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Abstract

In Mendelian randomization (MR), inference about causal relationship between

a phenotype of interest and a response or disease outcome can be obtained by

constructing instrumental variables from genetic variants. However, MR

inference requires three assumptions, one of which is that the genetic variants

only influence the outcome through phenotype of interest. Pleiotropy, that is,

the situation in which some genetic variants affect more than one phenotype,

can invalidate these genetic variants for use as instrumental variables; thus a

naive analysis will give biased estimates of the causal relation. Here, we present

new methods (constrained instrumental variable [CIV] methods) to construct

valid instrumental variables and perform adjusted causal effect estimation when

pleiotropy exists and when the pleiotropic phenotypes are available. We

demonstrate that a smoothed version of CIV performs approximate selection of

genetic variants that are valid instruments, and provides unbiased estimates of

the causal effects. We provide details on a number of existing methods, together

with a comparison of their performance in a large series of simulations. CIV

performs robustly across different pleiotropic violations of the MR assumptions.

We also analyzed the data from the Alzheimer’s disease (AD) neuroimaging

initiative (ADNI; Mueller et al., 2005. Alzheimer's Dementia, 11(1), 55–66) to
disentangle causal relationships of several biomarkers with AD progression.
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1 | INTRODUCTION

Mendelian randomization (MR) is a popular epidemiological
study design that incorporates genetic information (G) as an
instrument to estimate the causal effect of a modifiable
exposure (X) on a disease (Y; Figure 1). From a statistical
perspective, MR is an application of instrumental variable
methods (Didelez & Sheehan, 2007; Lawlor, Harbord, Sterne,
Timpson, & Davey Smith, 2008; Smith & Ebrahim, 2003;
Wehby, Ohsfeldt, & Murray, 2008) to eliminate bias from
unmeasured confounding factors (U). Assuming a structural
model set‐up, the following conditions are necessary for G to
be a valid instrument: (A1) G and X are not independent;
(A2) G and Y are conditionally independent given exposure
X and unmeasured confounding factors U; (A3) G and
confounders U are independent. MR is complicated by the
possible violation of these assumptions; perhaps one of the
most important cases is the possible presence of pleiotropy.
Pleiotropy occurs when more than one phenotype is
influenced by the same group of genotypes. If these
phenotypes are found on the causal pathway for the
response Y, then pleiotropy is a violation of assumption
(A2). However, it is possible to accommodate pleiotropy
within an extension of the original causal framework that
includes one or more additional phenotypes (Z; Figure 2).

In econometric research, a framework like Figure 2
has been discussed to account for multiple risk factors
simultaneously (Angrist, 2006; Ludwig & Kling, 2007;
Wooldridge, 2015). However, in genetic studies the
extraction of causal effects for individual risk factors
with pleiotropic phenotypes is rarely discussed (Burgess
& Thompson, 2015; Kang, Zhang, Cai, & Small, 2016).
Instead, most of the recent MR studies are conducted
using the two‐stage least squares (2SLS) estimator
approach (Baum, Schaffer, & Stillman, 2003). Specifically,
a prediction of X is constructed from the ordinary least
square (OLS) regression X∼G and called X̂. Then the

OLS regression Y X~^ is fit and the slope β̂ is proposed as
the causal effect estimator.

When there are exogenous variables, they can be
included as covariates. Hence a potential extension of
2SLS to accommodate pleiotropy is to control for Z as
covariates. This, however, is unsatisfactory. It would be
ideal to identify instruments, G, for X that are unrelated
to Z to estimate the causal effect of X on Y in the absence
of pleiotropic effects. However, adjusting for covariates,
Z, will enable construction of an instrument for X|Z,
which is not answering the same question. Furthermore,
controlling for Z can induce collider bias (Cole et al.,
2009; Greenland, 2003). It is worth noting that adjusting
for Z as covariates in 2SLS is equivalent to estimating the
causal effect on measures that have been residualized for
Z. That is, to work with (G∗, X∗, Y∗), where G∗, X∗, and
Y∗ are defined as G∗= (I− Pz)G, X∗= (I− Pz)X, and
Y∗= (I− Pz)Y, where Pz= ZT(ZTZ)−1Z (Lovell, 2008;
Wang & Zivot, 1998). More details can be found in
Appendix A.

A second approach to coping with pleiotropy is based on
the multiple linear regression of Y on X and Z jointly.
However, if X and Z are highly correlated, the resulting
estimator of β could be unstable, that is, the standard errors
could be large (Farrar & Glauber, 1967; Grapentine, 2000;
Grewal, Cote, & Baumgartner, 2004). Collider bias is also a
concern here.

In a third approach, Some Invalid Some Valid Instru-
ment Variable Estimator (sisVIVE; Kang et al., 2016),
pleiotropy is treated as unobservable and G is modeled as a
mixture of “valid” and “invalid” instruments, with an L1
penalized regression to infer the causal effect of X on Y.
This approach is not guaranteed to eliminate pleiotropy:
indeed, the sisVIVE estimator β̂ would be biased when
more than 50% of genotypes are pleiotropic. Moreover, if
the αx are much stronger than αz (Figure 2) then sisVIVE
may have difficulty identifying the pleiotropic genotypes,
which would give biased causal effect estimates.

FIGURE 1 A directed acyclic graph representing a situation
where Mendelian randomization using genetic variants G as
instruments can be useful for inferring whether a phenotype X is
causally related to an outcome Y. U represents unmeasured
confounding factors

FIGURE 2 A general diagram representing potential
pleiotropic influences in Mendelian randomization studies. αx, αz:
genetic association parameters between X~G and Z~G; β: causal
effect of interest (X on Y); γxz and γzx: possible direct causal effects
of X on Z and Z on X, respectively; η: the pleiotropic pathways of Z
on Y; G: genotypes; X: phenotype of exposure; Y: response of
interest; Z: potential pleiotropic phenotypes

374 | JIANG ET AL.



A variety of additional approaches to coping with
pleiotropy can be found in the literature, for example,
direct genotype selection, generalized methods of moments
(GMM), Egger regression, and so forth. However, there has
been limited recent work on solutions for inference when
potential pleiotropic phenotypes are observed.

In this paper we present a novel approach to dealing with
pleiotropy, based on the general framework of Figure 2:
The idea is to construct a new instrumental variable by
maximizing the association with X (i.e., instrumental
strength) and minimizing possible correlation with potential
pleiotropic phenotypes Z. There are three innovative aspects
in this method: (a) the pleiotropic effect is eliminated by
shrinking the correlation with potential pleiotropic pheno-
types toward zero; (b) the instrumental strength is retained
coherently in the model; (c) our penalization algorithm
forces approximately sparse and valid genotype selection,
which reduces the overfitting problem resulting from the use
of multiple genotypes, especially when the number of
genotypes is larger than the number of samples where most
existing IV methods fail.

After introducing notation and outlining a formal
framework for pleiotropy that also accommodates existing
research (Section 2), we devote Section 3 to the presentation
of our novel idea: constrained instrumental variable (CIV).
A computationally feasible method, CIV_smooth, is then
introduced to implement instrument construction and
causal effect estimation. In Section 4 we compare by
simulation the performance of our methods with the closest
popular approaches, including variants of 2SLS approach,
sisVIVE and Allele scores. In Section 5 we conduct an MR
study estimating the effects of four biomarkers (amyloid
β [Aβ] 1–42, total tau protein [Ttau], phosphorylated tau
protein [Ptau], and fluoro‐D‐glucose uptake [FDG_SUVR])
on Alzheimer’s disease (AD) risk using our methods.

2 | NOTATION AND BACKGROUND

2.1 | Notation

For each individual, i= 1, …n, let Yi denote the response of
interest, and Y= (Y1, …,Yn)

T∈Rn× 1 the vector of observa-
tions. Let Gi∈Rp represent the set of genotypes, where p is
the number of single nucleotide polymorphisms (SNPs)
being analyzed, and G= (G1, …, Gn)

T∈ Rn× p the matrix of
observations. Also, we denote by Zi∈Rk the vector of
additional phenotypes that may be affected by some
elements of Gi, and by Z= (Z1, …, Zn)

T∈ Rn× k the matrix
of these observations. Finally, let X= (X1, …, Xn)

T∈Rn× 1

denote the vector of the phenotype of interest.
Figure 2 lays out a general structure for our explorations.

We assume that genotype G, phenotype of interest X, the
response Y, and potential pleiotropic phenotypes Z have all

been measured for each individual. The total causal effect of
X on Y is the sum of the direct causal effect represented by
the scalar parameter β, and any indirect causal effects. The
latter is a product of the causal effect of X on Z, represented
by γxz, and the direct causal effect of Z on Y, represented by
η. Pleiotropy is present when the association betweenG and
Z, represented by the parameter αz, is nonzero. In this case,
as previously mentioned, conditioning on Z may induce
collider bias. The methods discussed below attempt to
address this issue.

The genetic variants in G are strong instruments for X
if the association between G and X, represented by αx, is
strong. Note that G may contain many genetic variants
and only some of them may influence Z. The relation-
ships between phenotype of interest X, potential pleio-
tropic phenotypes Z, unmeasured confounders U, and
outcomes Y may vary from one situation to another, that
is, not all of the edges or arrows in Figure 2 need to be
present in every particular study or scenario.

The relationships in Figure 2 can be formally
expressed in the following linear structural equations:

α ζ εZ G U= + + ,z z z (1a)

α γ ζ εX G Z U= + + + ,x zx x x (1b)

β η ζ εY X Z U= + + + ,y y (1c)

Or

α ζ εX G U= + + ,x x x (2a)

α γ ζ εZ G X U= + + + ,z xz z z (2b)

β η ζ εY X Z U= + + + .y y (2c)

The parameters ζx, ζz, and ζy represent the impact of
unmeasured confounding factors U on X, Z, and Y,
respectively. The errors εx, εz, and εy for X, Z and Y,
respectively, are assumed to be independent and identi-
cally distributed.

Each of the following assumptions for the relationship
between X and Z represents an interesting scenario.

(i) X and Z are conditionally independent given G and
U (γzx= γxz= 0), that is the simplest case of
pleiotropy.

(ii) There is a direct causal impact of Z on X (γzx ≠ 0
and γxz= 0).

(iii) There is a direct causal impact of X on Z (γxz≠ 0 and
γzx= 0). In this case, the total causal effect of X on Y
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is β+ γxzη. Although this is an important scenario,
we do not address it in this paper, since we are
focusing on the estimation of β.

Assuming that the set G may be quite large, containing
many genetic variants in association with X, using all
elements of G in the analysis may introduce bias in the
estimation of β: Indeed some components of G may affect
Z, so that the total causal effect from G to Y is mediated by
both X and Z. In MR applications, those components of G
which do have an impact on Z are usually eliminated,
possibly causing other types of bias (e.g., weak instrument
bias, Burgess, Thompson, & Collaboration, 2011; selection
bias, Smith & Ebrahim, 2003; etc.).

Our goal is to determine the best MR estimator of β
when possibly pleiotropic variables Z are measured and
available and when the set G contains several variants.
We are searching for the best approach to remove bias in
the estimation of β.

2.2 | Two‐stage least squares

The simplest MR method is 2SLS regression. Given valid
instruments G, the following two stages define a 2SLS
model:

1. In the first stage, a new variable X̂ is obtained from
the fitted values from OLS regression X∼G.

2. In the second stage, the OLS estimates of β from the

regression Y∼ X̂ are obtained.

2SLS works well if G is a set of valid instruments with
αz= 0. This rarely occurs naturally, but can sometimes be
achieved by carefully selecting a subset of variants G that
are approximately valid. Most researchers using MR
make intensive efforts to select instruments G that are
most likely to satisfy the three key assumptions (A1–A3)
of MR. Variants known to be in pleiotropic pathways, or
variants showing associations with possibly pleiotropic
phenotypes, are removed from the set of variants to be
considered. However, this selection process is necessarily
ad hoc. In this paper, we refer to the original 2SLS as
“2SLS_naive.”

A variation of the 2SLS approach—the Allele score
method Burgess and Thompson (2013) constructs summar-
ized genetic scores G∗=Gw. The weights w correspond to
estimated genetic effect sizes for each genotype, and can be
derived internally from data under analysis or externally
from prior knowledge. Protection against winner’s curse
can be incorporated into the estimation of w through
internal cross‐validation or external sources for the
estimates of genetic associations.

2.3 | Statistical methods for selection of
valid instruments

Several methods have been proposed for improving causal
estimation in the presence of pleiotropy, for example,
Egger regression (Bowden, Smith, & Burgess, 2015), CUE
(Davies et al., 2015), LIML (Hansen, Heaton, & Yaron,
1996), Allele score (Burgess & Thompson, 2013); these
methods generally assume that the pleiotropic phenotypes
are unknown, and use all the components of G.

In the same vein, Kang et al. (2016) proposed to select
components of G, again without explicitly using the
phenotypes Z. The proposed approach, named by the
authors as “some invalid some valid IV estimator
(sisVIVE),” incorporates all causal effects from G to Y
using the following model:

Y δ β ε iG X= + + ,i yi i (3a)

E ε i i nG( | ) = 0, = 1… ,y i (3b)

α ε iX G= + ,xi i (3c)

where δ represents the direct effects of the instruments G
on outcome Y. Indirect effects of G on Y are captured
through X, and β represents the causal effect parameter
of interest. α is the association parameter between G and
X. The central idea of Kang et al. (2016) is to operate a
sparse selection of genetic variants (components of G) by
a LASSO type penalization, which leads to the con-
strained optimization problem:

∈β δ β λ δδ P Y G X( , ) argmin1/2|| ( − − )|| + || || ,G 2
2

1

where PG=G(GTG)−1GT. In other words, the projected
error of predicting Y from G and X is minimized, while
controlling the impact of invalid instruments in G on Y
(through the penalty term). It has been shown that, under
certain conditions, sisVIVE is robust to certain types of
invalid instruments, for example, pleiotropic genotypes and
their direct causal effect on Y (without going through X).

2.4 | Adjustment for exogenous or
endogenous variables

In MR terminology, the term “endogenous variable”
describes factors that are explained by the genotype–
phenotype relationships and impact response Y. For
example, common endogenous variables include health‐
related behaviors and risk‐related phenotypes. Both X and
Z in Figure 2 are endogenous as they are determined by
genotypes and have impact on the response, albeit with
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different functions. Endogenous variables are the variables
of primary concern for MR studies.

In contrast, covariates such as age and sex that are not
associated with the genotype–phenotype causal pathways
of interest are termed “exogenous”; normally it is
possible to adjust for these variables in a straightforward
way. One solution is to replace G, X, Y by G∗= (I− Pz)G
and X∗, Y∗, respectively, where Pz = ZT(ZTZ)−1Z. Then
straightforward 2SLS can be applied to the new (G∗, X∗,
Y∗); we refer to this method as “2SLS_exo.” It is worth
noting that this method is equivalent to controlling for Z
as covariates in both first stage and second stage
regressions. Details are given in Appendix A.

Although this has sometimes been implemented with
pleiotropic phenotypes, this is not an appropriate approach:
the estimate of β remains biased, as pleiotropic variables, Z,
are not exogenous (Engle, Hendry, & Richard 1983). Note, if
αz≠ 0, treatment of Z as an exogenous variable may
introduce collider bias due to dependence between G and u
after conditioning on Z.

Another multiple regression‐type approach, this time to
account for endogenous variables, can be derived from the
underlying linear structural model (Figure 2) by building a
multiple linear regression of Y on X̂ and Ẑ jointly in a 2SLS
model, where X̂ and Ẑ are the predicted phenotypes using
G as the instruments. We refer to this method as
“2SLS_mul.” The 2SLS_mul method uses G to account
for endogeneity of Z, without controlling for it explicitly.
However, using this approach, the resulting estimator of β
will be unstable if X and Z are highly correlated (Farrar &
Glauber, 1967; Grapentine, 2000; Graham, 2003; Grewal
et al., 2004).

Both of these two multiple regression solutions for
secondary phenotype variables can be embedded within
the Allele score method to adjust for Z variables, and we refer
to these methods as “Allele_mul” and “Allele_exo.” The
original sisVIVE approach assumes all pleiotropic phenotypes
are unmeasured and treats them as sources of the indirect
causal effect of G on Y, and thus does not use Z variables
directly. If measures of secondary phenotypes are available,
Kang et al. (2016) suggested adjusting (G, X, Y) a priori on Z
(as in 2SLS_exo), thus treating Z measures as exogenous
variables. We refer to this method as “sisVIVE_exo.”

2.5 | Design choices: One sample, a first
sample with and without an external
validation sample, or two sample

In the causal inference literature, the term “one‐sample
analysis” refers to the situation in which a single data set
(a sample) is used to perform a data analysis task, typically
the estimation of the parameters in a model. Unless the
sample size is enormous, a one‐sample analysis is often
considered flawed due to the problem of overfitting; see
Thaler’s work on “winner’s curse” (Thaler, 1988). Using
sample splitting techniques—that is cross‐validation or
splitting the sample into a “learning sample” and a “testing
or validation” sample (James, Witten, Hastie, & Tibshirani,
2013) will alleviate the problem, though not remove it.
Obtaining an external validation sample, that is, a second
sample from an external source with exactly the same
variables as the original one, has been argued to be a better
approach to reduce overfitting bias and increase general-
izability (Friedman, Hastie, & Tibshirani, 2001).

In the framework of this paper, the model presented in
Figure 2 has the parameters of interest αx and β. In Table 1
we distinguish different study designs that could be used
with pleiotropic phenotypes Z. In the one sample setup (first
row in Table 1) the data includes variables G, X, Z, and Y.
An external validation sample, if available, must also contain
G, X, Z, and Y (second row of Table 1). We will refer to this
situation as “one sample analysis with external validation,”
to distinguish it from both the “one sample” and the “two‐
sample” setups. Note that we consider one‐sample designs
with internal splitting as a one‐sample situation.

Indeed in the causal inference literature, the “two‐
sample” setup is a design in which two studies are performed
for two distinct analytic tasks. Specifically, in one study given
G and X, αx is estimated; and in the other study given G and
Y (or G, X, and Y), β is estimated. One advantage to this
approach is that large datasets (Study 1) may be available to
estimate the instrument strengths even though Y was not
measured. Another advantage is that such separation of the
data protects against overfitting. If valid instruments are
constructed using the data set with G and X, the
corresponding causal effect estimates from the second
sample should be less subject to the overfitting bias.

TABLE 1 A comparison of study designs considered here

Study design Number of samples Variables required

One sample analysis One (X, Z, Y, G) on 1 data set.

One sample analysis with external validation
sample

Two: (1) learning and (2) validation (X, Z, Y, G) on both data set 1 and data
set 2.

Two-sample analysis in Mendelian
randomization

Two: (1) Learning weights and (2) learning
causal effects

(X, Z, G) on data set 1. (G, Y) on data
set 2.
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Although all methods discussed in this paper work for
the one‐sample set‐up, not all of these methods can be
adapted to the one sample analysis with external
validation or the two‐sample set‐up. The ordinary 2SLS
method adapts easily to a two‐sample set‐up (Angrist &
Krueger, 1992; Dee & Evans, 2003). However, this
adaptation does not improve asymptotic efficiency (Inoue
& Solon, 2010). When there are additional phenotypes (Z)
to be considered, neither 2SLS_exo nor 2SLS_mul can be
adapted to one sample with external validation set‐up or
the two‐sample set‐up because they both require one‐
sample individual level data to calculate the appropriate
residuals. In contrast, methods that propose valid
instrument construction using Y include sisVIVE, and
its variants (sisVIVE_exo and sisVIVE_mul) can be
extended to one sample analysis with external validation.
Specifically, the valid instrument selection is obtained
from the original sample, and is used to infer the causal
effect β on the external validation sample. Furthermore,
the Allelemethod and its variants adjusting for exogenous
variables (Allele_exo and Allele_mul) extend to the two‐
sample situation as the Allele weights only depend on G,
X (and Z).

3 | CONSTRAINED INSTRUMENTAL
VARIABLE (CIV) METHODS

Let us consider the situation where potentially pleio-
tropic phenotypes (Z) are measured and available. We
propose here a novel approach that we call “CIV”. The
central idea is to maximize instrument strength, whereas
attempting to control the impact of pleiotropic effects. In
what follows we will consider two cases separately. In
Section 3.1, we show that in the particular case p< n, a
new instrumental variable can be obtained as a solution
of an unpenalized maximization problem. In Section 3.2,
we show that the addition of an appropriate penalty term
to the aforementioned maximization problem leads to
workable solutions with no restriction on p.

3.1 | CIV_naive: CIV when p< n

We are looking for a linear combination of the genotype
data such that the resulting instrument strength is
maximized, and the association between new instruments
and pleiotropic phenotypes Z is zero. In mathematical
terms we aim to find a vector c∈Rp which solves the
following optimization problem:

∈

max c G X

c R

T T

p
(4)

subject to conditions:

c G Gc = 1,T T (5a)

Zc G = 0.T T (5b)

Note that Equation (5a) is a normalizing condition
which ensures the unicity of the solution (the norm of the
projection c on G is constrained to be 1).

This maximization problem is well‐defined when
p< n and p≥ k (where k is the number of possibly
pleiotropic phenotypes), and can be solved using simple
linear algebra (see Appendix B). Let ĉ be the solution to
the constrained optimization problem above. We will
refer to Gĉ as the CIV_naive instruments.

The strength of the CIV_naive instruments can be
measured by the F‐statistic of linear model X∼G against
the null hypothesis that the excluded instruments are
irrelevant. As a rule of thumb, instrumental variables
with F‐statistics < 10 are usually considered weak instru-
ments. CIV_naive is designed to retain instrument
strength, however, it may not always yield the strongest
possible global F‐statistic due to constraint (5b; Boyd &
Vandenberghe, 2004; Tofallis, 1999).

In a one‐sample analysis, the new instrumental variable
Gc is used to infer the causal effect of X on Y using
methods from linear structural equation modeling such as
2SLS. Furthermore, the CIV_naive approach translates
naturally to two‐sample analyses. The linear vector c is
estimated in the first‐stage data set, and the estimate ĉ is
used in the second-stage data set to create the new
instrumental variableGĉ and to estimate the causal effect β.

3.2 | A penalized maximization:
CIV_smooth

The existence of a unique solution for the optimization
problem when p<n (see Section 3.1 and Appendix B) is a
definite asset of CIV_naive. In contrast, an important concern
is that when p> n, solutions may not exist. Another concern
is that, regardless of whether or not p< n, a reduction in the
number of components may be desirable to avoid overfitting
and to provide insight into the causal impact of SNPs. To
address these two concerns, we propose an improvement of
CIV_naive which guarantees existence (though not unique-
ness) of solutions and allows for variable selection. This is
achieved by imposing a penalty on the optimization problem
(4). We will call the proposed method CIV_smooth.

Different choices of penalty functions lead to different
solutions. However, in this context, neither L1 nor L2
penalties will result in a sparse solution under any level of
regularization, because of the linear constraint (3c). Figure 3
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illustrates this for two instruments G= (g1, g2); the L1 and L2
penalty contours intersect the linear constraint at nonsparse
solutions for c.

Therefore, we propose instead to use a L0 penalty, and
to maximize the constrained function

∈

X c

c R

max c G ‐λ| |

p

T T
0

(6)

subject to conditions:

≤c G Gc 1,T T (7a)

Zc G = 0,T T (7b)

where |c|0 is the L0 norm of c and λ is the regularization
parameter. The problem described by (4a)–(4c) is
equivalent to maximizing a convex function over a
convex set. However, even for moderate values of p, it is
computationally impractical to exhaustively enumerate
all possible sets of |c|0; this problem with the L0 norm
has been proven to be NP‐hard (Natarajan, 1995).

Therefore, instead we consider smoothed L0 penalties:
f x( ) = exp (− )σ

x

2σ

2

2 , for σ going to 0. In the limit,
≈ ∑p f cc| | − ( )

j σ j0 , thereby the problem (4) can be
approximated by

∑

∈

( )λ p fσ c

c R

c G Xmax − − ( )
,j j

p

T T

(8)

subject to conditions (7a) and (7b). Equation (8) is solved
for a decreasing sequence of (σ→ 0) and a given value of
λ, resulting in approximately sparse solutions (see
Appendix C). Unfortunately there are no theoretical
guarantees for the uniqueness of such numerical solu-
tions. Often there are multiple solutions; however, when
this occurs the corresponding values of the objective
function (8) are usually very similar. See Appendix D for
details of the solutions.

Higher values of λ (stronger penalization) lead to
somewhat sparser solutions. In practice λ is chosen by
K‐fold cross‐validation to minimize the projected predic-
tion error (Kang et al., 2016) ||PG

∗(Y−Xβ∗)||, where
PG

∗=G∗T(G∗TG∗)−1G∗ is the projector onto the columns

FIGURE 3 Graph demonstrating the maximization problem with LASSO (L1) penalty and L2 penalty. Rectangle: LASSO penalty
contour with the same level of penalization. Circle: L2 penalty contour with the same level of penalization. Straight line: the solution space
required by condition (5b); it has zero probability of intersecting a sparse solution here. Pixels with color from yellow to red: co‐ordinates of
C = (c1, c2) with absolute correlation values from high to low levels
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of the genetic matrix G∗=Gĉ given multiple solutions ĉ .
In the ideal case in which all the components of G∗ are
valid instruments (which implies the absence of pleio-
tropy), the regression residual Y−Xβ∗ is orthogonal to
the columns of G∗: PG

∗(Y−Xβ∗) = 0. Notice that this
orthogonality condition ensures valid solutions for
constrained instrument weights, but not necessarily
minimal prediction errors. More discussion about this
choice of using projected prediction error as criteria for
selecting the regularization parameter λ can be found in
Appendix E.

The estimate of the exposure’s causal effect, β, is
then obtained using approximately valid instruments
G∗. For example, in the 2SLS, the estimator of the
causal effect is given by:

β X Yˆ = (X P ⁎ ) X P ⁎ .T
G

−1 T
G

Although asymptotic variance estimates are available for
standard 2SLS estimates, they are not available for the
CIV methods. Indeed, the new instruments G∗ depend on
all observations of X and Z, so that X Gi i

⁎ and X Gj j
⁎ are not

independent for i≠ j. As a consequence, this weak law of
large numbers cannot be invoked, and the convergence of
∑ X G⁎in i

n
i

1

=1
to E|X G⁎ii | is not assured. Instead, boot-

strap estimates of the sample variance of β̂ can be
obtained.

CIV_naive can be extended to two‐sample causal effect
estimation. The weight c can be estimated on the first
sample, and then applied to the second sample for causal
effect estimation. In contrast, CIV_smooth can benefit
from an external validation sample where (G, X, and Y)
are all available in two data sets. These adaptations to
more general study designs are included in our simula-
tions below.

In this paper, MR analyses were restricted to the case
of a single risk factor X, although most of the mentioned
methods can be extended in some way to allow for a
multivariate X. For CIV_naïve and CIV_smooth, we
demonstrated how to account for multivariate X in
Appendices B and C, respectively. The corresponding
multiple solutions ĉ can be used with multivariate 2SLS
to infer the causal effect of X on Y.

In summary, CIV_naive and CIV_smooth are formulated
as optimization problems, which ensures that the resulting
instrument G∗ is strong and valid for estimating the causal
effect of X on Y. However, in the construction algorithm for
CIV_smooth, we cannot prove convergence to a unique
solution for weight c, nor can we establish an analytical form
for the variance of c and the estimate of β. In contrast, the
most traditional benchmark in MR literature, 2SLS, although
always producing consistent estimates for β with an

asymptotic formula for its variance, is not designed to
produce strong and valid instruments. This validity concern
is addressed in both the Allele score method and in sisVIVE,
which can both be seen as natural competitors of our
approach. Therefore, we designed and carried out a
simulation study to compare CIV_naive and CIV_smooth
with Allele_score and sisVIVE methods as well as the
benchmark 2SLS. These methods are available as an R
package, CIVMR, at https://github.com/GreenwoodLab.

4 | SIMULATION

The purpose of this simulation study is to assess the
performance of our novel approach and of the three most
popular methods over a broad variety of scenarios that
mimic what we would expect to find in genetic studies.
Two scenarios of pleiotropy were simulated in two series
of simulations. Also, the association parameters αX and
αZ were varied to study the impact of instrument strength
on performance. Both one‐sample and two‐sample/
validation sample set‐up were simulated in each of the
two scenarios.

4.1 | Simulation design

With reference to Figure 2, we capture possible violations
of the MR assumptions by varying the parameters αz, αx,
γxz, and γzx, while keeping η and β fixed, as well as the
association of the unknown confounder U with X, Z, and
Y. For a given set of conditions corresponding to a
violation of the MR assumptions, we simulated a set of
independent genotypes G, exposures X, pleiotropic
phenotypes Z, an unknown confounder U, and outcome
Y. We have implemented two series of simulations
corresponding to the following scenarios:

Series I. Standard pleiotropy: The pleiotropic phenotype
Z is not directly associated with X (γxz= γzx=0 in Figure 2).

Series II. Z→X: Direct causal pathway from Z to X
and G to Z (γzx≠ 0 and γxz= 0 in Figure 2).

Table 2 summarizes the general design of the
simulations. Notice that the following elements are the
same in the two series: n, the number of observations; p,
the total number of SNPs (components of G); and MAF,
the minor allele frequency of each SNP. In contrast, the
following parameters vary in both series: pz, the number
of SNPs that have direct causal impact on Z (two values);
αx, the association parameter between G and X (two
values); αz, the association parameter between G and Z
(two values). In total there are 2 × 2 × 2 = 8 combinations
of parameters. Finally, (γxz, γzx) were set to (0, 0) in Series
I and (0, 0.1) in Series II.
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Structural equations for simulation Series I: Stan-
dard pleiotropy

∑

∑

x α G u ε

z α G u ε

y x z u ε

= + + ,

= + + ,

= + + + ,

i x

j

p

ij i x i

i z

j

p

ij i z i

i i i i y i

=1

,

=1

,

,

z (9)

where εx,i, εz,i, εy,i, ui∼N(0, 1).

Structural equations for simulation Series II: Z→X

∑

∑

z α G u ε

x α G γ z u ε

y x z u ε

= + + ,

= + + + ,

= + + + ,

i z

j

p

ij i z i

i x

j
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ij zx i i x i

i i i i y i

=1

,

=1

,

,

z

(10)

where εx,i, εz,i, εy,i, ui∼N(0, 1).

In each simulated data set, 100 SNPs (G in Equation (9))
with a minor allele frequency of 0.33 and n=500
observations were generated, with values coded as (0, 1,
2). Among all 100 SNPs there are pz∈ {20, 50} SNPs directly
related to Z. Notice that smaller values of αx=0.1 represent
weak instruments G for X, while large values of αz=1
represent strong instruments G for Z. Therefore, our
scenarios comprise weak and strong instruments for one
or both of X and Z. Two hundred datasets were generated
for each scenario, and results compared the estimates and
variance of the causal effect, β.

We conducted both one‐sample and validation
sample simulations for Series I and II. In one-sample
simulations we compared the bias of causal effect
estimators across all the methods discussed in this
study: 2SLS_naive, 2SLS_exo, 2SLS_mul, Allele,
Allele_exo, Allele_mul, sisVIVE, sisVIVE_exo, CIV_naive,
and CIV_smooth. The strength of constructed instru-
ments G∗, and correlation between G∗ and Z, are also
compared across all methods except 2SLS_naive,
2SLS_exo, and 2SLS_mul. The pleiotropic correlation

of sisVIVE variants is presented as the maximum
correlation between Z and genotypes selected by the
methods.

In external validation sample and two‐sample simula-
tions, we compared causal effect estimation bias, instru-
ment strength, and pleiotropic correlation across all
methods except 2SLS naive, 2SLS_exo, and 2SLS_mul. As
explained in Section 2.5, from the first sample, a vector of
weights ĉ is constructed and used to create a new
instrument, G∗=Gĉ, which is then used to infer the
causal effect β̂ on the second sample. Notice that the
vector of weights is obtained differently for different
methods: for Allele score methods it is obtained from
ordinary linear regression; for sisVIVE methods from a
LASSO regression; and for CIV from the constrained
optimization problem (4, 5a, and 5b).

The feature selection performances of sisVIVE,
sisVIVE_exo, and CIV_smooth are also reported for all
the simulation scenarios. The feature selection result
from CIV_smooth is extracted as follows: we first obtain
CIV_smooth estimates ĉ. For each converged solution ĉ, a
feature j is recognized as significant if coefficient
|cj|≥ 0.2 ×maxj |cj|, j= 1, …, p. All selected features are
then recognized as selected valid instruments.

4.2 | Simulation results

The simulations were designed to assess the perfor-
mances of CIV_naive and CIV_smooth. The expectation
was that both approaches would provide strong instru-
ments with near zero pleiotropic correlation compared
with other methods. Moreover, CIV_smooth should
reduce the number of selected pleiotropic genotypes,
thus providing more valid instruments and more accurate
β̂ compared with some competitors; specifically, the
validity of the instruments obtained from CIV_smooth
should be comparable with those obtained from sisVIVE.

4.2.1 | One sample simulation

These expectations were met in one‐sample simulations,
as shown in Figures 4–6 and Table 3 for Series I. The
F‐statistics of Figure 4 show that the instrument strengths
of CIV_naive and CIV_smooth are superior to that of
sisVIVE and sisVIVE_exo across scenarios. Although, as

TABLE 2 The parameter settings used in the two series of simulations

Simulation n β η p pz MAF (αx, αz) γxz γzx

I. Standard pleiotropy 500 1 1 100 20;50 0.33 (1,1); (1,0.1); (0.1,1); (0.1,0.1) 0 0

II. Z→X 500 1 1 100 20;50 0.33 (1,1); (1,0.1); (0.1,1); (0.1,0.1) 0.1 0

Note. αx: association parameter between G and X; αz: association parameter between G and Z; MAF: minor allele frequency of all SNPs in the simulation; n:
number of individuals; p: number of genotypes in total; pz: number of pleiotropic genotypes with effects on Z.

JIANG ET AL. | 381



expected, the largest instrument strengths are obtained
from the three variants of the Allele score method; across
all scenarios the F‐statistics of the CIV approaches are >10,
indicating that instrument strength is retained despite the
adjustments for pleiotropy. The pleiotropic correlations for

one‐sample simulations, presented in Figure 5, show that,
confirming our expectations, both CIV_smooth and
CIV_naive have exactly zero pleiotropic correlations in
all scenarios, whereas sisVIVE, Allele, and Allele_mul show
substantial nonzero values.

FIGURE 4 Log‐transformed F‐statistics of X~G∗ for each Mendelian randomization method in one-sample set‐up for simulation series
I. The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz
denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Vertical line denotes F‐statistics = 10
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The feature selection results in Table 3 show that
sisVIVE outperforms CIV_smooth in the strong pleiotropy
case, with a smaller true positive rate and a much smaller
false positive rate. In contrast, in the weak pleiotropy
case, it is the CIV_smooth that outperforms sisVIVE: here
the sisVIVE approach does not eliminate any genetic

variants, whereas CIV_smooth correctly eliminates
30–50% of the invalid genotypes.

The bias of β̂ across methods from simulation Series I in
one‐sample set‐up is presented in Figure 6. For all methods,
this bias is smaller for strong instrument scenarios than for
weak instrument scenarios, and is higher for strong

FIGURE 5 Pleiotropic correlations of Z and G∗ for each Mendelian randomization method in a one-sample set‐up for simulation Series
I. The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz
denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Note that the pleiotropic correlations
from CIV_smooth, CIV_naive, sisVIVE_exo, and Allele_exo are exactly zero in some scenarios
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pleiotropy scenarios than for weak pleiotropy scenarios.
Moreover, for all methods, the most biased estimates are
those obtained from weak instruments and strong pleio-
tropy scenarios. It should be noted that in the latter case, β̂
is unbiased for CIV_smooth, sisVIVE and Allele_mul. Also,
CIV_smooth outperforms CIV_naive in each scenario in

terms of magnitude of the β̂ bias. The reason for the

discrepancy between CIV_smooth and CIV_naïve is that
CIV_smooth includes a prediction optimization procedure,
whereas CIV_naive does not (see Appendix E).

The simulation results for Series II in the one sample set‐
up, in general, are similar to those for Series I (Figures 7–9,
and Table 4 for Series II). The only difference between the
results of Series II and I lies in the performance of

FIGURE 6 Boxplots of the bias of the causal effect estimates, β−1, from a one‐sample set‐up in simulation Series I. The panels display
results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz denotes the number of
pleiotropic components among all 100 single nucleotide polymorphisms in G
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2SLS_mul: unlike Series I, the estimates of β̂ from
2SLS_mul are significantly biased in the scenario of weak
instruments and strong pleiotropy from Series II (Figure 7).
When both pleiotropy and instruments are strong (first row
of Figure 7) methods conditional on Z (sisVIVE_exo,
Allele_exo, and 2SLS exo) give smaller estimates of β̂ than
those without conditioning on Z (sisVIVE, Allele, and 2SLS).
This is the collider bias induced by conditioning on Z. The
same pattern can be seen in two other rows of Figure 7. A
different pattern is seen when the instruments are weak but
the pleiotropy is strong (third row of Figure 7). Condition-
ing on Z in this situation may be exacerbating the
imprecision due to weak instruments.

4.2.2 | Two sample simulation

Two-sample and external validation sample bias results are
shown in Figure 10 for Series I simulations. External
validation sample results are shown above the horizontal
line in each image, and two‐sample results are shown below
the line, only for methods that adapt to these situations.

Across all scenarios, CIV_naive has substantially larger
variances than all other methods, to the extent that it is
impossible to even evaluate bias. CIV_naive is not designed
to optimize prediction of Y in the second sample, and does
not use Y in the instrument construction process of the first
sample. Hence, CIV_naive weights are not robust across
data sets. In fact, the instrument strengths for CIV_naive in
two‐sample set‐up (Figure 11) are significantly lower than
in one‐sample set‐up (Figure 4). Figure 12 shows that the
pleiotropic correlations of CIV_naive from the two‐sample
set‐up are larger than those from the one‐sample simula-
tions (Figure 5), for the same reason.

For the two‐sample set‐up, Allele_mul gives unbiased
results in all scenarios; however, the Allele_exo is biased
in the scenario of weak instruments and strong pleio-
tropy. In general, across all scenarios, the strongest
instruments as well as highest pleiotropic correlations
occur for the three variants of the Allele score method.

The simulation results for Series II in two‐sample set‐
up are similar to those for Series I: they are shown in
Figures 13–15.

4.2.3 | External validation sample
simulation

The validation sample simulation results confirm our
hypothesis that CIV_smooth is more robust than
CIV_naive; CIV_smooth is unbiased in all scenarios and is
much less variable than CIV_naive. It is likely that
CIV_smooth attains robustness by incorporating a penalty
approach to select genotypes, and uses Y in the instrument
construction process to optimize projected predictions of X
on Y, thus achieving greater stability of β̂.

The F‐statistics of CIV_smooth from Series I in the
external validation‐sample set‐up (Figure 11) are substan-
tially lower than the F‐statistics from the one‐sample set‐up,
as might be expected. Also, the pleiotropic correlations of
CIV_smooth from the two‐sample set‐up (Figure 12) are
larger than those from the one‐sample simulations (see
Figure 5) for the same reason as was seen for CIV_naive
above. In general, across all scenarios, the estimated
instrument strength and the pleiotropic correlation of
CIV_smooth are comparable with those of sisVIVE and
sisVIVE_exo.

TABLE 3 Feature selection results for CIV_smooth, sisVIVE and sisVIVE_exo from a one‐sample set‐up in simulation Series I

Scenario Method

p = 20
z

p = 50
z

TP FP TP FP
Strong IV (α =1x ) CIV_smooth 79.55 7.42 49.98 13.15

Strong pleiotropy (α =1)z sisVIVE 73.78 0.02 36.99 0.08

sisVIVE_exo 41.11 0.02 8.18 0.53

Strong IV (α =1x ) CIV_smooth 77.00 14.53 46.99 27.18

Weak pleiotropy (α =0.1)z sisVIVE 80.00 19.98 50.00 50.00

sisVIVE_exo 80.00 20.00 50.00 50.00

Weak IV (α = 0.1x ) CIV_smooth 70.47 11.76 45.07 31.17

Strong pleiotropy (α = 1)z sisVIVE 68.22 0.00 32.72 0.26

sisVIVE_exo 79.24 19.76 50.00 50.00

Weak IV (α = 0.1x ) CIV_smooth 69.72 11.80 43.29 27.53

Weak pleiotropy (α = 0.1)z sisVIVE 80.00 20.00 49.97 49.95

sisVIVE_exo 80.00 20.00 49.90 49.73

Notes. The panels display results for different values of α
x
and α

z
corresponding to different instrument strength and pleiotropy severity. FP: average number of

selected false positive variables out of p
z
; p

z
: the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. TP: average number of

selected true‐positive variables out of 100−p
z
.
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4.3 | Simulation summary

In conclusion, CIV_smooth and Allele_mul methods
provide the only unbiased causal effect estimates in all
scenarios. The sisVIVE estimates are biased in some
scenarios, especially for weak pleiotropy scenarios.
Allele_mul retains high pleiotropic correlation when

strong pleiotropy exists, as it does not select the
components of G. The estimated instrument strength
and pleiotropic correlation of CIV_smooth are always
close to those of its close competitors; moreover they
are the only unbiased casual effect estimation method
that performs feature selection.

FIGURE 7 Boxplots of the bias of the causal effect estimates, β−1, from a one‐sample set‐up in simulation Series II. The panels display
results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz denotes the number of
pleiotropic components among all 100 single nucleotide polymorphisms in G
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5 | DATA ANALYSIS: THE
ALZHEIMER’S DISEASE NEUROIMAGING
INITIATIVE (ADNI) COHORT

AD is a chronic neurodegenerative disorder that causes a
slow decline in memory and reasoning skills. It is well

known that biomarkers, including cerebrospinal fluid tau
protein (CSF‐tau) and cerebrospinal fluid Aβ‐protein
ending at amino acid position 42 (CSF‐Aβ 1–42), are
reliable measures of AD progression (Frost, Jacks, &
Diamond, 2009; Hardy & Higgins, 1992; Shaw et al., 2009).
Recently, other biomarkers such as flluoro‐D‐glucose

FIGURE 8 Log-transformed F‐statistics of X~G∗ for each Mendelian randomization method in a one sample set‐up for simulation
Series II. The panels display results for different values of αx and corresponding to different instrument strength and pleiotropy severity. pz
denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G
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standardized uptake (FDG_SUVR) and neural functional
activity have been added when exploring the mechanisms
underlying late‐onset Alzheimer’s disease (LOAD) using
multifactorial data analysis (Iturria‐Medina, Sotero, Tous-

saint, Mateos‐Pérez, & ADNI, 2016). However, at this
point, there is still uncertainty as to whether the changes
in these biomarkers play a causal role in AD progression
or are simply associated with AD progression.

FIGURE 9 Pleiotropic correlations of Z and G∗ for each Mendelian randomization method in a one sample set‐up for simulation
series II. The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy
severity. pz denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Note that the
pleiotropic correlations from CIV_smooth, CIV_naive, sisVIVE_exo, and Allele_exo are exactly zero in some scenarios, and, therefore, do
not appear on the graphs
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We have used instrumental variable methods to try to
disentangle causal relationships for AD. Data used in the
preparation of this study were obtained from the ADNI
database (adni.loni.usc.edu). The ADNI study was
launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
magnetic resonance imaging, positron emission tomo-
graphy, other biological markers, and clinical and
neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment
(MCI) and early AD.

The outcome (AD status) studied here is a binary
case–control variable, where “case” is a subject with
either MCI or early AD. Thus we use logistic
regression in the second stage of MR analysis to
estimate a causal risk ratio (CRR; Burgess, Granell,
Palmer, Sterne, & Didelez, 2014; Clarke & Windmeijer,
2012). The sisVIVE method, however, requires the
outcome to be continuous; therefore, we adjusted
outcome Y, X, and Z for the exogenous covariates sex,
education, and age, and replaced these with their
predictors Ŷ (which can be considered quasicontin-
uous), X̂ and Ẑ, to which we can apply sisVIVE. In this
case, any bias toward the null in the causal effect
estimates from sisVIVE would be largely due to the
impact of confounding factors (Palmer, Thompson,
Tobin, Sheehan, & Burton, 2008).

A very important limitation of performing MR
analysis in ADNI data is the retrospective nature of its

study design. Ascertainment in ADNI was retrospective
by disease status, and therefore, instruments that would
be valid for a prospective study design may not remain
valid after retrospective sampling (Didelez & Sheehan,
2007). Specifically, the estimated first stage (X∼G)
association from case–control samples may be biased
relative to the true association in a general population
sample (Tapsoba, Kooperberg, Reiner, Wang, & Dai,
2014; Tchetgen Tchetgen, 2013). If the disease being
studied is rare, it is possible to conduct a first stage
regression only on the control sample, then perform
causal effect estimation on the whole sample using MR
methods applicable to two‐sample/validation sample set‐
ups (Lin & Zeng, 2009).

For illustration of CIV below, we select in turn each
of the four available biomarkers (CSF‐Aβ 1–42, CSF‐
Ptau, CSF‐Ttau and FDG_SUVR) as X, and then
assign the other three to be the pleiotropic pheno-
types, Z. This then raises another limitation of our MR
analysis of these data: We are assuming there is no
causal relationship from X→ Z as this would imply a
different total causal effect than the one that we are
estimating. Given our rotation of phenotypes between
the (X, Z) position, we are essentially assuming there
is no direct causal relationship between any of these
phenotypes and that pleiotropy is induced merely by
sharing some genetic contributions. Therefore, we
suggest that the results below should be interpreted as
simply illustrating our methods and not as making
substantive causal statements.

TABLE 4 Feature selection results for CIV_smooth, sisVIVE, and sisVIVE_exo from a one‐sample set‐up in simulation series II

Scenario Method

pz = 20 pz = 50

TP FP TP FP

Strong IV (α =1x ) CIV_smooth 79.60 6.86 48.94 12.29

Strong pleiotropy (α =1)z sisVIVE 73.23 0.00 36.39 0.04

sisVIVE_exo 39.85 0.00 8.34 0.52

Strong IV (α =1x ) CIV_smooth 77.19 15.06 47.20 26.93

Weak pleiotropy (α = 0.1)z sisVIVE 80.00 20.00 50.00 49.97

sisVIVE_exo 80.00 20.00 59.98 49.98

Weak IV (α = 0.1x ) CIV_smooth 70.68 12.09 46.48 34.62

Strong pleiotropy (α = 1)z sisVIVE 68.54 0.00 31.92 0.04

sisVIVE_exo 78.48 19.52 50.00 50.00

Weak IV (α = 0.1x ) CIV_smooth 70.06 12.03 43.75 27.48

Weak pleiotropy (α = 0.1)z sisVIVE 80.00 20.00 49.98 49.93

sisVIVE_exo 79.97 19.93 50.00 50.00

Notes. The panels display results for different values of α
x
and α

z
corresponding to different instrument strength and pleiotropy severity. FP: average number of

selected false positive variables out of p
z
; p

z
: the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. TP: average number of

selected true positive variables out of 100−p
z
.
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5.1 | Outcome, exposures and
instruments

Outcome Y: A subject is either from the control group, or
is a “case” if diagnosed with MCI or AD. In total we

analyzed n= 491 subjects including 151 controls (Y= 0)
and 340 cases (Y= 1).

Exposures X: We are interested in estimating the
causal effect on AD progression of four biomarkers,

FIGURE 10 Boxplots of the bias of the causal effect estimates, β−1, from external validation sample and two‐sample set‐ups in
simulation Series I. The panels display results for different values of αx and αz corresponding to different instrument strength and
pleiotropy severity. pz denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. The dashed
line separates external VS results from TS results. TS: two‐sample; VS: validation sample

390 | JIANG ET AL.



including CSF-Aβ 1–42 (X1), natural log of Ptau (X2),
natural log of Ttau (X3) and FDG_SUVR (X4). It is well
known that the isoforms of apolipoprotein E, a class of
apolipoprotein that mediates cholesterol metabolism, are
associated with both Aβ aggregation and Tau protein
phosphorylation (Brecht et al., 2004; Frautschy & Cole,

2010; Strittmatter & Roses, 1995; Sunderland et al., 2004),
which implies potential pleiotropy. If there were multiple
measurements of the biomarkers, the first one was used.
All exposure variables were adjusted for covariates age,
sex, and education. Profiles of the subjects are summar-
ized in Table 5.

FIGURE 11 Log-transformed F‐statistics of X~G∗ for each Mendelian randomization method (in the second sample) in simulation
Series I. The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity.
pz denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Vertical line denotes
F‐statistics = 10. The dashed line separates external VS results from TS results. TS: two‐sample; VS: validation sample
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Instruments G: For each of the exposures Xk, k=1, …, 4,
the strongly associated SNPs reported by the NHGRI‐
EBI catalog of published genome‐wide association studies
(Burdett et al., 2016) were collected from the ADNI
Imputed Genotype data. The missing genotypes were

imputed based on the 1,000 Genome Project, utilizing the
same protocol for the ROS/MAP and AddNeuroMed
study. When there were very highly correlated (ρ≥ 0.8)
SNPs which are known to belong to the same gene, we
kept only one representative SNP. The SNP set was then

FIGURE 12 Pleiotropic correlations of Z and G∗ for each Mendelian randomization method (in the second sample) in simulation Series
I. The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz
denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Note that the pleiotropic correlation
values from Allele_exo are exactly zero in some scenarios. The dashed line separates external VS results from TS results. TS: two‐sample;
VS: validation sample
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further reduced by using a univariate feature selection
based on significant F‐statistics (p≤ 0.05). Hence, the final
selected SNPs comprised 12 SNPs for Aβ (X1), six SNPs
for Ptau (X2), four SNPs for Ttau (X3), and 17 SNPs for
FDG_SUVR (X4).

5.2 | MR analysis

The assumption (A1) of MR states that the SNPs must
be associated with biomarkers of interest. Strong instruments
with F‐statistics bigger than 10 are usually preferred in MR

FIGURE 13 Boxplots of the bias of the causal effect estimates, β‐1, from external validation sample and two‐sample set‐ups in
simulation Series II. The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy
severity. pz denotes the number of pleiotropic components among all 100 single nucleotide polymorphisms in G. The dashed line separates
external VS results from TS results. TS: two-sample; VS: validation sample
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applications. The F‐statistics for instrument strength, based
on the set of SNPs selected for each biomarker, were 12.44
(Aβ), 12.01 (Ptau), 4.52 (Ttau), and 5.94 (FDG_SUVR). We
also performed the Sargan test for over‐identification (Baum
et al., 2003) to test the MR assumption (A2) and (A3). The p

values of the Sargan test were 1.5e−4, 5e−5, 0.23, and 3e−4
for Xk, k=1, …, 4, implying the existence of invalid
instruments in G for MR for Aβ (X1), Ptau (X2), and
FDG_SUVR (X4) on AD progression (Y). The reason for
these small p‐values is that the selected SNPs that are

FIGURE 14 Log-transformed F‐statistics of X~G∗ for each Mendelian randomization method (in the second sample) in simulation Series II.
The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz denotes the
number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Vertical line denotes F‐statistics = 10. The dashed line
separates external VS results from TS results. TS: two‐sample; VS: validation sample
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strongly associated with Ptau have even stronger associations
with Aβ. Individual p‐values for instruments G with the four
biomarkers are shown in Figures 16 and 17.

MR was performed to evaluate the potential causal
effects of variability in each biomarker (X) on the AD

progression (Y) in two steps. In the first step, we used
only the control samples to obtain weights with
applicable methods (Allele methods, sisVIVE methods and
CIV_smooth). In the second step, using the whole sample,
we constructed instrumental variables using the weights

FIGURE 15 Pleiotropic correlations of Z and G∗ for each Mendelian randomization method (in the second sample) in simulation series II.
The panels display results for different values of αx and αz corresponding to different instrument strength and pleiotropy severity. pz denotes the
number of pleiotropic components among all 100 single nucleotide polymorphisms in G. Note that the pleiotropic correlation values from
Allele_exo are exactly zero in some scenarios, and therefore nothing can be seen on the graphs. The dashed line separates external VS results from
TS results. TS: two‐sample; VS: validation sample
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obtained from the first step, and inferred causal effects of
each biomarker Xk on AD progression while adjusting for
the other three biomarkers as secondary phenotypes. In this
set‐up, if we assume that the control sample is similar to the
whole population from which the individuals were drawn,
then the retrospective nature of ADNI is respected. As said
above, we also acknowledge that our analyses assume no
causal relationship from X to Z for each (G, X, Z, Y) set‐up,
and results need to be interpreted in this light. It is important
to note that in this analysis, we can only include
CIV_smooth, Allele scores, and sisVIVE because not all
methods can be adapted to this two‐step approach. We
excluded CIV_naive due to its unstable performance in the
two‐step approach (see Section 4.2).

5.3 | Results

Using CIV_smooth we found a significant causal effect of
CSF‐Aβ 1–42 on AD progression, with lower CSF‐Aβ

1–42 levels in AD patients than controls. The 95%
confidence intervals of the causal effect estimates (log‐
odds) for CSF‐Aβ 1–42 obtained from two‐sample/
validation sample analyses are reported in Figure 18.
Neither the three variants of Allele score methods, nor the
two variants of sisVIVE methods identified a significant
causal effect of CSF‐Aβ 1–42 peptide levels on AD
progression. In contrast, none of the methods found
significant causal effects for Ttau, Ptau, and FDG_SUVR
on AD progression.

The observation of a significant causal impact for
CSF‐Aβ 1–42 on AD is consistent with some previous
publications. In fact, multiple observational studies
have reported decreasing Aβ 1–42 in cerebrospinal
fluid of patients with AD compared with normal
control subjects (Herukka et al., 2007; Maruyama
et al., 2001; Sunderland et al., 2003). However, as
mentioned above, these results are merely illustrative
of the performance of our methods.

TABLE 5 Characteristics of subjects studied in ADNI

Number Age (years; mean± SD) Gender (M/F) Education (years; mean± SD)

Control 151 75.93 ± 5.86 86/65 16.3 + 2.7

MCI/AD 340 74.08 ± 7.63 212/128 15.89 ± 2.92

MCI 277 73.64 ± 7.53 173/104 16.03 ± 2.81

AD 63 76.03 ± 7.78 39/24 15.27 ± 3.31

Note. AD: Alzheimer’s disease; ADNI: Alzheimer’s disease neuroimaging initiative; MCI: mild cognitive impairment.

FIGURE 16 Strength of association,
measured by ‐log10 pvalues, between all
four biomarkers and SNPs selected
through their asssociation with one
biomarker. Left: SNPs selected for
Amyloid beta; Right: SNPs selected
for Ptau

FIGURE 17 Strength of association,
measured by ‐log10 pvalues, between all
four biomarkers and SNPs selected
through their asssociation with one of the
biomarkers. Left: SNPs selected for Ttau;
Right: SNPS selected for SUVR.
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6 | DISCUSSION

In this paper we proposed a new CIV method for causal
inference when pleiotropy is suspected. This method,
CIV_smooth, is an improved variant of a conceptually
simpler one, CIV_naive, which is defined within the
broader framework of instrumental variable theory.
CIV_naive optimizes an objective function under a “hard”
constraint; CIV_smooth adds to this a soft constraint to
favor smoothed L0 solutions. In our simulation study, we
have presented and compared the performance of
CIV_smooth, CIV_naive, and other popular methods. A
variety of simulation scenarios were constructed to mimic
realistic pleiotropic relationships. We found that
CIV_smooth compares favorably to its closest competitors
with respect to instrument strength, pleiotropic correla-
tion, and causal effect estimation bias in a one‐sample
analysis design. We note furthermore that CIV_naive,
while outperforming its competitors in specific situations,
is uniformly outperformed by CIV_smooth. To illustrate
the performance of CIV_smooth and its competitors, we
conducted MR analysis on data from ADNI (Mueller et al.,
2005), with the aim of estimating the causal effects of the
biomarkers CSF‐Aβ 1–42, CSF‐Ptau, CSF‐Ttau and
FDG_SUVR on AD progression. CIV_smooth found only
one significant causal effect, that of CSF‐Aβ 1–42 on AD
progression; this suggests that the previously known
association of this biomarker with AD progression may
be causal. In contrast, all the other methods failed to
uncover any significant causal effect.

The main advantage of the CIV_smooth method is
that it constructs valid instruments that are strongly
associated with a phenotype of interest. Indeed by
construction, CIV_smooth aims to balance the “valid-
ity” (pleiotropic correlation) and instrument strength
(association with phenotype) of solutions. This balance
is desirable, since strong instruments will provide
consistent causal effect estimates, whereas approxi-
mately valid instruments will reduce the pleiotropy‐
induced bias. The simulations show that CIV_smooth
provides unbiased causal effect estimates by achieving
this balance; although it could be slightly outperformed
by its competitors on either pleiotropic correlation or
instrument strength, but not both. At the same time, in
one‐sample analyses the novel feature selection aspect
of CIV_smooth does not introduce significant bias in
causal effect estimation.

Another advantage of CIV_smooth is the option of
separating instrument construction and causal effect
estimation. In fact, the construction of CIV_smooth instru-
ments relies on a coefficient vector c estimated from a
sample of G, X, Z, Y. Then, any estimation method for
linear structural equations can be applied to CIV_smooth
instruments G∗→X→Y for causal inference. Due to this
separation of first‐stage and second‐stage analysis,
CIV_naive, CIV_smooth, and Allele scores can be trained
and assessed on different datasets. It should be noted that
the consistency of CIV_smooth is reasonable and compar-
able with that of its closest competitors, while CIV_naive is
often found to be severely inconsistent. Therefore, it is clear
that CIV_smooth has substantial flexibility in terms of
model assessment and causal effect estimation.

In the presence of pleiotropic phenotypes Z (αz≠ 0 in
Figure 2), any method that conditions on Z would induce
collider bias. The main advantage of CIV_smooth is to
propose a selection of valid instruments G∗ that are
meant to approach, as closely as possible, the ideal
situation, αz

∗= 0. Nevertheless, collider bias in
CIV_smooth will still be induced when the pleiotropic
correlation between G∗ and Z is high in absolute values.
However, Simulation Series I and II show that
CIV_smooth is more robust than sisVIVE and 2SLS
methods even though spurious association may have
been introduced by the constrained projections (see
Figures 7–9 and 13–15). We plan additional investigation
in future work.

In this paper we did not consider scenario (iii) of
Section 2.1 corresponding to γxz ≠ 0, in which the total
causal effect of X on Y includes a contribution through Z.
In this scenario, we do have a true X→ Z relationship
with total causal effect of β+ γxzη. Therefore sisVIVE is
unlikely to perform well if there are pleiotropic genotypes
since by its definition all genotypes are invalid for X

FIGURE 18 95% bootstrapped confidence interval of causal
estimates (log odds) of CSF‐A β 1–42 protein levels on AD
progression using CIV_smooth and Allele methods in external
validation sample set‐ups. It is important to note that the
confidence interval shown here for sisVIVE methods results from
treating Y as continuous, since sisVIVE is not designed for binary
outcomes. These results show a decrease in AD risk with higher
amyloid beta levels.
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(a valid genotype only impacts Y through X). Also,
neither CIV_naive nor CIV_smooth estimate β+ γxzη, and
generalizations do not seem to be easy. Although some
preliminary simulation results including an X→ Z causal
relationship did show that CIV_smooth may have
potential in this scenario, in that the direct causal effect
β of X on Y can be estimated adequately, a good estimate
of the total causal effect requires extensive changes to the
present methodology, and is beyond the scope of this
paper. Leaving out scenario (iii) is certainly a limitation
of this study that will require further careful research. On
the other hand, even with this limitation the results of
this paper have practical applications. Indeed, it may be
plausible that any correlation between Z and X is due to a
“common cause” and not to any causal relationship
X→ Z or Z→X, in which case this “common cause”
would be absorbed by U and fall under the case we
consider here (both γxz and γzx are zero). We note further
that conditioning on Z when γxz≠ 0 may exacerbate
collider bias.

A major limitation of our method is the multiplicity of
solutions occurring in certain regions of the parameter
space. We have attempted to alleviate this problem by
launching the algorithm from multiple initial points, and
combining the resulting instruments into a matrix
(observation × instrument), which becomes itself an
instrument G∗ (see Appendix C for details).

Another limitation of CIV_smooth is the ad hoc choice of
the threshold used in the variable selection step. In this
study we are fixing the threshold at 0.2, an empirical choice
based on our simulation (see Section 4.1 for details).
However, this choice may be problematic in applications
featuring large numbers of pleiotropic genotypes.

A third limitation of CIV_smooth is its failure to
eliminate the influence of pleiotropic phenotypes when Z
contains only some but not all pleiotropic phenotypes.
We conducted a sensitivity analysis of CIV_smooth,
varying the proportion of observed pleiotropic pheno-
types. The results show that in most scenarios sisVIVE
and sisVIVE_exo methods estimate the causal effects with
the smallest bias among all competitors. However, if αz is
small and more than 50% of pleiotropic phenotypes are
observed (in Z), then CIV_smooth does provide better
(smaller bias) causal effect estimates than sisVIVE
methods and Allele methods. This result points to some
avenues for future research through investigations of
robustness to improve the performance of CIV_naive and
CIV_smooth. See Appendix F for details (particularly
Supporting Information Figures S3 and S5).

In our MR analysis of the ADNI data set, an important
limitation is that ADNI is a retrospectively designed study.
In an attempt to alleviate this problem, we implemented
the two‐stage approach, introduced by Jiang, Scott, and

Wild (2006): in the first stage weighted scores were
constructed from the control samples and in the second-
stage instruments were constructed with these scores on
the whole data set, and the causal effect of each individual
biomarker was estimated while treating the other biomar-
kers as secondary phenotypes. However, this two-stage
approach cannot completely resolve the problems asso-
ciated with using an MR approach on a retrospective study
(Bowden & Vansteelandt, 2011; Tchetgen Tchetgen,
Walter, & Glymour, 2013).

Another limitation of the ADNI data analysis is that
we treated causal effect estimation for multiple
phenotypes as a series of estimations, each with one
of the phenotypes as X and the others as Z. This
reduction was necessary to compare methods, since
only CIV allows multivariate versions of both X and Z.
However, such set‐up is only appropriate when there is
no direct causal impact X→ Z for each pair (X, Z), in
which case the total causal effect of X on Y is equal to
the direct causal effect. If this assumption is not true
for any pair of (X, Z), the β estimator from different
methods would be measuring different effects (total or
direct effects) or would even be invalid. Therefore, as
already mentioned, the results of ADNI analysis in this
paper simply serve as a demonstration of our CIV
methods, and must not be used to make definite causal
statements regarding AD.

In future research we will attempt to overcome some
of the limitations of the CIV methods. One useful
direction is to propose a measure of quality of solutions.
Such a measure could be used to discard solutions of poor
quality, or alternatively to combine solutions using
quality based weights. A more complex approach could
also be developed by adding further soft constraints (e.g.,
quality based constraints, group constraints) to the
current version of our CIV_smooth algorithm.

In future work we intend to apply our approach to study
causation in a larger setting. Such data could be obtained
from UKbiobank (Sudlow et al., 2015), which is a
prospective data containing health information of 500,000
participants as well as their genetic profiles. UKbiobank is
an ideal source to study the causal effects of multiple
potentially pleiotropic biomarkers, since it contains infor-
mation on a rich variety of phenotypes and disease
outcomes (including AD) for each participant. However,
the large sample size of the UKbiobank presents a serious
computational challenge for CIV_smooth. We need, there-
fore, to develop successful strategies to integrate MR results
from subsamples of workable size for CIV_smooth.

In conclusion, this paper proposes a new approach
(CIV_smooth) for conducting MR analyses when pleio-
tropy is suspected. Assuming a linear structural model
linking together genotypes, phenotypes, and outcome
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yields “approximately valid” instruments to adjust causal
effect estimation when potential pleiotropic phenotypes
are measured. We have shown in simulations that the
performance of (CIV_smooth) is comparable, and occa-
sionally preferable, to other popular methods, namely
2SLS, Allele, and sisVIVE. We have also shown in the
analysis of a data set on AD that the method produces
reasonable results. In view of these results, we hope that
CIV_smooth will be integrated into the family of MR
analyses methods, making MR a more common practice
even when pleiotropy is observed.
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