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Abstract: The use of MALDI-TOF mass spectrometry as a means of analyzing the proteome has been evaluated extensively 
in recent years. One of the limitations of this technique that has impeded the development of robust data analysis algorithms 
is the variability in the location of protein ion signals along the x-axis. We studied technical variations of MALDI-TOF mea-
surements in the context of proteomics profi ling. By acquiring a benchmark data set with fi ve replicates, we estimated 76% to 
85% of the total variance is due to phase variation. We devised a lobster plot, so named because of the resemblance to a lobster 
claw, to help detect the phase variation in replicates. We also investigated a peak alignment algorithm to remove the phase 
variation. This operation is analogous to the normalization step in microarray data analysis. Only after this critical step can 
features of biological interest be clearly revealed. With the help of principal component analysis, we demonstrated that after 
peak alignment, the differences among replicates are reduced. We compared this approach to peak alignment with a model-
based calibration approach in which there was known information about peaks in common among all spectra. Finally, we 
examined the potential value at each point in an analysis pipeline of having a set of methods available that includes parametric, 
semiparametric and nonparametric methods; among such methods are those that benefi t from the use of prior information.
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Introduction
MALDI-TOF and SELDI-TOF have been used to profi le the proteome for biomarker discovery and 
cancer diagnostics (Adam et al., 2002; Campa et al., 2003b; Li et al., 2002; Wulfkuhle et al., 2001). For 
a review, see (Wulfkuhle et al., 2003). Data analysis has been identifi ed as a bottleneck for these 
proteomics studies (Campa et al., 2003a). In doing the data analysis, typical approaches involve a 
pipeline of approaches that start with denoising and background correction of the signals, include steps 
such as the handling the multiple isotopes, and conclude with high-level analyses such as biomarker 
discovery or survival analysis. One of the steps in such a pipeline involves handling the technical 
variations in MADLI-TOF and SELDI-TOF measurements that occur from run to run. It is that step of 
the mass spectrometry data analysis pipeline that we examine in detail in this paper.

In our MALDI-TOF experiment protocol, we typically collect two to ten replicate spectra from the 
same biological specimen by sampling different spots on the MALDI plate (Wang et al., 2003). Com-
bining these replicates into a composite spectrum is the fi rst step to reduce raw data and extract signals 
of biological interest.

Time-of-fl ight (TOF) data has both amplitude variation and phase variation: not only does the inten-
sity at a certain peak vary, but also the location of the peak on the time-of-fl ight, or x-axis. Even though 
we do mass calibration every time we use the equipment, we still see phase (mass) variations from 
run-to-run due to technical instabilities in the apparatus. It was documented that the accuracy of the 
peak location in MALDI-TOF is within 0.15% to 0.3% of the mass (m/z) value (Campa et al., 2003b). 
This phase variation was one of the obstacles encountered during analysis of the lung cancer data set 
in the fi rst annual Proteomics Data Mining Conference (Campa et al., 2003a).

The phase variation problem is not unique to MALDI-TOF data, but also exists in SELDI-TOF data. 
James Lyons-Weiler reported the phase variation problem in SELDI-TOF data sets, and referred to it 
as profi le alignment or the mass calibration problem (Lyons-Weiler et al., 2003). In a SELDI-TOF study 
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of ovarian cancer, Thomas Conrads and colleagues 
pointed out that in order to generate better 
discriminations of biological interest, the peak 
alignment problem should be solved fi rst (Conrads 
et al., 2004). The peak alignment problem itself 
also occurs in other mass spectrometry settings, 
such as in the alignment of LC retention times in 
LC-MS analyses. Aligning curves through trans-
formation of time, as in the time-of-fl ight axis in 
MALDI-TOF, is generally called time warping in 
the engineering literature (Sakoe & Chiba, 1978) 
and curve registration in the statistical literature 
(Ramsay & Li, 1998).

When analyzing such problems, there may be 
value in having a set of methods available at each 
point in the analysis. In some cases, for example, 
we may at fi rst have no prior information on known 
calibrants. For example, in analyzing MALDI-TOF 
data we may have prior information as to the exact 
m/z values of known calibrants or contaminants. 
In that circumstance, it is valuable to have a method 
that can make use of the prior information on those 
calibrants or contaminants. On the other hand, in 
other analyses, such as those used for aligning LC 
retention times for current LC equipment, it is 
possible that no accurate method using prior infor-
mation involving the biophysics of the system will 
ever be available. This suggests the utility of devel-
oping an overall family of methods, some of which 
can benefi t from specifi c prior information, and 
some of which do not.

Related work
Previous attempts to solve the phase variation 
problem in MALDI-TOF have included binning 
adjacent peaks by the 0.1% rule (Hilario et al., 
2003; Wang et al., 2003) and grouping the peaks 
by clustering algorithms (Lin et al., 2003; Slotta 
et al., 2003). A prerequisite of all of these 
aforementioned methods is that the peaks must be 
identifi ed fi rst. Here we present an approach to 
improving the peak identifi cation process that is 
based on a new method to align the replicates fi rst. 
The subsequent peak detection process can be 
improved once the aligned spectra are averaged.

In this paper we study the overall variations in 
MALDI-TOF data, to detect phase variations we 

look at a lobster plot (named because of the 
resemblance of a lobster claw), and we examine 
an established curve registration algorithm to cor-
rect the phase variations. In an on-line appendix at 
http://dbsr.duke.edu/pub/alignPeaks/, we note that 
one perspective on analyzing spectra is that work 
in this area represents a problem of function esti-
mation. In that context, there are a variety of mea-
sures (e.g., Hellinger distances and symmetric 
Kullback-Liebler divergence) to determine the 
overall quality of a given function estimation pro-
cess. In that appendix, we also see if lobsterplots 
could be useful, heuristic devices that can help us 
visually represent Hellinger and other measures of 
model fi tness.

MALDI-TOF data set and data 
preprocessing
We acquired a data set with fi ve replicates to 
investigate the technical variability of MALDI-
TOF data. Each replicate was derived from the 
same lysate of normal lung tissue. Details of the 
experimental preparations have been previously 
described (Campa et al., 2003b). We believe this 
data set, consisting of spectra of actual biological 
samples, to be preferable to a fully simulated one 
to study technical variations.

To illustrate the principles of our alignment 
algorithm and to reduce computational loads for 
the initial investigation, we picked two segments 
(14.861K to 15.265K, and 15.717K to 16.132K in 
m/z) of the spectra in this study. Briefl y, we artifi -
cially segmented two distinct mass ranges from 
the same biological sample and treated them as 
coming from two different biological samples in 
the same mass range. This manipulation artifi cially 
creates two biological samples but preserves the 
characteristics of the raw measurements from the 
MALDI-TOF instrument. In the following discus-
sion, we refer to these simulated samples as 
biological sample A and B. For each biological 
sample, we have fi ve replicates, namely, A1-A5 
and B1-B5.

The raw intensities were square-root transformed, 
and then subjected to a baseline correction proce-
dure by subtracting the 25th percentile of the inten-
sity values, followed by a rescale procedure to 
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project the data to the (0, 1) range. A plot of the 
spectra after preprocessing can be found in 
Figure 3a and 3b. TOF data were usually collected 
by binning time into short intervals and then count-
ing the intensities during each interval. To plot the 
spectrum, we simply plot the intensity against the 
bin number, instead of using the more common 
m/z value. The m/z value is related to the bin num-
ber by a monotonic function.

Technical variations due to phase 
shift
To illustrate technical variations due to phase shift, 
we plotted the spectra of a pair of replicates, 
sample A4 and A5, both of which are from the same 
biological sample A (Figure 1a). Under ideal situ-
ations with no technical variation, these two curves 
should overlap. The real data demonstrates some 
inconsistency. We can measure inconsistency 
among the samples using a “distance” measure of 
some kind (such as a Kullback-Liebler divergence 
measure or Hellinger distance); we make direct 
use of one of those measures below. However, in 
addition to having quantitative metrics of the 
inconsistency, it is helpful to have visual represen-
tations of the differences. We therefore start by 
plotting the intensities at each bin using a scatter 
plot to visually examine the curves.

In particular, we wanted to determine whether 
the inconstancy was due to amplitude differences 
or phase variations. Thus, we also devised a “lobster 
plot” to connect the consecutive points (in 
time-domain) in the regular scatter plot with an 
arrow. In this plot, phase shifts between the pair of 
measurements can be detected by loops formed in 
the shape of a lobster claw (Figure 1b). The direc-
tion of the phase-shift can be detected by the clock-
wise or anticlockwise loop of the lobster claw.

Phase variations cause two potential problems 
in proteomic profi ling. First, we cannot simply 
average the replicates to generate a composite 
spectrum that is representative of the biological 
sample. A simple average can result in a distorted 
estimate not resembling any sample curves 
(Ramsay & Li, 1998). For example, the shape of 
some peaks may be fl attened due to averaging over 
out-of-phase alignments. This problem is espe-
cially a nuisance in many analytical chemistry data, 
where the shape and area of the peak can convey 
chemical information.

Second, the phase variation in replicates makes 
computerized pattern analysis more difficult. 
Human eyes are quite adept at recognizing shifted 
signals, but multivariate statistical algorithms such 
as principal component analysis (PCA) cannot 
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Figure 1: MALDI-TOF spectrum 
of a pair of replicates A4 and A5. 
Shown are spectra before (a) and 
after (b) alignment. The corre-
sponding lobster plots are shown 
in (c) and (d).
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distinguish the phase variation from real biological 
differences. We will discuss an algorithm to remove 
the phase variation and demonstrate its effect on 
reducing within-sample variation in the following 
sections.

Aligning shifted peaks in replicates
Phase variation problems have previously been 
studied in many other types of scientifi c measure-
ments, such as speech recognition (Sakoe & Chiba, 
1978), chromatograms (Nielsen et al., 1998), and 
NMR spectra (Brown & Stoyanova, 1996). Just as 
in MALDI-TOF data, the peak shifts are not uniform 
throughout the whole spectrum: some peaks can be 
perfectly aligned, while other peaks either shift 
ahead or behind. Thus, we need an algorithm to 
align the local features in the spectra. We especially 
prefer an algorithm that does not require the location 
of the peak to be specifi ed fi rst.

Solutions to this problem include parametric, 
semiparametric and nonparametric methods. One 
example of a nonparametric approach involves the 
use of dynamic programming to align the observa-
tions. While Sauve and Speed (2004) give encour-
aging results, one major problem of is the 

introduction of sudden jumps and plateaus, which 
has undesired effects on analytical chemistry 
signals (Pravdova et al., 2002 and Eilers, 2004).

Other approaches involve model-based calibra-
tion involving known locations of peaks occurring 
in common among many spectra. In this approach, 
the sets of peaks in common are found with the 
help of one or more automated peak finding 
algorithms. At that point a calibration (or recalibra-
tion) model aligns the known targets, typically 
using either a global linear or quadratic model, or, 
if a global calibration curve cannot be established, 
a more local, piecewise linear model. Wool and 
Smilansky (2004) explore different aspects of this 
approach in detail. We also examine one particular 
version of this approach below.

Another approach involves the use of splines 
and functional data analysis (FDA) together with 
a curve registration process (Eilers, 2004; Ramsay 
& Li, 1998). In that context, suppose we have a 
spectrum x(t) to be aligned to the template spectrum 
x0(t). We want to fi nd a fl exible yet monotonic 
increasing function h(t) such that x[h(t)] is as close 
as possible to x0(t). Function h(t) is called the warp-
ing function, since the transformation of time 

Figure 2: Five replicates from sample A. Shown are the spectrum (a and b) and corresponding lobster plot (c and d) before (a and c) and 
after (b and d) time warping.
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corrects the phase shift problem. The fi tness of h(t) 
can be evaluated with the familiar least square 
criterion,

Fitness(h) = ∫{xi [h(t)] − x0 (t)}2dt
As implied above, we can use other measures 

(often quadratic distance measures) to assess the 
fi tness.

In this context, we made use of an R program 
library by Ramsey that models h(t) by B-splines 
(Ramsay & Li, 1998). We applied this method to 
the pair of replicates in Figure 1a. The spectra of 
sample A4 and A5 after alignment are shown in 
Figure 1c.

From their corresponding lobster plot 
(Figure 1d), we can see the phase-shift being cor-
rected by the closing of the lobster claws.

Extending the method to multiple 
replicates
So far we have discussed the phase variation prob-
lem and its solution in a pair of replicates. This 
methodology can easily be extended to handle 
multiple replicates. Similar to the extension of 
microarray normalization beyond pair wise, we 
can devise three solutions. As a fi rst solution, we 
can designate one spectrum as the template, and 
then align the other spectra to this template. As a 
variation of the fi rst method, we can derive the 
second method by using the average of all spectra 
as the template. We used this second solution in 
this paper. Furthermore, we can implement a more 
computationally intensive third solution by alter-
nating the averaging and aligning steps until some 
convergence criterion is met. The lobster plot can 
also be extended to handle multiple spectra by a 
pair wise strategy similar to pair wise scatter plots 
(Figure 2b and Figure 2d).

As discussed before, technical variations of 
MALDI-TOF data can be partitioned into ampli-
tude variation and phase variation. To characterize 
the signifi cance of phase variation in the fi ve rep-
licates, we calculated the total variance before and 
after time warping for sample A and B, respectively 
(Figure 2 and Table 1). After curve registration, we 
can eliminate 84% and 76% of total variance for 
sample A and B, respectively.

PCA analysis of replicates from 
sample A and B
The relationships among spectra can be visualized 
by an unsupervised pattern recognition algorithm 
PCA (Lee et al., 2003). One reason to use PCA is 
that it projects the data points in a high-dimensional 
space into a 2-dimension space that works better 
for visualization. PCA works by combining many 
original features into a very few principal 
components (Jolliffe, 1986). In the PCA plot 
(fi gure 3C), each spectrum is represented as a 
single point. The distance between these points 
is a function of the similarity of the spectra: the 
closer the points, the more similar the spectra. As 
seen in Figure 3c, the spread of the replicates are 
tightened after the peak alignment (filled 
symbols).

Comparison of this peak alignment 
method with model-based 
calibration
We consider the above approach to be one of a 
family of methods that also includes model-based 
calibration involving known targets. In that 
approach, unlike the approach above, an automated 
peak fi nding algorithm is used that fi nds peaks in 
common within sets of spectra. While there are 
various nuances when comparing the various 
approaches, the results can be summarized as 
follows:

 •  Consistent with the authors’ prior experi-
ences with Bayesian models, approaches 
involving the use of an automated peak 
finding algorithm that followed by 
model-based calibration can be more 
effective than our FDA-based method as 
described above. This is particularly the 
case if the phase variation (that is, the 

Table 1: Percentage of variation explained by time warping.

Variance due
to phase

/ total variance = % of variance
due to phase

Sample A 3.37 3.97 84.98%

Sample B 2.52 3.31 76.28%
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way by which spectra are “warped”) 
involves a constant shift, or is a linear 
function.

 •  The FDA-based method at hand works 
well when there is no prior information 
involving peaks. This situation arises 
during some analysis pipelines, in par-
ticular with MALDI-TOF data. In other 
words, the method is of use (a) during 
completely automated analyses, (b) when 
there are no guaranteed peaks in common 
among the spectra being analyzed, or 
(c) when done during an initial alignment 
step that occurs prior to discovery of 
peaks in common among all  the 
spectra.

 •  When using simulated data, if the function 
defi ning the phase variation (i.e. the warp-
ing function) is not constant, linear, or 
quadratic, then the method at hand is more 
effective than the use of model-based 
calibration. Such a situation arises in some 
cases when aligning the LC retention 
times of mass spectrometry peaks.

While FDA-based approach also innately smoothes 
data using B-splines, in order for it to work well 

on datasets other than MALDI-TOF datasets, such 
as those from Fourier Transform Ion Cyclotron 
Resonance (FTICR) devices, we have found it 
necessary to apply additional smoothing and 
denoising techniques.

We illustrate the fi rst result in Figure 4. The fi rst 
plot shows unaligned peaks, with the second show-
ing peaks aligned using the approach outlined. The 
third shows peaks aligned with the help of auto-
mated peak fi nding and then “forced” into align-
ment using a piecewise linear (linear spline) model. 
This alignment is in spite of some data for the A5 
curve that suggests this replicate is in fact quite 
different in nature. In the “forced alignment”, 
modest evidence to the contrary is not allowed to 
trump the initial prior information guaranteed by 
the researcher to be correct.

In this scenario, if it is known for sure that main 
peaks are in common, then the third approach is 
simpler and more effective than the approach 
discussed above.

Discussion and Conclusions
We characterized the phase variation in replicates 
of MALDI-TOF data. These phase variations 
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account for 76% to 85% of the total variation in 
the replicates. We devised a lobster plot to detect 
the phase variation, and a peak alignment algo-
rithm to remove the phase difference. We then 
compared this peak algorithm to an approach of 
model-based calibration. We are in the process of 
adding in an additional, completely nonparametric 
approach of dynamic time warping or DTW. We 
have concluded that all have a role, as part of an 
overall set of methods that include parametric, 
semiparametric and nonparametric methods, some 
of which can benefi t from the availability of prior 
information. In this context, we plan to add addi-
tional methods to the existing two approaches 
coded thus far.

Overall, and in particular in comparison to the 
use of dynamic time warping, we would character-
ize the FDA-based method we used as semipara-
metric. However, we would caution that it is not 
the only one in its category; other methods using 
splines are apt to contain relatively more (or 
fewer) parametric aspects. One benefi t of the 
specifi c choice we used is that can also be coupled 
to doing functional analysis of variance, 
orFANOVA.

We noted in the results section that lack of 
smoothness in the underlying data (or a situation 
in which smoothing is undesirable) also affects the 
results when using methods that, as in the case of 
the FDA method, can make use of information 
involving the derivatives of the curve. We also 
compared the method to a model-based calibration 
approach that makes use of prior information of 
internal and external calibrants. As might be 
expected, such an approach using known lists of 
common peaks can be more effective than the 
approach above. However, not permitting the data 
itself to ever outweigh that particular prior infor-
mation also carries own risks.

Overall, we have concluded that the approach 
above, based upon the use of functional data 
analysis (FDA) represents one useful method that 
is part of an overall mix of approaches that includes 
parametric, semiparametric and nonparametric 
approaches to the task of peak alignment and 
calibration.
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