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Distinct metabolic pathways are known to regulate growth, differentiation, survival, and

activation of immune cells by providing energy and specific biosynthetic precursors.

Compelling experimental evidence demonstrates that effector T cell functions are

coupled with profound changes in cellular metabolism. Importantly, the effector

T cell-dependent “anti-self” response characterizing the autoimmune diseases is

accompanied by significant metabolic alterations. MicroRNAs (miRNAs), evolutionary

conserved small non-coding RNA molecules that affect gene expression by binding to

target messenger RNAs, are now known to regulate multiple functions of effector T cells,

including the strength of their activation, thus contributing to immune homeostasis. In this

review, we will examine the most recent studies that describe miRNA direct involvement

in the metabolic reprogramming that marks effector T cell functions. In particular, we

will focus on the work showing a connection between miRNA regulatory function and

the molecular network dysregulation that leads to metabolic pathway derangement in

autoimmunity. Finally, we will also speculate on the possibility that the interplay between

miRNAs and metabolism in T cells may help identify novel miRNA-based therapeutic

strategies to treat effector T cell immunometabolic alterations in pathological conditions

such as autoimmunity and chronic inflammation.
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INTRODUCTION

The immune system encompasses a variety of cellular subsets that are highly dynamic and
specialized in several activities essential for host defense and tissue homeostasis (1–4). T cells are a
crucial component of the adaptive immune system, with a unique nature that makes them able to
respond rapidly to environmental changes (5–7). T cell activation and function are deeply related
to specific metabolic programs necessary to regulate T cell signaling and support their growth,
differentiation, and effector function. Indeed, the ability of intracellular metabolism to integrate
signals and nutrients to produce energy is fundamental to determine a specific T cell fate (8–10).
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Over the past decade, increasing studies have highlighted the
role of microRNAs (miRNAs) in the metabolic control of
immune cells. miRNAs are a class of small non-coding RNAs
involved in the fine-tune regulation of gene expression. Several
mechanisms have been uncovered by which miRNAs control
T cell function, including regulation of intracellular metabolic
pathways. Under specific conditions, such as inflammation, the
biogenesis of miRNAs may be modified. Aberrant expression of
miRNAs may influence T cell metabolic reprogramming, leading
to pathological phenomena, including chronic inflammatory
disorders and autoimmune conditions.

In this review, we discuss recent literature reporting
the involvement of miRNAs in the metabolic control of
immune responses, with particular emphasis on those impacting
on T lymphocyte differentiation and function, in health
and autoimmunity.

METABOLIC REGULATION OF T CELL
RESPONSE

T lymphocytes play a crucial role in host defense and
coordination of immune response (11). Upon antigen
recognition via the T cell receptor (TCR) in the presence
of co-stimulatory signals, T lymphocytes clonally expand and
produce cytokines to eliminate infected or transformed cells
(12, 13). In particular, during an acute infection, antigen-specific
T cells proliferate and differentiate into effector T (Teff) cells:
CD8+ cytotoxic T lymphocytes (CTLs) that rapidly mediate
the clearance of infected cells and CD4+ Teff cells that became
functional specialized in distinct T helper (Th) cell subset [Th1,
Th2, Th17, follicular Th (Tfh), and regulatory T (Treg) cells]
(14, 15). Their dysregulated activation leads to a wide spectrum
of autoimmune and inflammatory conditions (16–19).

Compelling evidence indicate that intracellular metabolic
programs adopted by T cells finely regulate immune response
(20, 21). T cell activation determines an increased biosynthetic
demand, which requires rapid changes to generate metabolic
intermediates for T cell growth, proliferation, and function (20–
22). Both quiescent naïve and memory T cells are characterized
by metabolic pathways that supply energy for survival and
migration, including oxidative phosphorylation (OXPHOS),
fatty acid oxidation (FAO), and amino acid oxidation [Figure 1;
(10, 23)]. Conversely, activation of T cells drives transcriptional
changes, causing downregulation of oxidative metabolism and
upregulation of biosynthetic pathways, such as aerobic glycolysis
that promotes an increase in biochemical intermediates,
necessary for nucleotide, amino acid, and fatty acid synthesis
(24). This anabolic program increases nutrient uptake at the
expense of ATP production (25, 26). Teff cells require high levels
of glucose to proliferate and differentiate in distinct T cell subsets
(27). The increased glucose metabolism is controlled by glucose
transporters, glycolytic enzymes, multi-protein complexes, and
transcriptional factors that coordinate glucose utilization to
generate pyruvate (28, 29). Under hypoxic conditions, pyruvate
can be converted to lactate by the lactate dehydrogenase
(LDH) (anaerobic glycolysis); on the other hand, higher oxygen

levels promote pyruvate transfer into the mitochondria to
supply intermediates of the tricarboxylic (TCA) cycle (30).
TCA cycle starts from acetyl-CoA to generate citrate, which
is consumed and regenerated throughout multiple biochemical
reactions; nicotinamide adenine dinucleotide (NADH), flavin
adenine dinucleotide (FADH2), and one GTP or ATP molecule
are produced in each cycle [Figure 1; (31)]. Subsequently,
NADH and FADH2 provide electrons to generate ATP via
OXPHOS [Figure 1; (31)]. Alternatively, glucose-6-phosphate
(G6P), derived from the first enzymatic step of glycolysis, can be
directed into the pentose phosphate pathway (PPP) that provides
ribose for the synthesis of nucleotides and reducing equivalents,
such as nicotinamide adenine dinucleotide phosphate (NADPH),
for lipid and cholesterol biogenesis [Figure 1; (32)].

The increased glucose flow into the pentose phosphate
pathway is also accompanied by an increase in glutamine
metabolism (glutaminolysis), an energy-producing process
required for fast biosynthesis of macromolecules necessary
for lipid production (33, 34). Lipids play an important role
in the regulation and maintenance of membrane properties,
bioenergetic demands, and cell signaling (35). Upon TCR
activation, T cells must increase their lipid content at each
cell division for new plasma membrane generation; moreover,
lipids, especially long fatty acids, are necessary to generate
energy through the FAO [Figure 1; (36)]. Long-lived memory
T cells preferentially use FAO to fuel the TCA cycle and
OXPHOS, andmaintain ATP production (37). Distinctmetabolic
and nutrient sensors, including the phosphatidylinositol 3-
kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)
pathway, hypoxia-inducible factor 1α (HIF1α), c-Myc, and
AMP-activated kinase (AMPK), integrate external stimuli and
nutrient availability with intracellular metabolic processes (38–
42). mTOR is a serine/threonine kinase with a key role in the
regulation of T cell metabolism; it integrates multiple signals
in response to nutrients, growth factors, energy, and stress to
coordinate immune response upon TCR activation (43, 44).
mTOR acts through two main signaling complexes, mTORC1
and mTORC2, which differ for their structure and sensitivity
to the inhibitor rapamycin (43–46). PI3K/AKT/mTOR signaling
pathway activation induced by TCR engagement, CD28 co-
stimulation, or IL-2 receptor leads to an increase of glucose
uptake via upregulation of Glucose transporter 1 (Glut1) levels,
mediated by mTORC1 complex (45, 47). Instead, mTORC2,
which mainly responds to growth signals, controls T cell
proliferation and survival by AKT phosphorylation that affects
glycogen synthase kinase-3 β (GSK-3β) (48, 49). Moreover,
mTORC1 activates glycolytic program in T cells also thanks to
the downstream transcription factors HIF1α and its target genes
(50). HIF1α is an oxygen sensor rapidly activated under hypoxic
conditions, which determines the transcription of target genes
including erythropoietin (EPO), vascular endothelial growth
factor (VEGF), and glycolytic enzymes (51, 52). HIF1α in turn
induces the expression of intermediates required for glycolysis,
such as Glut1, in the presence of low oxygen availability (53).
HIF1α can also increase glycolysis by inducing the expression
of pyruvate dehydrogenase kinase 1 (PDK1), a key metabolic
enzyme that favors the conversion of pyruvate to lactate (53).
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FIGURE 1 | miRNAs orchestrate T cell metabolic reprogramming. Schematic representation of the main metabolic programs controlled by miRNAs in T cells:

Glycolysis, pentose phosphate pathway (PPP), fatty acid oxidation (FAO), tricarboxylic acid (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS).

mTORC1 is also responsible for the activation of c-Myc, another
transcription factor with pleiotropic effects involved in cell
proliferation, growth, and metabolism (38, 54). As a metabolic
checkpoint, c-Myc is rapidly activated after TCR engagement
and induces the transcription of enzymatic mediators of
glycolysis, such as lactate dehydrogenase A (LDHA), pyruvate
kinase isoenzyme type M2 (PKM2), hexokinase 2 (HK2), and
Glut1 (55). c-Myc also induces the expression of transcription
factor activating enhancer binding protein 4 (AP-4) which in
turn upregulates the abovementioned glycolytic enzymes (56).
Conversely, AMPK drives activated T cells to engage OXPHOS
and maintain ATP levels under low glucose concentration (57).
AMPK is activated in response to energy deprivation and under
stress conditions, such as infections, inflammation, and DNA
damage (58). AMPK is also a sensor of energy homeostasis
and inhibits energy-consumingmetabolism by increasing cellular
AMP levels during energy deprivation, favoring ATP production
(57, 59). Furthermore, AMPK controls catabolic metabolism
through the inhibition of acetyl-CoA carboxylase (ACC), a

crucial metabolic enzyme of fatty acid biosynthesis, promoting
FAO (59). Under nutrient deprivation, AMPK also inhibits
mTORC1 complex activity in T cells (57). Indeed, it has been
observed that AMPK loss in naïve T cells upregulates mTOR
activity and induces glycolysis (57). In all, these findings suggest
that metabolism represents a critical checkpoint for T cell
activation and function. Distinct levels of regulation (epigenetic,
transcriptional, and translational) control and coordinate this
cross-talk to ensure the appropriate energetic status underlying
the specific immune cell function.

miRNA BIOGENESIS AND BIOLOGICAL
FUNCTION

miRNAs are a class of small, non-coding RNAs of 21–25
nucleotides involved in post-transcriptional control of gene
expression, through base pairing with complementary sequences
in the 3′ untranslated regions (3′UTR) (58). miRNAs are
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FIGURE 2 | miRNA biogenesis and function. Schematic representation of miRNA biogenesis pathway and biological function. Di George syndrome Critical Region 8

(DGCR8), exportin-5 (XPO5), GTP-binding nuclear protein Ran (RanGTP), trans-activator RNA binding protein (TRBP), Argonaute protein 2 (Ago2), and RNA-induced

silencing complex (RISC).

transcribed by RNA polymerase II or III as long variable-length
transcripts named primary miRNA transcripts (pri-miRNAs),
with a 5′cap and a 3′poly (A) tail [Figure 2; (60)]. Pri-miRNAs
are processed by Drosha ribonuclease III and its partner named
Di George syndrome Critical Region 8 (DGCR8), to produce
a hairpin RNA of about 65 nucleotides known as pre-miRNA
molecule [Figure 2; (61)]. After nuclear processing, the pre-
miRNAs are exported from the nucleus to the cytoplasm by
the GTP-binding nuclear protein Ran (RanGTP)/exportin-5
(XPO5) complex and cleaved into a miRNA duplex of about 21
nucleotides (ds-miRNAs) by a second endoribonucleolytic Dicer
and its cofactor TRBP (trans-activator RNA binding protein)
[Figure 2; (62)]. ds-miRNAs are loaded into the Argonaute
protein (Ago2), which facilitates incorporation of the guide
strand into the RNA-induced silencing complex (RISC), while
the passenger strand is degraded [Figure 2; (63)]. The guide
strand binds target messenger RNA (mRNA) based on sequence
complementarity; base pairing match induces degradation of
target mRNA, while the imperfect complementarity results in
suppression of translation [Figure 2; (64)].

The biological relevance of miRNAs is highlighted by the
discovery that a single miRNA could interact with hundreds
of target mRNAs, and each gene transcript may have several
sites of miRNA recognition (65, 66). The finely tuned control
of gene expression requires the production of the appropriate
level of specific miRNAs in a well-defined time frame (65, 66).
Since miRNAs are involved in post-transcriptional regulation of

several cellular processes, dysregulation or dysfunction of their
biogenesis leads to a wide range of human diseases, ranging
from cancer to autoimmune disorders (67–69). Specific miRNAs
have been described to regulate the function and homeostasis
of several immune cell populations (70). Compelling evidence
has demonstrated that deletion of Drosha or Dicer within T
cell compartment affects T cell development, differentiation and
function (71, 72). In this context, it has been shown that Dicer
deletion at an early stage of T cell differentiation compromises
the survival of TCR alphabeta (α/β) chain cells while it is
dispensable for CD4 or CD8T cell lineage commitment (73,
74). Furthermore, Chong et al. highlighted the essential role of
Drosha and Dicer in Treg cells, as specific deletion of one or
both of them results in impaired expression of the transcription
factor forkhead box P3 (FoxP3), the master gene of Treg cell
development and function (71). Among all the miRNAs involved
in the control of T cell fate, miR-125b has been shown to
restrain the expression of genes encoding molecules important
for differentiation of naïve into effector and memory T cells,
targeting interferon-γ (IFN-γ), interleukin 2 receptor β (IL-2Rβ),
interleukin 10 receptor α (IL-10RA), and Blimp-1 (PRDM1)
genes (75).

miR-214 and miR-182 act through different mechanisms to
control T lymphocyte activation (76). Specifically, up-regulation
of miR-124 in T cells, after TCR stimulation, promotes T cell
activation through the inhibition of phosphatase and tensin
homolog (PTEN), a negative regulator of T cell activation.
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Mechanistically, activation via CD28 induces upregulation of
miR-214, which targets the 3′UTR of Pten, causing a reduction
in PTEN levels promoting T cell activation (76). Constitutive
overexpression of miR-182 by IL-2 supports clonal expansion of
Th cells, by reducing the transcription factor Foxo1, a suppressor
of resting Th cell proliferation (77).

Compelling experimental evidence reports that several
miRNAs can also influence T cell differentiation (78–80). In
more detail, miR-155, expressed at high levels in Treg cells,
is involved in the modulation of the suppressor of cytokine
signaling 1 (SOCS1) and the signal transducers and activators
of transcription 5 (STAT5) activity, key molecules for Treg cell
differentiation and function (81). Data from animal models
revealed that mice lacking miR-146a are more susceptible to
chronic inflammation and autoimmune disorders secondarily to
the loss of peripheral T cell tolerance. These findings suggest
that miR-146 may be considered a key regulator of T cell
response (82). In all, miRNA network can be considered as a
crucial regulator of cell biology and, although studies focusing
on miRNAs are progressively increasing, their impact on T cell
function is still only partially explored.

ROLE OF miRNAS IN T CELL METABOLIC
REPROGRAMMING

The role of miRNAs in the regulation of metabolic
reprogramming in cancer cells has been largely investigated, thus
opening the study of their potential role in the modulation of
T cell metabolism (83–85). Several studies have suggested that
miRNAs mainly act on key metabolic enzymes or transporters of
energetic nutrients, thus impacting on T cell proliferation and
differentiation (86, 87). In this context, Zhang et al. identified
miR-143 as a regulator of T cell metabolism that reduces glucose
uptake through the inhibition of glucose receptor Glut1. The
authors found that, by specifically reducing glycolysis during
TCR-dependent activation, miR-143 promotes memory T
cell differentiation and metabolic reprogramming (88). In
addition, miR-143 stimulates T cell memory differentiation
also through the control of two enzymes, hexokinase II and
carnitine palmitoyltransferase 1a (Cpt1a), which regulate glucose
oxidation and oxidative phosphorylation, respectively [Figure 1;
(88)]. miR-150 is an additional miRNA that finely tunes T cell
glycolytic reprogramming, secondarily to co-stimulatory signals.
Recent findings suggest that CD46 signaling, which is activated
downstream of CD28 co-stimulation during T cell activation,
leads to a rapid downregulation of miR-150 expression,
which targets solute carrier family 2 member 1 (SLC2A1) gene,
encoding the glucose transporter Glut1 [Figure 1; (89)]. Through
a direct interference with Glut1-dependent glycolysis, miR-150
profoundly impacts on T cell activation in the absence of a
proper co-stimulatory signal (89). On the contrary, metabolic
reprogramming of activated T cells seems to be associated
with the upregulation of miRNAs promoting glucose uptake
and downregulation of those stimulating catabolic pathways.
In this context, Liu et al. have studied the role of miR-125b,
overexpressed in T cell acute lymphoblastic leukemia (T-ALL)

(90). The authors revealed that miR-125b regulates glucose
uptake in T cell via Glut1 by reducing the expression of TNF-
α-induced protein 3 (TNFAIP3), which inhibits the activation
of nuclear factor k B (NF-kB) [Figure 1; (90)]. These findings
suggest that, through the enhancement of glucose metabolism
and oxygen consumption, deregulation of miR-125b contributes
to abnormal differentiation of T cell in T cell leukemia (90).

It has been reported that CD28 engagement during T cell
activation promotes the expression of Cpt1a, a key enzyme for
mitochondrial FAO. This process is finely regulated by miR-33
that, in the absence of CD28 signal, attenuates Cpt1a expression,
interfering with the metabolic demand central for future recall
of memory T cells [Figure 1; (91)]. Several studies have also
reported that miRNAs control T cell metabolic reprogramming
by targeting important metabolic checkpoints, such as AMPK,
mTOR, and c-Myc (92–94). Ouimet et al. unveiled that miR-33
targets AMPK, inducing an unbalance between aerobic glycolysis
and mitochondrial OXPHOS (92). miR-33 affects oxidative
phosphorylation and induces macrophages M2 polarization
through direct targeting of AMPK [Figure 1; (92)]. The same
authors revealed that miR-33 inhibition increased macrophage
expression of the retinoic acid (RA)-producing enzyme aldehyde
dehydrogenase family 1, subfamily A2 (ALDH1A2), and of
retinal dehydrogenase enzyme, with subsequent production
of RA, which favors differentiation of FoxP3+ CD4+

T cells (92).
Several other miRNAs are involved in the control of mTOR

pathway; in particular, an increased activation of mTOR, leading
to S6 and AKT phosphorylation, has been observed in the
absence of co-stimulatory signals in CD4+ T cells deficient for
RNaseIII enzyme Dicer, a key component of miRNAs biogenesis
(93). Two miRNAs are involved in the fine regulation of mTOR
and Rictor mRNA expression. Specifically, the downregulation of
let-7c miRNA andmiR-16 in Dicer-deficient CD4+ T cells causes
TCR signaling amplification and increased IL-2 production, due
to overexpression of mTOR and Rictor mRNAs [Figure 1; (93)].
Subsequently, restoration of mTOR and Rictor expression by
genetic manipulation determines reduction of IL-2 production at
levels sufficient to avoid anergy in response to TCR engagement
(93, 94). Thus, let-7c miRNA and miR-16 control the balance
between activation and anergy through post-transcriptional
control of mTOR components in T cells [Figure 1; (93, 94)].

mTOR pathway is also regulated by miR-150 expressed at high
levels during differentiation of naive CD4+ T cells into Treg
cells; miR-150 efficiently represses mTOR in cooperation with
miR-99a, and this promotes Treg cell differentiation [Figure 1;
(87)]. In addition, a recent report showed that miR-451a directly
targets c-Myc in Jurkat T cells; indeed, miR-451a negatively
correlated with c-Myc expression in CD4+ T cells from dilated
cardiomyopathy subjects. These results suggest a role of the miR-
451/c-Myc pathway in CD4+ T cell proliferation and activation
[Figure 1; (95)].

These data support the idea that, through the modulation of
intracellular metabolic programs, miRNAs are able to influence T
cell fate and differentiation (96). Understanding the mechanism
by which miRNAs target metabolism in T cells may lead to
therapeutic strategies for immune-related diseases.
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T CELL METABOLIC ALTERATION IN
AUTOIMMUNITY: THE miRNA
CONNECTION

Given the impact of miRNAs in the regulation of T cell metabolic
programs, aberrant miRNA expression could interfere with T
cell fate with consequent loss of immune homeostasis and
autoimmunity (97–100). Autoimmune diseases afflict about 7–
9% of the worldwide population; in particular, type 1 diabetes
(T1D), systemic lupus erythematosus (SLE), and multiple
sclerosis (MS) have been increasing in the last few years (101–
104). The role of T cell metabolism in the control of immune
function and how its alteration could influence immune response
during autoimmunity have been well-characterized (24, 105–
111). Naïve T lymphocytes are metabolically inactive, and
their differentiation is controlled by metabolic reprogramming,
involving glycolysis, FAO, and OXPHOS (10, 112–115). It
is well-known that activated T cells require high levels of
metabolic compounds to maintain their viability and function
(57). In particular, it has been shown that glycolysis sustains
cytokine production in Teff cells (57); moreover, FAO and
OXPHOS play an important role to increase the inflammatory
capacity of memory T cells, and this allows a rapid response
upon antigen recall (116, 117). Thus, an aberrant metabolic
environment could influence the development of inflammation
and autoimmune disorder by fueling the differentiation and
activation of pathogenic T cells.

miRNAs were shown to regulate metabolism-related genes
in T1D, an autoimmune disease characterized by persistent
hyperglycemia secondarily to pancreatic β-cell destruction
and insulin deficiency (118, 119). Increased glucose levels
in the extracellular microenvironment determine a metabolic
reprogramming that fuels autoreactive Teff cell activation and
IFN-γ secretion (57, 114, 116). Glucose-activated Teff cells
upregulate Glut4 and insulin receptor substrate (IRS)-1 on their
surface to sustain glycolytic rate and produce pro-inflammatory
cytokines and reactive oxygen species (ROS) that promote
the autoimmune response (120). In this context, let-7 family
of miRNAs, which control several genes involved in glucose
homeostasis, insulin resistance, and cell differentiation, has been
reported to control important reguatory mechanisms in T1D
subjects [Table 1; (121–123)]. Let-7miRNAs are one of the largest
and highly conserved family of miRNAs expressed in T cells,
present in multiple copies in the genome; the number of let-7
miRNAs differs between species; for example, in humans, there
are 10 mature let-7 miRNAs (124). It has been shown that let-7
miRNAs target multiple genes related to glucose response and
the insulin-PI3K-mTOR pathway, such as insulin-like growth
factor 1 receptor (IGF1R), insulin receptor (INSR), and IRS-2
but also regulate genes involved in the effector functions of CTLs
(i.e., granzyme A, granzyme B, perforin 1, and eomesodermin)
(121, 122, 125). In particular, it has been shown that four
members of the let-7 miRNAs family (let-7a, let-7e, let-7f,
and let-7g) were higher in PBMCs from T1D subjects (126);
however, how these miRNAs are involved in T1D pathogenesis is
poorly understood. Together, these results suggest that an altered

TABLE 1 | miRNAs involved in T cell metabolic reprogramming, during

autoimmune diseases: type 1 diabetes (T1D), systemic lupus erythematosus

(SLE), and multiple sclerosis (MS).

miRNAs Diseases Targets References

let-7 family T1D IGF1R; INSR; IRS-2 (121–123, 126)

miR-378 T1D GDP; DDAH1; LDHA; CRAT (127–129)

miR-16-2 T1D CD28 (130)

miR-551b T1D FasL (130)

miR-877 T1D AIRE (130)

miR-26a SLE EZH2 (131–134)

miR-633 SLE AKT1 (135)

miR-766-3p SLE IRS-2; PI3K receptor 1 (136)

NovelmiRNA-25 SLE AMPD-2 (137)

miR-19b MS PTEN (138)

miR-99b-5p MS IGF1R; mTOR; AKT1 (138–142)

miR-21 MS SMAD7 (143–146)

insulin–PI3K–mTOR pathway in T cells of T1D individuals may
determine an aberrant glucose uptake as a consequence of a
defective regulation of insulin receptor genes. This impaired
metabolism could favor the differentiation and activation of
pathological Teff cells in T1D patients. Furthermore, serummiR-
378 negatively correlates with insulinoma-associated protein 2
(IA2A) and the Zinc transporter 8 (Znt8) autoantibodies in T1D
subjects (127). This miRNA is involved in the control of several
metabolic processes, such as glycolysis, mitochondrial oxidation,
and fatty acid metabolism, through the interference with the
expression of mannose-1-phosphate guanylyltransferase (GDP),
dimethylarginine dimethylaminohydrolase 1 (DDAH1), LDHA,
and carnitine O-acetyltransferase (CRAT) enzymes [Table 1;
(127–129)]. One hypothesis is that serum levels of miR-378
could reflect metabolic alteration that promotes differentiation
of pathogenic T cells in T1D subjects (Table 1). In this context,
Zhou et al. have investigated by in silico analysis that 27
miRNAs out of 530 are located in nine human insulin-dependent
diabetes mellitus (IDDM) loci associated with T1D susceptibility
(130). Among them, miR-16-2, miR-551b, and miR-877 target
specific genes involved in the activation of Teff cells, such as
CD28, Fas ligand (FasL), and the autoimmune regulator (AIRE),
respectively [Table 1; (130)].

miR-26a is an additional miRNA associated with T cell
dysfunction, glucose metabolism, and autoimmune disease
development (131, 132). Its expression in T cells is regulated
by glucose availability, and it is able to target the epigenetic
regulator enhancer of zeste homolog 2 (EZH2), a histone-
lysine-N-methyltransferase, well-known to improve effector T
cell function by inhibiting Notch signaling repressors [Table 1;
(133, 147)]. In SLE subjects, the levels of miR-26a in CD4+

T cells negatively correlate with disease severity; this suggests
that the reduced miRNA regulation of EZH2, secondarily to
an increased glycolytic activity in CD4+ T cells, sustains their
activation (134, 148). Several defects in metabolic pathways
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of T cells from SLE subjects have been described, especially
those related to mitochondrial dysfunction (149–151). SLE is
a complex multifactorial autoimmune disease where loss of
tolerance determines the generation of antinuclear antibodies
produced by B lymphocytes and tissue damage by autoreactive
Teff cells (150, 152). Mitochondrial membrane hyperpolarization
occurs in CD4+ T cells from SLE subjects, leading to increase
of ROS and depletion of ATP and glutathione, determining an
impaired T cell activation and cell death (149, 153, 154). Of
note, mounting evidence show a role for mTOR as a sensor of
mitochondrial dysfunction in Teff cell differentiation during
SLE (155, 156). It has been recently reported that miR-633
that targets the AKT/mTOR pathway is significantly reduced
in CD4+ T cells from SLE-affected subjects, and its expression
negatively correlates with disease activity [Table 1; (135)]. In
more detail, miR-633 inhibits the AKT/mTOR signaling and
increases the induction of several cytokines, such as IL-4,
IL-17, and IFN-γ, thus contributing to disease pathogenesis
[Table 1; (135)]. Together with the abovementioned study,
others reported an increase of miR-766-3p in CD4+ T cells from
SLE subjects. Potential target genes of this miRNA are IRS-2
and PI3K receptor 1, both involved in the PI3K/AKT/mTOR
pathway [Table 1; (136)]. These data suggest that CD4+

T cells of SLE subjects have an impaired PI3K signaling,
which could affect their differentiation and function, leading
to the development of autoimmunity. Recently, Guo et al.
reported the upregulation of several miRNAs associated to
metabolic pathways in PBMCs from SLE patients, such as
NovelmiRNA-25 and miR-1273h-5p (137). NovelmiRNA-25
targets the enzyme adenosine monophosphate deaminase
(AMPD)-2 involved in purine nucleobase or nucleotide
metabolism by converting AMP to inosine monophosphate
(IMP) [Table 1; (137)]. The overexpression of NovelmiRNA-
25 associates with a downregulation of AMPD-2 protein in
PBMCs from SLE subjects, contributing to AMP accumulation
that improved the activation of pro-inflammatory pathways
[Table 1; (137, 157)]. Moreover, increased levels of AMP
contribute to activate AMPK, a key enzyme for cellular metabolic
reprogramming (42). Of note, NovelmiRNA-25 positively
correlates with disease activity, suggesting an important role
for this miRNA as a biomarker to predict the activation of
pathogenic T cells.

The role of miRNAs in the regulation of autoreactive T
cell function has been reported also in MS (158–160). MS
is the most common chronic inflammatory demyelinating
disease of the central nervous system (CNS), characterized
by autoreactive T cells able to target myelin-based antigens,
leading to demyelinating lesions and neuronal degeneration
(161). During MS, the demyelinating process associates with
metabolic reprogramming in neuronal cell bodies sustaining
chronic inflammation through the release of pro-inflammatory
cytokines (162, 163). These events promote the activation
of CD4+ T cells, which further increase neuronal damage
(162). Mounting evidence highlights the close relationship
between T cell metabolic alterations and neurodegeneration
in MS (105, 164, 165). Impaired glycolytic engagement
has been described in Tconv cells from naïve-to-treatment

relapsing remitting (RR)-MS subjects during the generation
of induced (i) Treg cells, which contributes to loss of immune
tolerance (105). In more detail, the glycolytic enzyme enolase-
1 accumulates in the nuclei—secondarily to the reduced
engagement in the glycolytic cascade—and constrains the
induction of FoxP3 expression during the generation of
Treg cells (105). Moreover, other key enzymes involved in
glycolysis and mitochondrial respiration are reduced in CD4+

T cells from RR-MS subjects, such as aldolase, hexokinase
1, Glut1, dihydrolipoamide S-acetyltransferase (DLAT), and
dihydrolipoamide S-succinyltransferase (DLST); interestingly,
restoration of these enzymes after IFN-β-1a treatment correlates
with disease amelioration (165). Several studies also reported that
alterations in the PI3K/AKT/mTOR pathway, which controls T
cell activation and metabolism, ameliorate the clinical course
of MS (166–169). Also, rapamycin—an immunosuppressant
drug that inhibits mTOR by destabilizing the mTOR–Raptor
complex—controls disease progression in experimental
autoimmune encephalomyelitis (EAE) mice by suppressing
Teff cell functions (170, 171). In this context, miR-19b and
the miR-99 family are associated with the mTOR pathway,
affecting effector T cell activation during MS [Table 1; (138)]. By
targeting PTEN, the negative regulator of the PI3K/AKT/mTOR
signaling pathway, miR-19b enhances mTOR activity sustaining
pathogenic Th17 cell development [Table 1; (138)]. Other
reports revealed also that the miR-99 family modulates the
PI3K/AKT/mTOR signaling pathways. In particular, the miR-
99b-5p, a member of this miRNA family, is significantly higher
in splenocytes of EAE mice; in silico analysis confirmed that it
may target multiple genes, such as IGF1R, mTOR, and AKT1
[Table 1; (139–141)]. Combined miRNA and mRNA expression
analysis confirmed these data also in human disease; indeed,
miR-99b-5p levels are upregulated in PBMCs from pediatric
MS subjects (142). These results suggest an important role for
miR-99 family, in particular the miR-99b-5p, in T cell activation
during MS through a hyper-activation of the mTOR pathway in
pathogenic lymphocytes.

Furthermore, recent reports suggest that fumaric acid ester
(FAE)—aKrebs cycle intermediate used forMS therapy—induces
hypermethylation of the miR-21 locus in CD4+ T cells, and
this constrains Th17 cell differentiation and function [Table 1;
(143)]. In more detail, FAE treatment reduces Th17 cells, by
direct hypermethylation of CpG sites spanning the MIR-21
promoter. Several studies have shown that miR-21 is upregulated
in PBMCs from MS subjects and also in CNS-infiltrating T
cells of EAE mice (144, 145). As a therapeutic tool in MS
subjects, FAE selectively reduces miR-21 transcripts in Th17 cells
and indirectly increases its target—the small mothers against
decapentaplegic homolog 7 (SMAD7)—an inhibitor of their
differentiation [Table 1; (144, 146)].

Taken together, these findings support the existence of a cross-
talk between metabolic programs and miRNA network in T
cells. Through a strong impact on the intracellular molecular
pathways that control T cell differentiation and function, miRNA
dysregulation leads to an imbalance between autoreactive T
cell activation and regulatory function with consequent loss of
immunological tolerance.
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CONCLUDING REMARKS

Our understanding of the link between T cell metabolism
and miRNA expression has substantially increased in the
past decade. The ability of several miRNAs to regulate and
reprogram metabolic pathways that drive T cell function
and differentiation may represent a hallmark to improve
the comprehension of the molecular processes underlying
the pathogenesis of autoimmune disorders. However, further
studies are required to better understand the connection
among miRNAs, T cell metabolism, and loss of immunological
tolerance. The precise mechanisms by which miRNAs target
the genes encoding for enzymes, multi-protein complex, and
transcription factors related to T cell metabolism and how
their alteration associates with the development of autoimmune
disorders remain to be dissected. Considering the increasing
important role of miRNAs in the immune homeostasis,
therapeutic approaches could represent an innovative way to
control the aberrant metabolism sustaining autoreactive T
cell clones.
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