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“Candidatus Nitrosocaldaceae” are globally distributed in neutral or slightly alkaline
hot springs and geothermally heated soils. Despite their essential role in the nitrogen
cycle in high-temperature ecosystems, they remain poorly understood because they
have never been isolated in pure culture, and very few genomes are available.
In the present study, a metagenomics approach was employed to obtain “Ca.
Nitrosocaldaceae” metagenomic-assembled genomes (MAGs) from hot spring samples
collected from India and China. Phylogenomic analysis placed these MAGs within “Ca.
Nitrosocaldaceae.” Average nucleotide identity and average amino acid identity analysis
suggested the new MAGs represent two novel species of “Candidatus Nitrosocaldus”
and a novel genus, herein proposed as “Candidatus Nitrosothermus.” Key genes
responsible for chemolithotrophic ammonia oxidation and a thaumarchaeal 3HP/4HB
cycle were detected in all MAGs. Furthermore, genes coding for urea degradation
were only present in “Ca. Nitrosocaldus,” while biosynthesis of the vitamins, biotin,
cobalamin, and riboflavin were detected in almost all MAGs. Comparison of “Ca.
Nitrosocaldales/Nitrosocaldaceae” with other AOA revealed 526 specific orthogroups.
This included genes related to thermal adaptation (cyclic 2,3-diphosphoglycerate,
and S-adenosylmethionine decarboxylase), indicating their importance for life at high
temperature. In addition, these MAGs acquired genes from members from archaea
(Crenarchaeota) and bacteria (Firmicutes), mainly involved in metabolism and stress
responses, which might play a role to allow this group to adapt to thermal habitats.

Keywords: “Candidatus Nitrosocaldaceae”, hot spring, ammonia-oxidizing archaea, genome comparison,
horizontal gene transfer
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INTRODUCTION

Geothermal springs represent a model system to study microbial
ecology because of their simple community structure and
simplified biogeochemical processes (Amend and Shock,
2001). This habitat serves as an important niche for diverse
archaea with heterogeneous metabolic capabilities (Alves
et al., 2018). Among the various modes of chemolithotrophy,
ammonia oxidation can be a major energy source in some
geothermal systems, due to relatively high concentrations of
ammonia (Dodsworth et al., 2012). The global distribution
of archaeal ammonia monooxygenase subunit A (amoA)
in terrestrial geothermal springs (Zhang et al., 2008), and
high rates of nitrification in some hot springs (Reigstad
et al., 2008; Dodsworth et al., 2011), suggests a vital role
for thermophilic ammonia-oxidizing archaea (AOA) in the
nitrogen and carbon cycles in these habitats. “Candidatus
Nitrosocaldus” members are the only archaea capable of
oxidizing ammonia to nitrite at temperatures >65◦C (de
la Torre et al., 2008; Abby et al., 2018; Daebeler et al.,
2018). Members of this family are globally distributed
in neutral or slightly alkaline hot spring sediments or
geothermally heated soils (Marteinsson et al., 2001; Nunoura
et al., 2005; de la Torre et al., 2008; Zhang et al., 2008;
Dodsworth et al., 2011; Hou et al., 2013; Hamilton et al., 2014;
Abby et al., 2018).

“Candidatus Nitrosocaldaceae,” which includes “Ca.
Nitrosocaldus,” was first proposed in 2008 (de la Torre
et al., 2008) to include the first known member of the genus,
“Ca. N. yellowstonensis.” So far, only three enrichment
cultures of “Ca. Nitrosocaldus” have been reported: “Ca. N.
yellowstonensis” from a Yellowstone National Park hot spring,
“Ca. N. islandicus” from an Icelandic hot spring, and “Ca.
N. cavascurensis” SCU2 from a hot spring in southern Italy
(de la Torre et al., 2008; Abby et al., 2018; Daebeler et al.,
2018). Like other AOA, all of them are chemolithoautotrophic
and couple ammonia oxidation to carbon fixation using
the 3-hydroxypropionate/4-hydroxybutyrate pathway (de
la Torre et al., 2008; Abby et al., 2018; Daebeler et al.,
2018). Besides ammonia oxidation, additional metabolic
activities have been suggested from these three genomes,
including aromatic amino acid fermentation, utilization of
urea, nitrile, and hydrogen cyanide as alternative ammonia
donors, and synthesis of vitamins (de la Torre et al., 2008;
Abby et al., 2018; Daebeler et al., 2018). Despite these critical
features, the family remains poorly understood because of
the lack of pure cultures, limited availability of genomes,
and small number of studies measuring their activities
in situ.

In the present study, a metagenomics approach was employed
to obtain “Ca. Nitrosocaldaceae” metagenomic-assembled
genomes (MAGs) from hot spring samples collected from India
and China. With the newly recovered MAGs and available AOA
genomes, we have performed comparative genomic analyses to
provide insight into the phylogeny, functional diversity, and
adaptation mechanisms of this family and propose one novel
genus and two novel species.

MATERIALS AND METHODS

Sampling, DNA Extraction, Sequencing,
and Phylogenetic Analysis
Hot spring sediment samples were collected from India
(Gujarat, Tumba: 22◦47′58′′N 73◦27′37′′E, Temp: 55◦C) and
China (Yunnan, Jinze, JZ: 25◦26′28′′N 98◦27’36′′E, Temp:
75◦C; Qiaoquan, QQ: 24◦57′0′′N 98◦26′11′′E, Temp: 69◦C;
Shuirebaozha, SRBZ: 24◦57′0′′N 98◦26’14′′E, Temp: 72◦C).
General descriptions for the Chinese hot springs have been
described elsewhere (Hedlund et al., 2012; Hou et al., 2013).

Genomic DNA was extracted using the PowerSoil DNA
isolation kit (MoBio). Metagenomic sequencing data were
generated using the Illumina HiSeq 4000 instrument. The raw
data were processed as described by Hua et al. (2015) and
assembled using SPAdes v.3.14.0 (Bankevich et al., 2012). The
sequence coverage was determined by BBMap v.36.771 and
genome binning based on tetra-nucleotide frequencies, and
sequencing depth was conducted with MetaBAT v.2.12.1 (Kang
et al., 2015). The quality of the MAGs was evaluated using
CheckM v.1.0.7 (Parks et al., 2015). Full-length 16S rRNA
gene sequences were extracted from the MAGs using rnammer
v.1.2 (Lagesen et al., 2007). “Ca. Nitrosocaldaceae” MAGs were
preliminarily screened using PhyloPhlAn v.0.99 (Segata et al.,
2013). Phylogenetic tree was constructed using a concatenated set
of 122 universal marker proteins by GTDB-Tk (Parks et al., 2017).
MUSCLE v.3.8.31 (Edgar, 2004) with default parameters used to
align these sequences. Poorly aligned regions were removed using
TrimalAL v.1.4 (Capella-Gutiérrez et al., 2009). The phylogeny
was inferred with IQtree v.1.6.0 (Nguyen et al., 2014) by ultra-
rapid bootstraps (1,000) with the parameters –alrt 1000 –bb
1000 –nt AUTO.” Besides, nucleotide sequences of amoA gene
were retrieved (Alves et al., 2018) and aligned with MAFFT
v.7.407 (Katoh and Standley, 2013). Protein sequences coding
for nitrite reductase (NirK), multicopper oxidases (Decleyre
et al., 2016; Kerou et al., 2016) and indolepyruvate ferredoxin
oxidoreductase (Daebeler et al., 2018) were retrieved and aligned
with MAFFT. The alignments were filtered using TrimalAL v.1.4
(Capella-Gutiérrez et al., 2009) to eliminate columns with≥ 95%
gaps, and all gene trees were inferred with IQtree v.1.6.0 (Nguyen
et al., 2014). All trees were uploaded to iTOL v.4 (Letunic and
Bork, 2019) for visualization.

Genome Annotation, Horizontal Gene
Transfer Predictions, and Comparative
Genomics
In order to gain a comprehensive insight into “Ca.
Nitrosocaldaceae,” published “Ca. Nitrosocaldaceae” MAGs
were obtained from NCBI2 and JGI3. Protein-coding regions
were identified using Prodigal v.2.6.3 (Hyatt et al., 2010) with the
“-p single” option and annotated against the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa et al., 2016) and

1http://sourceforge.net/projects/bbmap/
2https://www.ncbi.nlm.nih.gov/
3https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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Archaeal Clusters of Orthologous Genes (arCOG) (Makarova
et al., 2015) database (e-value threshold = 10−5) with DIAMOND
(Buchfink et al., 2015). Assignments of key metabolic pathways
and specific functions were manually verified based on the KEGG
result and the online KEGG mapping tools4. Horizontal gene
transfers (HGTs) were inferred using HGTector2 (Zhu et al.,
2014) and visualized using SankeyMATIC5. For confirmation,
we use candidate HGT protein sequences selected in our
MAGs as queries against the protein sequences of NCBI
genomes database available (downloaded in May 2020).
Retrieved protein sequences together with protein sequences
in “Ca. Nitrosocaldaceae” were then aligned using MAFFT,
the alignments were filtered with TrimalAL and trees were
constructed with IQtree and visualized in iTOL. All parameter
sets were the same as mentioned above. For simplicity, the
initial phylogenetic trees were used to choose a small set of
sequences in the final trees. The rRNAs and tRNAs were
predicted using RNAmmer v.1.2 (Lagesen et al., 2007) and
tRNAscan-SE v.2.0.2, respectively (Lowe and Eddy, 1997).
The average nucleotide identity (ANIm) values of MAGs
were determined using pyani (Pritchard et al., 2016), and the
average amino acid identity (AAI) values were determined
using CompareM6. For further comparative analysis, MAGs
with completeness ≥80% were selected. OrthoFinder v.2.4.0
(parameters “-s blast_gz –t 20 –f protein_files”) with BLASTP
(-e 0.001) was used to assess orthology among the coding
sequences (CDS) of all selected genomes (Emms and Kelly,
2015, 2019). The term “shared set” was defined for orthogroups
that were present in a given branch and other branches,
whereas the “specific set” refers to orthogroups that were
only present in a given branch. Then, further sub-defining
the “specific set,” the term “lineage-core set” was used for
orthogroups identified in ≥90% of the analyzed genomes, and
the term “lineage-accessory set” was used for orthogroups
that were present in <90% of the analyzed genomes. Detailed
information on published AOA used in this study is provided in
Supplementary Table S1.

RESULTS AND DISCUSSION

General Features of “Ca.
Nitrosocaldaceae” MAGs
In total, nine “Ca. Nitrosocaldaceae” MAGs were obtained
from Chinese and Indian hot spring sediments. Among
them, four MAGs were obtained from Jinze (JZ-1.bins.77,
JZ-2.bins.172, JZ-2.bins.249, and JZ-3.bins.102), three from
Qiaoquan (QQ.bins.88, QQ.bins.97, and QQ.bins.115137), one
from Shuirebaozha (SRBZ.bins.174), and one from Tumba
(Tumba.bins.72).

In addition to the two cultivated members of the
genus “Ca. Nitrosocaldus” (with genomic data), “Ca.
N. cavascurensis SCU2” (Abby et al., 2018) and “Ca. N.

4https://www.genome.jp/kegg/kegg1b.html
5http://sankeymatic.com/
6https://github.com/dparks1134/CompareM

islandicus” (Daebeler et al., 2018), a MAG (Thaumarchaeota
archaeon J079) obtained from a Japanese hot spring (Ward
et al., 2019) was also assigned to this family based on
phylogenetic analysis. In phylogenetic trees based on
alignments of 122 archaeal marker genes (Figure 1A), a
monophyletic group containing the two cultivated members
of “Ca. Nitrosocaldus” and the nine additional MAGs
were recovered.

Phylogenetic analysis (Figure 1A) showed that the twelve
MAGs formed four well-supported clades within the family
“Ca. Nitrosocaldaceae.” Clade A consisted of JZ-2.bins.172,
QQ.bins.88, and Thaumarchaeota archaeon J079. Clade B
corresponded to QQ.bins.115137 and SRBZ.bins.174. Clade
C included Tumba.bins.72 and two recently proposed “Ca.
Nitrosocaldus” species, “Ca. N. islandicus” and “Ca. N.
cavascurensis SCU2.” Clade D comprised of JZ-2.bins.249, JZ-
3.bins.102, JZ-1.bins.77, and QQ.bins.97.

AAI values suggested that clades B, C, and D can be
ascribed to the genus “Ca. Nitrosocaldus,” as their AAI values
(Supplementary Table S2 and Supplementary Figure S1A) were
within the proposed limits (65–95%) (Konstantinidis et al., 2017).
In contrast, AAI values comparing Clade A genomes to “Ca.
Nitrosocaldus” genomes were well below those values (56.6–
57.8%). In addition, other genomic characteristics consistently
separated Clade A from “Ca. Nitrosocaldus,” reflected by GC
contents (Clade A, 31.9–33.1%, average 32.4%, n = 3; “Ca.
Nitrosocaldus,” 41.5–42.8%, average 42.0%, n = 9, Figure 1B) and
overall KO profiles (Figure 1C, ADONIS R2 = 0.48, P < 0.01).

Therefore, we propose the name “Candidatus Nitrosothermus
koennekii” gen. nov., sp. nov. to circumscribe the organisms
represented by clade A.

Etymology: Ni.tro.so.ther’mus. L. masc. adj. nitrosus, full of
natron, here intended to mean nitrous; Gr. masc. adj. thermos,
hot; N.L. masc. n. Nitrosothermus, a nitrite-forming organism
from a hot environment; koen.ne’ke.i. N.L. gen. n. koennekei,
named in honor of Martin Könneke. The type genome is JZ-
2.bins.172T.

The ANI values (Supplementary Table S3 and
Supplementary Figure S1B) separating clades B, C, and D
were below the cut-off (95–96%) for species identification
(Jain et al., 2018), and we propose the names “Candidatus
Nitrosocaldus tengchongensis” sp. nov. and “Candidatus
Nitrosocaldus schleperae” sp. nov. for clade B and clade D,
respectively. The type genomes are QQ.bins.115137T for
“Candidatus Nitrosocaldus tengchongensis” and JZ-1.bins.77T

for “Candidatus Nitrosocaldus schleperae.”
Etymology: teng.chong.en’sis. N.L. masc. adj. tengchongensis

pertaining to Tengchong, Yunnan Province, south-west China,
where the type strain was isolated; schle’pe.rae. N.L. gen. n.
schleperae, named in honor of Christa Schleper.

Despite the wide geographic range of clade C (Italy,
Iceland, and India) and the previous descriptions of two “Ca.
Nitrosocaldus” species, “Ca. N. cavascurensis” (Abby et al.,
2018) and “Ca. N. islandicus” (Daebeler et al., 2018), the
high ANI values between members of clade C (98.41–99.80%)
(Supplementary Table S3) suggests clade C as a single species
group.
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FIGURE 1 | (A) Phylogenetic tree of Thaumarchaeota based on concatenation of 122 archaeal marker genes with Metallosphaera sedula ARS50-1 as outgroup
(only a few genomes of other Thaumarchaeota are shown). MAGs newly obtained in this study are marked with green circles. Sources of Group HWCG-III MAGs are
indicated by stars with different colors. The temperature values refer to temperature measured in the source materials. Nodes with ultrafast bootstrap value ≥95%
(50%) are indicated as solid (hollow) circles, and the scale bar at the top indicates 10% sequence divergence. (B) Genome G+C content of Clade A (“Ca.
Nitrosothermus”) vs. Clades B, C, and D (“Ca. Nitrosocaldus”). (C) Principal coordinates analysis (PCoA) plot based on Bray-Curtis dissimilatory of KEGG functional
profiles of “Ca. Nitrosocaldaceae” MAGs, showing significantly different KEGG profiles in Clade A (“Ca. Nitrosothermus”) vs. Clades B, C, and D (“Ca. Nitrosocaldus”).

The estimated genome sizes were small (1.26–1.56 Mb),
with estimated completeness of 58.8–100% and estimated
contamination of 0–3.4%. Most MAGs have detectable 16S rRNA
genes (except Thaumarchaeota archaeon J079) and more than
18 tRNAs (except JZ-2.bin.249), indicating that they were well
curated and appropriate for further analysis. The number of
coding sequences ranged from 857 to 1,767, with about half of
them being assignable by KO profiles. The detailed features of
these MAGs are given in Table 1.

Metabolic Potential of “Ca.
Nitrosocaldaceae”
Nitrogen Metabolism
Similar to other AOA (Walker et al., 2010; Spang et al., 2012),
the key genes responsible for ammonia oxidation encoded by
amoABC were present in all “Ca. Nitrosocaldaceae” MAGs
(Figure 2, Supplementary Figure S2, and Supplementary
Table S4).
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TABLE 1 | Genomic features of “Candidatus Nitrosocaldaceae”.

Genome feature 1 2 3 4 5 6 7 8 9 10 11 12

No. of scaffolds 434 38 34 1 1 12 56 196 111 88 16 26

Genome size (Mbp) 1.06 1.51 1.39 1.50 1.54 1.50 1.18 1.04 0.63 1.39 1.39 1.39

Estimated Genome
Size (Mbp)

1.26 1.51 1.43 1.52 1.56 1.52 1.29 1.40 1.08 1.41 1.40 1.41

Genomic G+C
content (%)

33.1 32.2 31.9 41.6 41.5 41.5 42.8 42.7 42.3 41.9 42 41.9

N50 value (bp) 3,037 1,56,292 1,85,164 15,77,284 16,17,394 2,23,702 29,463 6,454 6,672 29,350 1,23,923 1,02,733

No. of protein
coding genes

1,569 1,767 1,648 1,718 1,753 1,729 1,431 1,457 857 1,700 1,665 1,646

No. of rRNAs 1 2 2 2 2 2 2 2 1 2 2 2

Presence of 16S
rRNA gene

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

No. of tRNAs 32 40 37 36 36 41 31 30 14 36 38 39

No. of genes
annotated by KO

811
(51.7%)

877
(49.6%)

819
(49.7%)

832
(48.4%)

836
(47.6%)

840
(48.5%)

746
(52.1%)

751
(51.5%)

488
(56.9%)

849
(49.9%)

818
(49.1%)

812 (49.3%)

Completenessa (%) 84.43 100 97.5 99 99 99 91.9 74.7 58.8 98 99 98

Contaminationa (%) 2.5 0.9 0 0 0 0.9 0 0 3.4 0 0 0

Accession number GCA_
003695185.1b

GCA_
013538795.1b

GCA_
013538715.1b

GCA_
900248165.1b

2788500263c GCA_
011058825.1b

GCA_
013538675.1b

GCA_
013538755.1b

GCA_
013538775.1b

GCA_
013538695.1b

GCA_
013538805.1b

GCA_
013538705.1b

1, Thaumarchaeota archaeon J079; 2, JZ-2.bins.172; 3, QQ.bins.88; 4, “Ca. Nitrosocaldus cavascurensis”; 5, “Ca. Nitrosocaldus islandicus”; 6, Tumba.bins.72; 7, QQ.bins.115137; 8, SRBZ.bins.174; 9, JZ-2.bins.249,
10, JZ-3.bins.102; 11, JZ-1.bins.77; 12, QQ.bins.97. aThe evaluations of genome completeness and contamination were conducted with CheckM. Although the genomes of “Ca. Nitrosocaldus islandicus” and “Ca.
Nitrosocaldus cavascurensis” are only 99% complete in the table, these are, in fact, closed genomes that are missing PF000395. bThe GenBank accession number. cThe JGI accession number.
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Ammonia oxidation not only yields free energy but also
reducing force for anabolic reactions. Previously, an additional
copy of amoC that may participate in an ammonia starvation and
stress response was observed in some AOA MAGs (Berube et al.,
2007; Berube and Stahl, 2012; Spang et al., 2012). In our study,
an extra amoC could be found in two “Ca. Nitrosothermus”

MAGs (Supplementary Table S4), indicating that they may
grow at a lower concentration of ammonia than other “Ca.
Nitrosocaldaceae” members. Interestingly, a full-length extra
amoA gene (NODE_52239_length_4113_cov_3.91646_6)
was detected in MAG JZ-2.bins.249. The sequence
assembly of the extra amoA-containing scaffold

FIGURE 2 | The overall distributions of the genes of interest in “Ca. Nitrosocaldaceae.” The phylogenetic tree in the left was pruned according to Figure 1. For
visualization, the branch length is ignored. The two genera were colored according to Figure 1. MAGs of “Ca. Nitrosothermus” are marked with blue while MAGs of
“Ca. Nitrosocaldus” with red. The solid and hollow circles represent the presence and absence of the genes. J079 Thaumarchaeota archaeon J079, HP/HB cycle
hydroxypropionate/hydroxybutyrate cycle, amoABC ammonia monooxygenase subunit A, B, and C, nirK nitrite reductase, ureABC urease subunit gamma, beta and
alpha, mut cobalamin-dependent methylmalonyl-CoA mutase, abfD 4-hydroxybutyryl-CoA dehydratase, accABC biotin-dependent acetyl-CoA/propionyl-CoA
carboxylase, iorAB indolepyruvate ferredoxin oxidoreductase subunit alpha and beta, pckA phosphoenolpyruvate carboxykinase, fbp fructose 1,6-bisphosphate
aldolase/phosphatase, tpiA triosephosphate isomerase, gap, glyceraldehyde-3-phosphate dehydrogenase, pgk phosphoglycerate kinase, gpm phosphoglycerate
mutase, eno enolase, sat sulfate adenylyltransferase, cysC adenylylsulfate kinase, cysH phosphoadenosine phosphosulfate reductase, sir sulfite reductase
(ferredoxin), flaGHIJ archaeal flagellar protein FlaG, FlaH, FlaI, and FlaH, arcC carbamate kinase, hyd 3b group 3b hydrogenase, polB archaea type DNA polymerase,
polD D-family polymerase. The full name of genes involved in B2 (riboflavin), B7 (biotin), and B12 (cobalamin) syntheses are listed in Supplementary Table S4.
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(NODE_52239_length_4113_cov_3.91646) seems to be reliable,
as the GC content and read depth of this scaffold was similar to
other scaffolds in this bin (Supplementary Figure S3). All the
closest protein sequences of this scaffold showed high similarities
to “Ca. Nitrosocaldus cavascurensis” (Supplementary Table S5).
However, the additional amoA gene was near the end of the
scaffold and the gene content and orientation between the two
scaffolds were highly identical. Besides, the extra amoA genes
was found in the most contaminated MAG (contamination:
3.4%) but these two copies of amoA genes were very closely
related (100% in query coverage and 99% in amino acid identity,
Figure 3). We conclude that the placement of the second amoA

gene copy into the MAG might be due to strain diversity, which
lead to incorrect assignment of two very similar contigs into the
same MAG. Therefore, we assume that the species represented by
the MAG were likely to harbor only one amoA gene. In addition,
all amoA genes in “Ca. Nitrosocaldaceae” were placed in the
NC-clade (Figure 3), which only occupies a small fraction of all
known amoA sequences (Alves et al., 2018), stressing the limited
research on this family.

It is well-known that ammonia can be imported into the cell
via passive diffusion (Winkler, 2006). The detection of an AMT
family ammonia transporter in most MAGs makes it possible to
actively transport ammonia into cells when the permeability of

FIGURE 3 | Phylogenetic analysis of amoA gene sequences. Sequences with blue stars were newly obtained in this study. Classifications of clades were based on
Alves et al. (2018). Only nodes with ultrafast bootstrap values ≥95% (50%) were marked with solid (hollow) circles, and the scale bar at the bottom indicates 10%
sequence divergence.
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the cytoplasmic membrane becomes low, or the concentrations
of ammonia were relatively low, as passive diffusion would
be limited in these conditions (Winkler, 2006). It has been
reported that multiple copper oxidases may play some roles in
hydroxylamine oxidation, the second step of ammonia oxidation
(Walker et al., 2010). In our study, genes encoding multicopper
oxidases (MCO) were identified in some MAGs (Supplementary
Table S4), which indicates that alternative mechanisms may exist
for hydroxylamine oxidation. It has been suggested that NirK
may provide NO during the NO-dependent dehydrogenation of
hydroxylamine to nitrite (Kozlowski et al., 2016).

Homologs for NirK were found in two MAGs (JZ-
2.bins.172 and QQ.bins.88). Interestingly, these MAGs
harbor two copies of this protein (Supplementary Table S4).
The phylogenetic analysis revealed that only one NirK
(NODE_3_length_185164_cov_12.5162_189 in QQ.bins.88
and NODE_3_length_165040_cov_5.28639 in JZ-2.bins.172) in
each MAG was placed adjacent to the previously defined archaeal
NirK branch (Figure 4; Kerou et al., 2016). An alignment with
these archaeal NirK proteins showed that type-1 and type-2
copper centers were conserved in these two newly recovered
proteins (Supplementary Figure S4). Consistent with the
previous study, they encode a potential transmembrane domain
with a signal peptide at N-terminus (Bartossek et al., 2010). After
careful phylogenetic analysis, we claim that these two proteins
were genuine copper-dependent nitrite reductases with functions
similar to characterized NirK instead of homologous MCO. The
other homologous proteins clustered with multicopper oxidase
sequences (Figure 4A), indicating they likely encode multicopper
oxidases instead of NirK. Six MCOs belong to lineage 1 (MCO1,
Figure 4A and Supplementary Table S6), which were from
four “Ca. Nitrosocaldus” MAGs and two “Ca. Nitrosothermus”
MAGs, while twenty-six MCOs belong to lineage 4 (MCO4,
Figure 4A and Supplementary Table S6) were sourced from
all MAGs. Notably, in one MAG (QQ.bins.115137), one ZIP
family permease was detected next to MCO1. This pair of genes
plays a role in copper sequestration (Kerou et al., 2016). It was
assumed that MCO1 and MCO4 were involved in Cu uptake
as they could carry out the oxidation of Cu+ to Cu2+, which
could be transported into the cells via the ZIP family permease
or a divalent transporter (Reyes et al., 2020). MCO could aid
“Ca. Nitrosocaldaceae” not only in ammonia oxidation but also
copper homeostasis.

Urea degradation provides AOA with ammonia to fuel
ammonia oxidation and carbon dioxide for carbon fixation
(Walker et al., 2010; Spang et al., 2012). In our study, only
four MAGs belonging to “Ca. Nitrosocaldus” possess genes
coding for urease and urea transporters, which suggests that
among “Ca. Nitrosocaldaceae” urea utilization was unique in
this genus. Consistent with a previous report (Daebeler et al.,
2018), all members in “Ca. Nitrosocaldaceae” can potentially
utilize hydrogen cyanide and nitrile, which were available
in geothermal systems (Miller and Urey, 1959; Schulte and
Shock, 1995). Nitrilases catalyze the degradation of nitrile,
and cyanide hydratases convert HCN to formamide, and
both can produce ammonia (Lenza and Vasconcelos, 2001;
Pace and Brenner, 2001) to support ammonia oxidation. The

capability to utilize additional nitrogen-containing substrates
could provide an advantage when ammonia was limited.
The presence of glnA and gdnA genes coding for glutamine
synthetase and glutamate dehydrogenase suggests that “Ca.
Nitrosocaldaceae” could generate glutamate via ammonia
assimilation.

Carbon Metabolism
The key enzymes of the thaumarchaeal 3HP/4HB cycle were
detected in all MAGs, indicating the potential for carbon fixation
and the most energy-efficient pathway that could generate acetyl-
CoA for biosynthesis (Könneke et al., 2014). The detection of
an incomplete Embden-Meyerhof-Parnas pathway (EMP), genes
coding for phosphoenolpyruvate carboxykinase, and fructose 1,6-
bisphosphate aldolase in most MAGs support gluconeogenesis
and sugar production (Figure 2, Supplementary Figure S2, and
Supplementary Table S4). Except for some low-completeness
MAGs, members of this family harbor an oxidative TCA cycle,
which could support free-energy yielding reactions with organic
substrates and/or provide some important intermediates for
biosynthesis (e.g., oxaloacetic acid and α-ketoglutaric acid).
Additionally, genes coding for 4-oxalocrotonate tautomerase,
essential for the metabolism of aromatic compounds, was
detected in all MAGs, indicating that they could generate
intermediates for the TCA cycle via conversion of aromatic
compounds. The detection of the pentose phosphate pathway and
5-phospho-alpha-D-ribose 1-diphosphate PRPP biosynthesis in
this group suggests they can generate some nucleotide and amino
acid precursors.

Furthermore, “Ca. Nitrosocaldus” might have the potential for
aromatic amino acid fermentation due to the presence of iorAB,
encoding for indolepyruvate ferredoxin oxidoreductase, which
was not common among AOA (Daebeler et al., 2018).

Inferred from the phylogenetic tree (IorB protein sequences),
they form a monophyletic clade, which was placed between
bacterial IorB proteins, and a Crenarchaeota-Euryarchaeota
cluster (Supplementary Figure S5). Besides, the presence of
hydrogenases could regenerate oxidized ferredoxin that reduced
during this process using hydrogen as an energy source, as
proposed before (Daebeler et al., 2018). Furthermore, several
enzymes, including aspartate aminotransferase argininosuccinate
synthase and argininosuccinate lyase, were detected in “Ca.
Nitrosocaldaceae” MAGs, suggesting a potential anaplerotic
contribution of amino acids to the carbon and energy flow.
Moreover, genes pepP and pepN, coding for aminopeptidases,
were found in most of the MAGs together with the ABC-type
peptidase/nickel transporter system and iorAB, suggesting that
members of “Ca. Nitrosocaldaceae” could assimilate amino acids
for energy or intermediates for biosynthesis.

Another enzyme detected in Thaumarchaeota archaeon J079
was carbonic anhydrase, catalyzing the conversion between
CO2 and bicarbonate, indicating that it could provide this
MAG with bicarbonate, the substrate for the HP/HB cycle
(Kerou et al., 2016). The capability of carbon fixation combined
with the detection of various pathways involved in organic
carbon metabolism suggests metabolic versatility of “Ca.
Nitrosocaldaceae” as reported for other Thaumarchaeota
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FIGURE 4 | (A) The full unrooted tree for NirK and multicopper oxidases (MCOs) included sequences retrieved from our study (with purple circles), references from
Decleyre et al. (2016) and Kerou et al. (2016). The full tree was constructed from an alignment of 406 sequences. Sequences encoded by nirK gene are indicated in
orange, and multicopper oxidase genes in blue. Dashed boxes in gray contained nirK gene identified in our study (“Ca. Nitrosocladaceae”) and from other
Thaumarchaeota genomes. Clades of MCOs were based on phylogenetic trees in Kerou et al. (2016). (B) The expanded version of the subsection in the dashed
box. Nodes with ultrafast boot strap ≥95% (50%) are indicated as solid (hollow) circles and the scale bar indicates 10% sequence divergence.
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(Tourna et al., 2011; Lehtovirta-Morley et al., 2014), providing a
hint for mixotrophy in “Ca. Nitrosocaldaceae.” However, these
metabolisms require verification.

Oxidative Phosphorylation
The aerobic lifestyle of “Ca. Nitrosocaldus” has previously
been reported in enrichment cultures (de la Torre et al.,
2008; Abby et al., 2018; Daebeler et al., 2018). Except for one
“Ca. Nitrosothermus” MAG (Thaumarchaeota archaeon J079),
the universal presence of cytochrome c-type terminal oxidase
(Complex III) in “Ca. Nitrosocaldaceae” MAGs confirmed
that they could use oxygen as a terminal electron acceptor.
Additionally, Complex I (NADH: ubiquinone oxidoreductase), II
(succinate: quinone oxidoreductase), IV (cytochrome c oxidase),
and V (ATPase) of the respiratory chain were detected in all
MAGs.

Other Metabolisms
Several vitamins, such as biotin, cobalamin, and riboflavin
were essential cofactors that were required for different
enzymes (Berg et al., 2007; Mansoorabadi et al., 2007; Kim and
Winge, 2013; Chow et al., 2018), including biotin-dependent
acetyl-CoA/propionyl-CoA carboxylase and cobalamin-
dependent muthylmalony-CoA mutase, which were part of
the HP/HB cycle (Ishii et al., 1996). Key enzymes involved in
the biosynthesis of these cofactors were identified in most of
the “Ca. Nitrosocaldaceae” MAGs (Figure 2, Supplementary
Figure S2, and Supplementary Table S4). Homologs of these
genes were also reported in some other Thaumarchaeota lineages
(Doxey et al., 2015; Santoro et al., 2015; Heal et al., 2018). The
only exception was JZ-2_bins.249, whose completeness was
only 58.8%, so we attributed the lack of these genes in this
MAG due to genome incompleteness. The genetic capacity
for de novo synthesis of these cofactors was conserved in “Ca.
Nitrosocaldaceae,” indicating that cofactor synthesis could be
an important service for terrestrial microbial communities,
as these cofactors could be synthesized by some but not all
prokaryotes (Zhang et al., 2009; Swithers et al., 2012). Other
genes (sat, cysH, and sir) involved in assimilatory sulfate
reduction were found in these MAGs, indicating they can
conduct this pathway. The products could be used for amino
acid synthesis. In contrast, other “Ca. Nitrosocaldaceae”
MAGs cannot reduce sulfate in this way as they lack CysC,
which was responsible for converting adenylyl sulfate to
3’-phosphoadenylyl sulfate. Motility has been reported in
some AOA (Lehtovirta-Morley et al., 2016). In our study,
most MAGs encode genes responsible for archaeal flagellar
proteins (flaG, flaH, flaI, and flaJ). The only exceptions were
Thaumarchaeota archaeon J079 and JZ-2.bins.249, which has
low completeness (84.4 and 58.8%). Therefore, motility may
be a common feature of “Ca. Nitrosocaldaceae,” which could
be advantageous for responding to environmental conditions
(Blainey et al., 2011). Although phosphate transporter-related
genes were commonly found, alkaline phosphatase was only
found in “Ca. Nitrosothermus” MAGs, which might confer
an advantage in phosphorus-limiting environments (Shen
et al., 2016). Moreover, arcC, coding for carbamate kinase

and carB, coding for carbamoyl-phosphate synthase were only
detected in “Ca. Nitrosothermus” (Supplementary Table S4).
These two enzymes could potentially provide ammonia under
aerobic conditions (Abdelal et al., 1982), which could be
valuable given the low concentration of ammonia in these
springs (Hedlund et al., 2012; Hou et al., 2013; Ward et al.,
2019) and many other alkaline geothermal springs (Holloway
et al., 2011). However, the potential function of these genes
in ammonia production in “Ca. Nitrosothermus” deserves
more attention.

Comparison Between “Ca.
Nitrosocaldales/Nitrosocaldaceae” and
Other AOA
To gain insight into potential mechanisms enabling thermophily
in “Ca. Nitrosocaldales/Nitrosocaldaceae,” comparative
genomics of all selected AOA was conducted.

The term “shared set” was defined for orthogroups that
were present in a given branch and other branches, whereas
the “specific set” refers to orthogroups that were only present
in a given branch. Then, further sub-defining the “specific
set,” the term “lineage-core set” was used for orthogroups
identified in ≥90% of the analyzed genomes, and the term
“lineage-accessory set” was used for orthogroups that were
present in <90% of the analyzed genomes. A total of 179,946
coding sequences (CDS) of all selected AOA MAGs were
clustered into 15,802 OGs, with 8,247 classified as singletons.
Comparisons of OGs between “Ca. Nitrosocaldaceae” and other
AOA enabled us to identify a shared set of 1,619 protein
families, and a large number of these OGs could be assigned
to information-processing genes (replication, transcription,
translation) (Figure 5 and Supplementary Table S7). Among
them, all genes of the highly conserved central information-
processing machinery in Thaumarchaeota were detected (Spang
et al., 2010), including ribosomal proteins (S25, S26, S30, L13e,
L29), other proteins involved in translation (RNA polymerase
subunit B, transcription factor MBF1), topoisomerases IB,
proteins involved in cell division (Cell division ATPase of the
AAA+ class ESCRT system component C, cell division GTPase
FtsZ, chromatin segregation and condensation protein ScpA
and ScpB), histones H3 and H4, and proteins involved in
the repair of macromolecules (ERCC4-like helicase, ERCC4-
type nuclease, chaperone DnaK, molecular chaperon GrpE). As
discussed above, we have detected genes participating in the
thaumarchaeal 3HP/4HB pathway, TCA cycle, gluconeogenesis,
non-oxidative PPP, ammonia oxidation, and biosynthesis of
several cofactors (riboflavin, biotin, and cobalamin) in the shared
OGs (Supplementary Table S7). The presence of these genes
in “Ca. Nitrosocaldales/Nitrosocaldaceae”-core and other AOA-
core sets confirms the conserved metabolic feature of AOA,
which has been noted in previous study (Kerou et al., 2016). It was
reported that the genomes of “Ca. Nitrosocaldus islandicus” and
“Ca. Nitrosocaldus cavascurensis” encode a family B polymerase,
and not family D polymerases (Abby et al., 2018; Daebeler
et al., 2018). In our study, we found genes coding for PolB
(OG0000200) in the shared set, together with a family Y DNA
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FIGURE 5 | (A) Venn diagram illustrating the number of OGs shared between “Ca. Nitrosocaldales/Nitrosocaldaceae” and other AOA, and the number of OGs only
present in either set. Numbers in parentheses indicate the number of OGs that could be assigned to arCOG database. (B) Distribution of the arCOG functional
categories assigned to the defined sets. Detailed information is provided in Supplementary Table S7.

polymerase (OG0000329). Consistently, both subunits of PolD
(OG0000966 and OG0001021) were detected in the “other AOA-
accessory” set, but not in “Ca. Nitrosocaldales/Nitrosocaldaceae”
(Supplementary Table S7 and Figure 2). PolB was therefore
assumed to be the main replicative polymerase in “Ca.
Nitrosocaldales/Nitrosocaldaceae,” as in most thermophilic
Thermoproteales, also lack PolD (Barry and Bell, 2006). The
absence of PolD in “Ca. Nitrosocaldales/Nitrosocaldaceae”

indicates distinct mechanisms of DNA replication exist in “Ca.
Nitrosocaldales/Nitrosocaldaceae” and other AOA. It might
also be possible that DNA primases play a vital role, for
example in lagging-strand synthesis, as several genes coding
for DNA primases (OG0000234, OG0000417, and OG0000456)
were detected in the shared set (Supplementary Table S7), and
some archaeal primases were known to have polymerase activity
(Lao-Sirieix and Bell, 2004).
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The differences between the functional profiles of “Ca.
Nitrosocaldales/Nitrosocaldaceae” and those of other AOA
were relatively small but significant (Supplementary Figure S6,
ADONIS R2 = 0.11, P = 0.001). In total, 526 OGs were only
present in “Ca. Nitrosocaldales/Nitrosocaldaceae,” which we
therefore defined as “Ca. Nitrosocaldales/Nitrosocaldaceae”-
specific OGs, and 5,410 OGs were only present in other
AOA (other AOA-specific OGs). Among the 526 OGs,
43 of them could be classified as the core set of “Ca.
Nitrosocaldales/Nitrosocaldaceae” (Supplementary Table S7).
Notably, the gene coding for cyclic 2,3-diphosphoglycerate
(cDPG) synthetase was found in this set, indicating that
cDPG utilization might be a unique strategy used by “Ca.
Nitrosocaldales/Nitrosocaldaceae” in hot springs (Abby
et al., 2018) as it was reported that cDPG might be
involved in the thermo-stabilization of proteins (Hensel
and König, 1988; Shima et al., 1998). Additionally, cDPG
could act as a storage reservoir for energy, phosphorus,
or carbon. For example, cDPG could potentially help “Ca.
Nitrosocaldales/Nitrosocaldaceae” survive during phosphate
limitation, as reported in other archaea (Roberts, 2005).
The detection of S-adenosylmethionine decarboxylase in
this set suggests polyamine production, which was vital in
cellular tolerance to high temperature (Tabor and Tabor,
1984; Morgan et al., 1987). Additionally, we predict that “Ca.
Nitrosocaldales/Nitrosocaldaceae” can specifically export
L-alanine to avoid the accumulation of amino acids to
toxic levels (Kim et al., 2015), indicated by the presence
of gene coding for L-alanine export (AlaE) in all “Ca.
Nitrosocaldales/Nitrosocaldaceae” MAGs (Supplementary
Tables S4, S7). The L-alanine could be generated in “Ca.
Nitrosocaldales/Nitrosocaldaceae” MAGs (Supplementary
Table S4) via cysteine desulfurase/selenocysteine lyase from
selenocysteine or coupling alanine aminotransferase with
glutamate dehydrogenase from pyruvate, as proposed in
Pyrococcus furiosus (Kengen and Stams, 1994). However,
alternative mechanisms of L-alanine accumulation might exist
as the distribution of alanine aminotransferase was limited in
“Ca. Nitrosocaldales/Nitrosocaldaceae” (totally absent in “Ca.
Nitrosothermus”), which requires further study.

In terms of the “Ca. Nitrosocaldales/Nitrosocaldaceae”-
accessory set, the largest proportion of them (34.9%) was
related to defense mechanisms (Figure 5). Among them,
genes of the CRISPR-Cas system, participating in resistance
to viruses (Barrangou et al., 2007), were detected. Some of
these genes have been associated with hyperthermophiles
like Cas10, Cmr4g7, Cmr6g7, and Cmr1g7 (Makarova
et al., 2003), indicating that these components of the
CRISPR-Cas system might be necessary for managing viral
infections in high-temperature ecosystems, where many
archaeal viruses exist (Prangishvili, 2013; Gudbergsdóttir
et al., 2016). Furthermore, a gene coding for indolepyruvate
ferredoxin oxidoreductase was also included in the “Ca.
Nitrosocaldales/Nitrosocaldaceae” accessory set, indicating
the ability to ferment aromatic amino acids might be
unique to “Ca. Nitrosocaldales/Nitrosocaldaceae.” Notably,
the gene coding for cobalamin-dependent methionine

synthase (MetH), a key enzyme of one-carbon metabolism,
clustered with accessory set of other AOA whereas the
cobalamin-independent methionine synthase (MetE) was
present in “Ca. Nitrosocaldales/Nitrosocaldaceae.” It has
been reported that MetH was more efficient than MetE
(Helliwell et al., 2016), stressing the differences between “Ca.
Nitrosocaldales/Nitrosocaldaceae” and other AOA.

In summary, the comparisons of function profiles between
“Ca. Nitrosocaldales/Nitrosocaldaceae” and other AOA could
identify potential mechanisms of thermophilic adaptation in “Ca.
Nitrosocaldales/Nitrosocaldaceae.”

The Role of HGT in “Ca.
Nitrosocaldaceae”
Previous studies have stressed the role of HGT in the adaptation
of Thaumarchaeota (López-García et al., 2015; Herbold et al.,
2017; Ren et al., 2019). However, little is known how HGT
events have affected “Ca. Nitrosocaldales/Nitrosocaldaceae.”
To probe the effect of HGT in adaptations of “Ca.
Nitrosocaldales/Nitrosocaldaceae,” initial analysis was conducted
assisted by an automated pipeline HGTector2 (Zhu et al., 2014)
to identify candidate HGT genes and some were subsequently
confirmed by phylogenetic analyses. In our study, more
than 8% of “Ca. Nitrosocaldales/Nitrosocaldaceae” genes
might have been horizontally transferred, and as typical, few
candidate HGTs were involved in information processing
(Supplementary Figure S7A). Among all candidate HGTs,
genes related to carbohydrate metabolism (∼10.55% of the total
candidate HGTs), amino acid metabolism (∼10.47%), energy
metabolism (∼8.53%), membrane transport (∼6.51%), and
metabolism of cofactors and vitamins (6.33%), were the top five
most abundant functional classifications (Supplementary
Figure S7B). Among the potential donors, more genes
were acquired from archaea (505), with Crenarchaeota
transferring the largest number (146). Nevertheless, the
contribution of bacteria (422) was significant, including
many genes (47) that were acquired from Firmicutes
(Supplementary Figure S8).

In the present study, it was noticed that all copies of the
SOD genes, encoding for superoxide dismutase required
for detoxification of reactive oxygen species (ROS), were
potentially horizontally transferred. ROS would be produced
during ammonia oxidation (Kim et al., 2016) and aerobic
respiration. Most of these SOD might have been transferred from
Crenarchaeota or Euryarchaeota (Supplementary Figure S9).
Other essential HGT genes necessary for protection from
ROS include speE, and trxB. Among them, trxB, encoding
for thioredoxin reductase, could help repair oxidatively
damaged cytoplasmic proteins and protect cells from oxidative
stress (Cheng et al., 2017). Spermidine synthase, encoded
by gene speE, could provide DNA protection and stability
in thermal habitats (Cheng et al., 2009). These genes would
enable “Ca. Nitrosocaldales/Nitrosocaldaceae” to broaden
their niche into low-oxygen or anoxic conditions. Gene
pspA was included among the HGT candidate, which
encodes phage shock protein A involved in response

Frontiers in Microbiology | www.frontiersin.org 12 January 2021 | Volume 11 | Article 608832

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-608832 December 26, 2020 Time: 15:35 # 13

Luo et al. Genomic Analysis of “Ca. Nitrosocaldaceae”

to several stresses (heat, ethanol, and osmotic shock)
(Brissette et al., 1990; Kleerebezem et al., 1996). Phylogenetic
analysis showed that they might have been transferred from
Euryarchaeota (Supplementary Figure S10). Genes encoding
for ATP-dependent helicase Lhr and Lhr-like helicase might have
transferred from other archaea. These genes have been reported
to play an important role in DNA repair (Rand et al., 2003). Other
HGTs from archaea that might be important in coping with stress
included genes coding for multiple antibiotic resistance protein
imported from Bathyarchaeota and genes coding for Type I
restriction enzyme proteins that protect cells from viral infection
(Ahlgren et al., 2017) imported from Euryarchaeota. All the above
results revealed that archaeal HGT genes contributed largely to
stress responses in “Ca. Nitrosocaldales/Nitrosocaldaceae.” Gene
arsC encoding for arsenate reductase, involved in detoxification
of arsenate (Rosen and Liu, 2009), was imported from bacteria
(Supplementary Figure S11).

Some genes involved in the CRISPR-Cas system
might belong to HGT genes, which assist “Ca.
Nitrosocaldales/Nitrosocaldaceae” to defend against virus
infection. In addition, “Ca. Nitrosocaldales/Nitrosocaldaceae”
acquired several genes coding for proteins involved in
phosphate transport from bacteria, including permease
protein, ATP-binding protein, and substrate-binding protein,
which likely enable “Ca. Nitrosocaldales/Nitrosocaldaceae”
to take up phosphate in low and/or fluctuating phosphate
concentrations. Detailed information on HGT genes is shown
in Supplementary Table S8.

Frequent HGTs have previously been identified in
thermophiles, facilitating their adaptation in high-temperature
habitats (Aravind et al., 1998; Rhodes et al., 2011). Our study
showed that “Ca. Nitrosocaldaceae” might have acquired genes
from both domains, which may be an essential driver to allow
this family to adapt to phosphate-limited and thermal habitats
but the confirmation necessitates further studies.

CONCLUSION

In the present study, a total of nine MAGs belonging to
“Ca. Nitrosocaldales/Nitrosocaldaceae” from India and China
were recovered from hot spring sediments, which enabled
us to obtain a better picture of phylogenetic diversity and
metabolic potential of this family. In all, we showed that the
“Ca. Nitrosocaldales/Nitrosocaldaceae” belong to four clades
and propose two new species of “Ca. Nitrosocaldus” and one
new genus, “Ca. Nitrosothermus,” to accommodate the new
genomes. Similar to other AOA, the potential for ammonia
oxidation and carbon fixation via thaumarchaeal 3HP/4HB
pathway was conserved in all “Ca. Nitrosocaldaceae” MAGs but
urea utilization and biosynthesis of vitamins, biotin, cobalamin,
and riboflavin were detected in some MAGs. The potential
adaptive features of “Ca. Nitrosocaldales/Nitrosocaldaceae” were
explored in this study. AOA shared many conserved genes,

and their central metabolism was highly conserved (ammonia
oxidation and carbon fixation). However, specific features
exist in “Ca, Nitrosocaldales/Nitrosocaldaceae” (e.g., cDPG
synthesis), stressing their adaptation mechanisms. It was found
that >8% (from bacteria and archaea) of the genes in “Ca.
Nitrosocaldaceae” might be horizontally transferred, and the
majority of them were acquired from the same domain,
suggesting that HGT played an important role in adapting
to thermal habitats. In summary, our study gives an insight
into the metabolic potentials and possible adaptations of “Ca.
Nitrosocaldaceae” in thermal habitats, which shed light on the
elucidation of the adaptation mechanisms enabling the ecological
success of AOA in different environments.
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