contrary, no
significant changes were observed in the expression of tissue hsa-miR-483-5p between the
four groups. In another preclinical study, levels of circulating blood miRNA-210 in the
SW-13 tumor model were found to be elevated after combination therapy with etoposide,
liposomal doxorubicin, liposomal cisplatin and mitotane, whereas no treatment-dependent
changes were revealed for miR-483-5p [43].

Table 4. miRNAs as therapeutic biomarkers for ACC.

Study Type of Study Treatment Post-Treatment
Marker’s Level Source p-Value

Chabre et al.,
2013 [35] Clinical Surgical removal ↓miR-483-5p, ↑miR-195 Serum <0.05

Nagy et al.,
2015 [42]

In vivo: Patient-derived
xenograft in mice

Combined 9-cis retinoic acid +
mitotane treatment. ↓miR-483-5p Serum 0.028

Jung et al.,
2016 [43] In vivo: SW-13 xenograft LEDP-M treatment ↓miR-210 Serum <0.05

Upwards arrows (↑) indicate upregulation and downwards arrows (↓) indicate downregulation of miRNAs. Abbreviations: LEDP-M,
etoposide, liposomal doxorubicin, liposomal cisplatin, mitotane.

3.4. The Oncogenic Role of miRNAs

The role of dysregulation of miRNAs in the oncogenic pathways of ACC has been
studied in vivo and in vitro (Table 5, Figure 2). The miR-483 gene locus has been mapped to
intron 2 of IGF2 [44], one of the most commonly overexpressed genes in ACC [45]. The high
expression of miR-483-5p and miR-483-3p observed in ACC could be correlated with the
high expression of IGF2. Moreover, the p53 upregulated modulator of apoptosis (PUMA)
expression was found significantly downregulated in ACCs and inversely correlated with
miR-483-3p expression [44]. Additionally, it was demonstrated that miR-483-5p and miR-
139-5p promoted ACC cell migration and invasion by suppressing the expression of two
members of the N-myc downstream-regulated gene family NDRG2 and NDRG4 [38].

Table 5. miRNAs most frequently dysregulated in ACC compared to NAC or ACA.

miRNA Expression Role of miRNAs in ACC Pathogenesis

miR-483-5p Upregulated Promotes cell proliferation [19]
Promotes cell migration and invasion by suppressing expression of NDRG2 b [38]

miR-195 Downregulated

Overexpression of miR-195 leads to decrease in cell growth and induction of cell
death [19]
Inhibits TARBP2 b and DICER gene expression [46]
Targets ZNF367 c and regulates cellular invasion [47]

miR-210 Upregulated Related to hypoxia parameters [21]

miR-483-3p Upregulated Represses the proapoptotic gene BBC3/PUMA d [44]
MiR-483-3p silencing suppresses cell proliferation and induces apoptosis [19]

miR-335 Downregulated Potential target genes are: NEBL e, C8orf44 f, SEC14L5 g, PRDM2 h, PLEKHK1 i,
KPNA6 j, TNFAIP k, ONECUT2 l, UNC5D m, MMAA n [18]

miR-497 Downregulated

Overexpression of miR-497 reduces cell growth and induces apoptosis [19]
Inhibits DICER and TARBP2 b gene expression [46]
Represses the lncRNA MALAT1 o and targets the EIF4E p. Its overexpression
suppresses cellular proliferation and induces cell cycle arrest [48]

miR-184 Upregulated Unknown

miR-503 Upregulated Unknown

miR-214 Downregulated Unknown
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Table 5. Cont.

miRNA Expression Role of miRNAs in ACC Pathogenesis

miR-139-5p Upregulated Promotes cell migration and invasion by suppressing expression of NDRG4 a [38]

miR-100 Up- or downregulated Regulates the IGF-mTOR q-raptor signaling pathway at multiple levels [49]

miR-542-3p Upregulated Unknown

miR-542-5p Upregulated Unknown

miR-181b Upregulated Unknown
a NDRG2, NDRG4: N-myc downstream-regulated gene family member; b TARBP2: transactivation response RNA-binding protein 2; c

ZNF367: zinc finger protein 367; d PUMA:p53 upregulated modulator of apoptosis; e NEBL: nebulette (actin-binding Z-disk protein); f

C8orf44: putative uncharacterized protein C8orf44; g SEC14L5: SEC14-like 5; h PRDM2: PR domain zinc finger protein 2; i PLEKHK1:
pleckstrin homology domain containing; j KPNA6: importin subunit a-7 (karyopherin subunit a-7); k TNFAIP1: BTB/POZ domain-
containing protein TNFAIP1 (tumor necrosis factor); l ONECUT2: one-cut domain family member 2; m UNC5D: Unc-5 homolog D; n

MMAA: methylmalonic aciduria type A protein; o MALAT1: metastasis-associated lung adenocarcinoma transcript 1; p EIF4E: eukaryotic
translation initiation factor 4E; q mTOR: mammalian target of rapamycin.

Dysregulation of four miRNAs was studied in vitro in human ACC cell lines [19].
Suppression of miR-483-5p and miR-483-3p expression led to a significant reduction in cell
proliferation. Transfected cells with anti-miR-483-3p but not with anti-miR-483-5p resulted
in a significant increase in apoptosis. Moreover, the overexpression of miR-195 or miR-497
resulted in a significant decrease in cell growth and induction of cell death through the
suppression effect on both TARBP2 and DICER genes [46]. Inhibition of TARBP2 expression
in human NCI-H295R ACC cells resulted in decreased cell proliferation and induction of
cell apoptosis. Furthermore, the oncogenic mechanism of miR-497 could also be attributed
to its ability to negatively regulate the expression of MALAT1, which, in turn, reversely
competes for miR-497 binding to EIF4E [48]. It was observed that the overexpression
of miR-497 and silencing of MALAT1 suppressed cellular proliferation and induced cell
cycle arrest through downregulation of EIF4E expression. MiRNA-497 is a part of the
miR-15 family cluster, located at the chromosomal region 17p13.1, in which there is a high
frequency of loss of heterozygosity (LOH) in ACC compared to that of ACA neoplasms [50].

Additionally, miR-195 expression was inversely correlated with ZNF367 expres-
sion [47]. ZNF367 was overexpressed in ACCs compared to normal tissue and benign tumor
and reduced cellular proliferation, invasion, migration and adhesion to extracellular pro-
teins both in vitro and in vivo. Finally, molecular targets of miR-100 were also elucidated,
such as IGF-1R and mammalian target of rapamycin (mTOR) signaling cascades [49].

Functional studies have demonstrated that miR-210 is a versatile molecule that reg-
ulates many aspects of hypoxia pathways, both in physiological and malignant condi-
tions [51]. Although its role in ACC pathogenesis has not yet been elucidated, in the study
of Duregon et al. [21], increased expression of miRNA-210 levels in tissue ACC samples
was positively associated with necrosis and GLUT-1 expression. The inhibition of oxidative
phosphorylation resulting from exposure to hypoxia leads to a stimulation of glucose
transport, and this response is mediated by the enhanced function of glucose transporters,
like GLUT-1 [52]. The relevance of miR-184, miR-503, miR-542-5p, miR-542-3p, miR-181b
in the pathogenesis of ACC deserves further investigation.

However, these miRNAs are involved in the regulation of proliferation, invasion,
apoptosis and other processes in various tumor cells. For example, research has suggested
that the miRNA-184 can play a role as a tumor suppressor by inhibiting the proliferation
and invasion of glioma [53], oral cancer [54] and lung cancer cells [55], and it can act
as an oncogene by inhibiting apoptosis of renal cancer cells [56]. MiR-503 inhibits the
G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma [57], it
inhibits cell proliferation and invasion in glioma by targeting L1CAM [58], it targets PI3K
p85 and IKK-β and suppresses the progression of non-small-cell lung cancer [58], and it
inhibits cellular proliferation by targeting the AKT2 3′-UTR region in cervical cancer [59].
Moreover, there are many reports that demonstrate that miR-542-3p dysregulation is associ-
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ated with several malignancies. For example, Rang et al. [60] reported that miR-542-3p can
directly target the protooncogene PIM1 in melanoma, and its downregulation can enhance
melanoma cell migration, invasion, and epithelial–mesenchymal transition (EMT) in vitro
and in vivo. Yang et al. [61] demonstrated that miR-542-3p regulates cortactin (CTTN) in a
targeted manner to modulate the growth and invasion of colorectal cancer cells. Althoff
et al. [62] reported that miR-542-3p exerts its tumor-suppressive function in neuroblastoma,
at least in part, by targeting survivin. Zhang et al. [63] also found that miR-542-3p down-
regulation induces cancer metastasis and hyperactivity of the TGF-β signaling pathway,
thus promoting EMT and cancer progression in hepatocellular carcinoma. The role of
the other mature sequence formed from pre-miR-542, miR-542-5p, has been described in
tumors such as lung cancer [64], breast cancer [65], endometrial carcinosarcoma [66] and
osteosarcoma [67]. Finally, the miR-181 family has been demonstrated to exert regulatory
effects on tumorigenesis by modulating multiple signaling pathways, including PI3K/AKT,
MAPK, TGF-b, Wnt, NF-κB and Notch pathways [68].
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Figure 2. Schematic representation showing the miRNA- mediated mechanisms involved in ACC
pathogenesis. Green fonts indicate upregulation and red fonts indicate downregulation of miRNAs.
Arrows indicate stimulation, whereas T-arrows indicate inhibition. Abbreviations: BBC3; Bcl-2-
binding component 3, EIF4E; eukaryotic translation initiation factor 4E, IGF1R; insulin-like growth
factor 1 receptor; MALAT1; metastasis-associated lung adenocarcinoma transcript 1, miR: microRNA;
mTOR: mammalian target of rapamycin; NDRG; N-myc downstream-regulated gene family member,
PUMA; p53 upregulated modulator of apoptosis, TARBP2; transactivation response RNA-binding
protein 2, ZNF367; zinc finger protein 367.

4. Discussion

A number of studies have reported the expression of miRNAs in ACCs. Earlier
studies using microarray and RT-q-PCR techniques could only investigate known miRNAs,
whereas later studies utilizing RNA sequencing could identify differentially expressed
miRNAs, which had not been previously characterized. In the present review, analyzing
these data across the included studies, we identified that miR-483-5p, miR-210, miR-483-3p,
miR-184, miR-503, miR-542-3p, miR-542-5p, miR-139-5p and miR-181b were upregulated
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in ACC patients compared with ACA and/or healthy controls in multiple datasets either
in tissue or blood samples. On the contrary miR-195, miR-335, miR-497 the miR-214 were
downregulated in ACC patients compared with ACA and/or healthy controls either in
tissue or in blood samples.

More than 50% of miRNA genes are located in cancer-associated genomic regions
or in fragile sites, suggesting that miRNAs play an important role in the pathogenesis of
cancer [69]. MiR-483-5p is one of the most investigated miRNAs in ACCs, both as a diag-
nostic and prognostic biomarker, and has been proven as the best single-gene malignancy
marker [27]. In the study of Chabre et al. [35], miR-483-5p levels were undetectable in the
blood of healthy controls, ACA and nonaggressive ACC patients, whereas high levels were
detected in the serum of patients with aggressive ACC. In addition to circulating blood
miR-483-5p, its urinary counterpart was evaluated in patients with adrenal tumors [34].
However, no significant difference was detected between ACC and ACA urinary samples.
The lack of significance between ACC and adrenal myelolipoma in the expression of both
tissue and plasma miR-483-5p and miR-483-3p might represent a limitation in the use of
these markers, though [36].

The decrease in miR-483-5p blood levels after surgery in ACC patients suggests
dynamic changes in serum miRNAs in response to surgical therapy [35]. This decrease was
confirmed by another study [31] but did not reach statistical significance, probably due to
the differences of sampling time in relation to the date of operation, as miRNAs deriving
from the adrenal tumor before being removed may still be present in the bloodstream.
Treatment-induced changes were also revealed for circulating miR-483-5p after systemic
therapy in ACC patients [42].

Several miRNAs that seemed to be useful as differentiators between ACCs and ACAs
are also promising prognostic indicators of ACCs. The statistically significant upregulation
of miR-483-5p, miR-503, miR-210 and miR-139-5p and the downregulation of miR-19 were
associated with poor clinical outcome in ACCs in most of the studies. Biomarkers that
could predict the biological behavior of these tumors are essential in clinical practice, as
they could identify high-recurrence-risk patients that need more intensive monitoring or
adjuvant therapies and identify low-recurrence-risk patients that could avoid potential
morbid therapies. Indeed, high miR-210 levels were found to be associated with ACC
aggressiveness and poor prognosis, affecting the OS of these patients similarly with well-
established prognostic factors such as mitotic count, Ki-67 proliferation index and increased
expression of SF-1 [21]. Moreover, some miRNAs have been found differentially expressed
in ACC histological variants. Prominent underexpression of miR-483-5p, miR-483-3p
and miR-210 levels in adrenal tissues has been observed in oncocytic compared to the
classical and myxoid histotype of ACC [21]. This interesting finding was interpreted
through the prism of the positive correlation of the high levels of miRNA-210 expression
with parameters of hypoxia, such as necrosis and GLUT-1, and aggressive biological
behavior, such as mitotic rate and Ki-67 proliferation index, which are usually low in
oncocytic tumors.

However, these results should be considered with great caution because the analysis
of miRNAs expression, as well as its correlation with prognosis, differed among studies,
either due to the different methodology used for molecular and/or statistical analysis.
Several studies [15,19,35,37,38] used Kaplan–Meier curves and the log-rank test to asso-
ciate miRNA (low vs. high) levels with worse prognosis. Only three studies [21,31,39]
performed, in addition to the log-rank test, univariate and multivariate Cox proportional
hazard regression analysis, including, however, different prognostic parameters in their
multivariate model. In particular, Duregon et al. [21] included myxoid or classical ACC
histotype (mitotic count ≥11, Ki-67 proliferation index ≥20) SF-1 protein expression and
miR-210 and found that only mitotic count remains a significant prognostic factor. Salvianti
et al. [31] included age, sex and miR483-5p and found that miR483-5p was associated
with recurrence-free survival. Finally, Oreglia et al. [39] included tumor size, Ki67, ENSAT
stage and miR-483-5p and found that miR483-5p was associated only with recurrence-free
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survival but not with OS. In addition, one study [31] performed only Spearman correlation
to analyze the correlation of miRNAs with distant metastases and disease progression.

Another point of issue is the different cut-offs used for the expression of miRNA levels
among the different studies. Receiver operating characteristic (ROC) analyses were per-
formed to determine cut-off values in three studies [31,35,39], and only two studies [15,37]
used the dichotomized relative to the median value to determine cut-off values. Three
studies [19,21,35] did not mention the cut-off value they used, whereas Agosta et al. [38]
used the same cut-off values with Chabre et al. [35] study. Moreover, there was heterogene-
ity in the compared groups included in the ROC analyses. In particular, Chabre et al. [35]
compared ACC patients with aggressive tumors defined as recurring tumors or tumors
that were already metastatic at diagnosis with patients with nonaggressive ACC tumors.
Oreglia et al. [39] divided patients with ACC into two groups: patients who showed a
recurrence within 3 years (group R < 3 years) and patients who showed no recurrence
during the first 3 years of follow-up. Salvianti et al. [31] divided ACC patients based on
low (stage 1/2) versus high (stage 3/4) disease stages. Furthermore, the studied popula-
tion concerning ACC patients was heterogenous among studies. For example, Duregon
et al. [21] included also other than the classical histological types of ACC (oncocytic and
myxoid), whereas Oreglia et al. [39] performed analyses only on postsurgical blood samples
of patients with ACC.

Finally, all studies used data of miRNA expression deriving from RT-PCR but one [15],
which used data from microarrays analysis. In the study of Ozata et al. [19], only three
out of six miRNAs were found to present a statistically significant prognostic role, and the
microarray-based results were also validated by RT-PCR.

Across several studies, differences in the expression between tissue and blood miRNA
levels were observed, suggesting that the predictive role of blood miRNAs may be inde-
pendent of tissue specimens. A potential explanation for this finding could be that released
miRNAs do not reflect completely the cellular profile, as some miRNAs are retained or
released selectively in the blood circulation [70].

Other components in the miRNA biogenesis pathway also seem to be useful as diag-
nostic and prognostic markers in adrenocortical tumors. Particularly, TARBP2, DICER and
DROSHA miRNA-target genes are significantly overexpressed in ACCs when compared
with adenomas and normal adrenal tissue samples [46]. A weak DICER1 protein expres-
sion is associated with reduced disease-free and OS serving as a predictor of recurrence
in ACCs [71]. Furthermore, the top five upregulated target genes in ACCs, YWHAZ,
GATA6, LDLR, BZW1 and IGFBP5, and five downregulated target genes, such as TXNIP,
MAPKAPK5, PMAIP1, RAD51 and MICA, interact with several miRNAs [72].

Thus, identifying the relationships between miRNA signatures and ACCs could
help better understand the underlying mechanisms and help develop new therapeutic
strategies. Overexpression of miRNAs can be triggered by using synthetic miRNA mimics.
Conversely, overexpressed miRNAs can be silenced by antagomiRs to restore miRNA
balance in cancer networks [73]. For example, inhibition of miR-21 and miR-17-92 was
associated with reduced tumor growth, invasion, angiogenesis and metastasis [74]. Indeed,
the therapeutic potential of the miR-122 antagonist, miravirsen, in the treatment of hepatitis
C was evident from a multicentric phase II trial [75]. Despite the great potential of miRNAs
as novel therapeutic targets in the management of ACCs, there are a variety of technical
challenges limiting the practical application of miRNA therapy in clinical practice, e.g., the
availability of targeted delivery vesicles. Liposome delivery was the first delivery vehicle
in clinical trials for miRNA [11]. Liposomal delivery of chemotherapeutics has already
been studied in xenograft models of adrenocortical tumors. A significant reduction in
tumor size was detected in an ACC xenograft model after a single treatment with anti-IGF1
receptor (IGF1-R) immunoliposomes (SSLD-1H7) [76]. Liposomally encapsulated miRNAs,
in combination with cytostatic agents or alone, may represent a novel treatment option for
ACC in the future.
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5. Conclusions

Despite significant advances in the understanding of the molecular landscape of
ACC, major efforts are still needed to improve diagnosis, surveillance and treatment of
patients with ACC. MiRNAs detected both in adrenal tissue and in human body fluids
can be envisaged as potential noninvasive biomarkers of malignancy and/or disease
recurrence. Altering the expression of the miRNAs might eventually expand the rather
limited therapeutic repertoire in the management of adrenal tumors. The role of miRNA
regulation in ACC remains an area of active research with the potential to further enhance
our understanding of its tumor biology and the molecular pathways involved.
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