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HIV-1 increases susceptibility to pulmonary infection and disease, suggesting
pathogenesis in the lung. However, the lung immune environment during HIV infection
remains poorly characterized. This study examined T cell activation and the cytokine milieu
in paired bronchoalveolar lavage (BAL) and blood from 36 HIV-uninfected and 32 HIV-
infected participants. Concentrations of 27 cytokines were measured by Luminex, and T
cells were phenotyped by flow cytometry. Blood and BAL had distinct cytokine profiles
(p=0.001). In plasma, concentrations of inflammatory cytokines like IFN-g (p=0.004) and
TNF-a (p=0.004) were elevated during HIV infection, as expected. Conversely, BAL
cytokine concentrations were similar in HIV-infected and uninfected individuals, despite
high BAL viral loads (VL; median 48,000 copies/ml epithelial lining fluid). HIV-infected
individuals had greater numbers of T cells in BAL compared to uninfected individuals
(p=0.007); and BAL VL positively associated with CD4+ and CD8+ T cell numbers
(p=0.006 and p=0.0002, respectively) and CXCL10 concentrations (p=0.02). BAL T cells
were highly activated in HIV-infected individuals, with nearly 2-3 fold greater frequencies of
CD4+CD38+ (1.8-fold; p=0.007), CD4+CD38+HLA-DR+ (1.9-fold; p=0.0006), CD8+CD38+
(2.8-fold; p=0.0006), CD8+HLA-DR+ (2-fold; p=0.022) and CD8+CD38+HLA-DR+ (3.6-fold;
p<0.0001) cells compared to HIV-uninfected individuals. Overall, this study demonstrates a
clear disruption of the pulmonary immune environment during HIV infection, with readily
detectable virus and activated T lymphocytes, which may be driven to accumulate by
local chemokines.
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INTRODUCTION

Sub-Saharan Africa has 25.6 million people currently living with
HIV and 970,000 new infections a year (1). HIV-infected
individuals are highly susceptible to both infectious and non-
communicable pulmonary diseases such as tuberculosis [TB],
Pneumocystis pneumonia, chronic obstructive lung disease
[COPD] or pulmonary fibrosis (2–4). Although antiretroviral
treatment (ART) has reduced the overall prevalence of HIV-
associated lung disease, respiratory diseases still contribute to
substantial morbidity and mortality in the HIV-infected
population (5–7). This suggests that HIV pathogenesis extends
to the lungs, requiring additional strategies to reduce the burden
of respiratory diseases in HIV-infected individuals.

HIV infection is characterized by systemic immune
hyperactivation and profound damage to mucosal compartments
due to viral replication (8–16). Consequently, the demonstrated
burden of HIV in the lung has significant implications for local
pathology and impaired immunity to respiratory pathogens (17–
23). HIV-associated lymphocytic alveolitis, the infiltration of
lymphocytes into the airways, is associated with local viral
replication (24–28). However, due to the difficulty in studying
and sampling the lung compartment, the full extent of HIV-
associated pulmonary immune dysfunction is not well understood.

Our previous work established that early HIV infection had a
limited effect on Mycobacterium tuberculosis (M.tb)-specific T
cell responses in BAL (29), warranting a broader investigation of
the immune milieu of the lung. Therefore, in this study, we
examined viral burden, T cell activation and cytokine
concentrations in paired BAL and blood from HIV-uninfected
and HIV-infected participants.
METHODS

Study Participants
Participants were recruited from Cape Town, South Africa and
grouped according to their HIV status: 32 ART-naive HIV-
seropositive persons with CD4+ T-cell counts of >400 cells/mm3

and 36 HIV-seronegative persons. Participants were not eligible
for this study if they had any active respiratory infections. Active
TB was excluded on the basis of symptoms, radiological
evidence, and BAL fluid culture results. All participants had
latent TB infection (LTBI) as confirmed by a positive IFN-g
release assay (IGRA; Quantiferon-TB Gold, Qiagen, Hilden,
Germany). This study was approved by the Research Ethics
Committees of the University of Cape Town (REF158/2010) and
Stellenbosch University (N10/08/275). All participants provided
written, informed consent.

Collection and Processing of Samples
BAL samples were collected and processed as previously
described (29). Briefly, 160ml of saline was instilled in the
middle lobe bronchus and aspirated. After centrifugation,
acellular BAL fluid (BALF) was stored at −80°C and the cell
pellet was washed and filtered through a 100-mm cell strainer
Frontiers in Immunology | www.frontiersin.org 2
(CellTrics, Partec, Münster, Germany). Cells were then counted
using Trypan Blue exclusion and differentially stained in order to
count macrophages, lymphocytes and neutrophils (RapidDiff,
Clinical Sciences Diagnostics, Johannesburg, South Africa). The
absolute number of T lymphocytes in BAL fluid was calculated
using differential staining and microscopy, and the frequencies of
live CD3+, CD4+, or CD8+ T cells from a flow cytometry
phenotyping panel (see below). To correct for epithelial lining
fluid (ELF) dilution due to variable fluid volumes recovered, the
urea method was used (QuantiChrom, Clonagen, Brussels,
Belgium) as described elsewhere (30). BALF viral loads and
BAL cell counts were standardized according to the volume of
ELF sampled (median, 1 mL; IQR, 0.75–1.64 mL) and are
expressed as the number of cells or viral load per ml of ELF.

Blood specimens were collected and processed within 4 hours.
Heparinized whole blood was treated with red blood cell lysis
buffer without a fixative, and the cell pellet was immediately
stained with a panel of antibodies for phenotyping by
flow cytometry.

Phenotyping by Multiparameter
Flow Cytometry
The staining panel consisted of CCR5 PE (2D7), CD38 APC
(HIT2), CD3 PE-Cy7 (SK7), HLA-DR APC-Cy7 (L243; all from
BD Biosciences, New Jersey, USA), CD4 PE-Cy5.5 (S3.5), CD8
Qdot-705 (3B5), CD19 Pacific Blue (SJ25-CI), CD14 Pacific Blue
(T̈k4; all from Invitrogen, California, USA), CD45RO ECD
(UCHL1), CD27 PE-Cy5 (1A4CD27; both from Beckman
Coulter, California, USA). Blood and BAL cells were stained
with a viability marker (violet fixable viability dye, Invitrogen),
followed by CCR5 labelling at 37°C before labelling with
antibodies against surface markers. Cells were fixed in 1x
CellFix (BD Biosciences) for acquisition a BD Fortessa using
FACSDiva software. Data were analysed using FlowJo (TreeStar,
Oregon, USA). Gates were set using fluorescence-minus-one
(FMO) controls.

Measurement of Soluble Analytes
A total of 27 cytokines and chemokines were measured in paired
plasma and concentrated BALF samples using human magnetic
bead multiplex kits (Merck Millipore, Massachusetts, USA). The
Human Th17 magnetic bead kit was used to measure IL-1b, IL-4,
IL-6, IL-10, IL-13, IFN-g, GM-CSF, TNF-a, IL-21, IL-22, IL-23,
IL-15, IL-17 and CCL20. The Human Cytokine/Chemokine
magnetic bead kit was used to measure EGF, IL-12p70, IL-7,
CXCL8 (IL-8), CXCL10 (IP-10), CCL2 (MCP-1), CCL3 (MIP-
1b), CCL4 (MIP-1a), CCL5 (RANTES), CCL7 (MCP-3), CCL11
(eotaxin), CX3CL1 (fractalkine) and sCD40L. Samples were run
in duplicate and the mean was calculated. Cytokine
concentrations were adjusted for BAL fluid concentration
factor. Cytokines that fell below the limit of detection were
reported as half the minimum detectable concentration.
Analytes were excluded if they fell below the empirical cut-off
(either undetectable in 50% or more participants, or with a
median of less than twice the minimum detectable concentration
for that analyte). These were GM-CSF, IL-22, IL-4, IFN-g, CCL11
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in BAL; and GM-CSF, IL-15, IL-1b, IL-22, IL-4, IL-6 in blood.
Analytes were categorized as pro-inflammatory (IL-1b, IL-6, IL-
12p70, IL-23, TNF-a, sCD40L), adaptive (IFN-g, IL-13, IL-17),
g-chain cytokines (IL-7, IL-15, IL-21), regulatory (IL-10), growth
factors (EGF) and chemokines (CCL2, CCL3, CCL4, CCL5,
CCL7, CCL11, CCL20, CXCL8, CXCL10, CX3CL1) based on
function. The relative proportion of each analyte was calculated
as a percentage of the sum total of the analyte concentrations in
that compartment.

Statistical Analyses
Non-parametric statistical analyses (Mann-Whitney U test, the
Wilcoxon matched pairs test, and the Spearman rank test) were
performed using Prism 7 (GraphPad). Unsupervised hierarchical
clustering, principal component analyses (PCA) and permANOVA
were carried out in R (31) using the following packages: pheatmap
(32), vegan (33), ggfortify (34), RColourBrewer (35). False
discovery rate (FDR) step down procedures were performed to
adjust for multiple comparisons as previously described (36). A p
value of <0.05 was considered statistically significant. The p values,
p≤ 0.05, p≤ 0.01, p≤ 0.001, p≤ 0.0001 are reported as *, **, *** and
****, respectively.
RESULTS

Cohort Description
Blood and BAL were collected from HIV-infected (n=32; median
age, 31 years; 96% female) and uninfected (n=36; median age, 23
years; 60% female) participants from Cape Town, South Africa
(Table 1 and Table S1). HIV-uninfected participants had a
median CD4 count of 832 cells/mm3 (IQR 741-1028 cells/mm3),
while the HIV-infected individuals had a median of 601 cells/mm3

(IQR 523-782 cells/mm3; p<0.0001). HIV-infected persons were
ART-naïve, however persons with CD4 counts < 400 cells/mm3

were excluded in order to study the impact of HIV infection prior to
severe immunodeficiency. HIV-infected participants had a median
HIV viral load in BAL fluid of 48,224 RNA copies/ml ELF (IQR
2,115-27,378 copies/ml ELF) and a median plasma viral load of
6,153 RNA copies/mm3 (IQR 2,125-17,623 copies/mm3; p=ns).
Consistent with previous reports, there was a significant positive
correlation between HIV load in BALF and plasma (p<0.0001;
r=0.696; data not shown) (19, 21). These data demonstrate that
despite relatively well-preserved CD4 counts, the HIV-infected
group had substantial amounts of virus detectable in the airways
and in blood.
Frontiers in Immunology | www.frontiersin.org 3
Distinct Cytokine Profiles in BAL
and Blood
To investigate the immune environment in the airways
compared to peripheral blood, soluble cytokines and
chemokines were measured in BAL fluid and blood plasma
(Tables S2, S3). Most cytokines (22/24; 92%) were significantly
higher in plasma than BAL fluid, regardless of HIV status
(Figure 1A). Consequently, principal component analysis
(PCA) demonstrated a distinct separation of cytokine profiles
by compartment but not HIV status (p=0.001, r2 = 0.508;
Figure 1B). We then examined the relative proportion of each
cytokine adjusted to represent 100% of the overall milieu in each
compartment (Figure 1C). Again, we observed divergent
cytokine profiles between compartments. In plasma, soluble
CD40L was the most abundant and made up 43% of the
milieu in HIV-uninfected individuals, but only contributed 3%
to the BAL cytokine profile in the same individuals. Likewise,
CXCL10 contributed 44% to the milieu in BAL fluid (44%) but
only 11% in plasma. Based on these observations, we focused on
examining the effect of HIV infection on the airways and blood
separately to account for compartmentalisation.
The Cytokine Milieu in BAL Is Less
Affected by HIV Infection Than Blood
We first investigated the soluble cytokine milieu to elucidate
which immune mediators were elevated during HIV infection. In
BAL fluid, there were few differences in the soluble immune
milieu between study populations. Compared to uninfected
individuals, HIV-infected participants had lower concentrations of
EGF (p=0.040, median: 2.02 pg/ml and 0.48 pg/ml, respectively)
and CX3CL1 (p=0.044, median: 4.61 pg/ml and 2.24 pg/ml,
respectively; Figure 2A) after correcting for multiple comparisons.
Furthermore, unsupervised hierarchical clustering showed no clear
clustering of cytokine profiles between HIV-infected and uninfected
individuals (Figure 2B). Consistent with this, PCA demonstrated
that cytokine profiles of the two groups did not visibly separate
according to HIV status, although there was weak but significant
variation in cytokine profiles between HIV-infected and uninfected
groups (p=0.023, r2 = 0.04; Figure 2C).

In contrast to the airways, the plasma cytokine milieu differed
considerably between HIV-infected and uninfected individuals.
Compared to uninfected individuals, HIV-infected individuals
had notably higher concentrations of inflammatory cytokines
IFN-g (p=0.004, median: 6.32 pg/ml vs 12.47 pg/ml), TNF-a
(p=0.004, median: 10.18 pg/ml vs 25.02 pg/ml) and the
chemokine CXCL10 (p=0.002, median: 219.5pg/ml vs 487.41
pg/ml), and lower concentrations of IL-7 (p=0.036, median: 2.21
pg/ml vs 1.17 pg/ml), IL-12p70 (p=0.007, median: 6.91 pg/ml vs
2.43 pg/ml), EGF (p=0.018, median: 15.17 pg/ml vs 7.07 pg/ml)
and the chemokines CCL3 (p=0.002, median: 49.12 pg/ml vs 15
pg/ml), CCL4 (p=0.017, median: 10.4 pg/ml vs 1.81 pg/ml),
CCL7 (p=0.002, median: 20.3 pg/ml vs 9.22 pg/ml), CX3CL1
(p=0.004, median: 169.7 pg/ml vs 95.12 pg/ml) and CXCL8
(p=0.004, median: 15.72 pg/ml vs 5.25 pg/ml; Figure 3A).
Indeed, plasma cytokine profiles of HIV-infected and uninfected
participants displayed a degree of clustering by unsupervised
TABLE 1 | Clinical characteristics of study participants.

HIV-uninfected (n = 36) HIV-infected(n = 32)

Blood CD4 count (cells/mm3) 832 (741-1,028) 601 (523-782)
Plasma viral load
(RNA copies/ml)

– 6,153 (2,125-17,623)

BAL viral load
(RNA copies/ml ELF)

– 48,224 (2,115-27,378)
Data are median (interquartile range). BAL, bronchoalveolar lavage; ELF, epithelial lining fluid.
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hierarchical clustering (Figure 3B). Similarly, principal
component analysis demonstrated partial separation of cytokine
profiles by HIV status (p=0.001, r2 = 0.109; Figure 3C). Overall,
these results demonstrate that there were larger differences in the
cytokine milieu between anatomical compartments than between
HIV-infected and uninfected participants, with notably fewer
differences observed within BAL compared to plasma, despite
high BAL HIV load in these participants.

Chemokine Concentrations Associate
With T Cell Numbers and HIV Viral Load
in the Airways
As reported previously (29), we found that the absolute numbers
of T cells from BAL were significantly higher in HIV-infected
Frontiers in Immunology | www.frontiersin.org 4
participants, and this correlated positively with BAL viral load
(Figure S1). To examine the interplay between HIV, the cytokine
milieu and T cells, we investigated the relationships between
cytokine concentrations, absolute T cell numbers and viral load.
In plasma, CXCL10 concentration was significantly positively
correlated with viral load (p=0.03, r=0.444; Figure 4A) but there
was no relationship with CD4 count (p=ns; Figure 4B). TNF-a
and sCD40L were also associated with plasma viral load
(p=0.0499, r=0.405) and CD4 count (p=0.032, r=-0.439),
respectively (data not shown). In BAL fluid, chemokines were
significantly associated with viral load and T cell numbers.
Specifically, the concentration of CXCL10 positively correlated
with viral load (p=0.02, r=0.471) and the number of CD3+
(p=0.001, r=0.764), CD4+ (p=0.003, r=0.729) and CD8+ T
A

B C

FIGURE 1 | Soluble immune mediators in blood and BAL. (A) Comparison of cytokine concentrations in BAL (blue) and blood (red) of HIV-infected (filled circles) and
HIV-uninfected (open circles) individuals. “R” refers to regulatory cytokines and “GF” refers to growth factors. The blue and red lines denote the median and interquartile
ranges for BAL and blood, respectively. Statistical analyses were performed using a non-parametric Wilcoxon paired test with False Discovery Rate (FDR) step down
correction. (B) Principal component analysis and permutational multivariate analysis of variance (permANOVA) of cytokine concentrations in BAL (blue) and blood (red).
(C) Cytokine concentration expressed as a proportion of the total milieu in BAL and plasma. The relative proportion of each analyte was calculated as a percentage of the
sum total of the analyte concentrations in that compartment. GM-CSF, IL-22 and IL-4 were excluded altogether as they were below the level of detection in both BAL
and blood. Analytes that fell below the limit of detection for some participants were reported as half the minimum detectable concentration. The p values, p ≤ 0.05, p ≤

0.01, p ≤ 0.001, p ≤ 0.0001 are reported as *, **, *** and ****, respectively.
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cells (p=0.001, r=0.764) (Figures 4C–F). To determine whether
outliers drove these correlations, we excluded the two outliers
with high CXCL10 concentrations. Apart from viral load
(p=0.07), the associations remained statistically significant after
the exclusions. Additionally, CCL2 positively associated with
BAL fluid viral load (p=0.0496, r=0.405), and CXCL8 was
positively associated with numbers of CD3+ (p=0.05, r=0.516)
and CD8+ (p=0.0499, r=0.516) T cells (data not shown). These
associations suggest that the presence of HIV in the airways may
lead to elevated levels of chemokines, and concomitant increases
in T cells in the alveolar space.

T Cells From HIV-Infected Participants
Are Highly Activated in BAL and Blood
Although widespread immune hyperactivation is well described
during HIV infection, little is known about the activation state of
lymphocytes in the airways and how this compares to peripheral
Frontiers in Immunology | www.frontiersin.org 5
blood. Thus, we characterized T cell activation, as measured by
CD38 and HLA-DR expression (Figure 5A and Figure S2) and
found that in HIV-uninfected individuals, frequencies
of activated CD4+ T cells were higher in BAL compared to
blood (for HLA-DR+ p<0.0001, median: 22.75% vs 5.49%;
for CD38+HLA-DR+ p=0.0006, median: 3.32% vs 1.22%,
respectively; Figure S3A). However, in HIV-infected individuals,
there were no significant differences in CD4+ T cell activation
between compartments (Figure S3A). There were also no
differences in activated CD8+ T cells between compartments
(Figure S3B). We observed higher frequencies of CCR5-
expressing CD4+ and CD8+ T cells in BAL compared to blood,
regardless of HIV status (Figure S3C). Furthermore, the frequencies
of CD4+CD38+ and CD4+CD38+HLA-DR+ T cells between blood
and BAL were positively correlated in both HIV-infected (p=0.018,
r=0.537 and p=0.033, r=0.491, respectively) and uninfected
individuals (p=0.002, r=0.622 and p=0.049, r=0.424, respectively;
A

B

C

FIGURE 2 | Soluble immune mediators in BAL in HIV-infected and uninfected individuals. (A) Box and whisker plots (min-max) comparing cytokine concentrations in
BAL according to HIV status. “R” refers to regulatory cytokines and “GF” refers to growth factors. Statistical analyses were performed using a non-parametric Mann-
Whitney U test with False Discovery Rate (FDR) step down correction. (B) Unsupervised hierarchical clustering of cytokines in BAL. (C) Principal component analysis
and permutational multivariate analysis of variance (permANOVA) of soluble immune mediators in HIV-infected (pink; n=24) and uninfected (green; n=31) participants.
GM-CSF, IL-22, IL-4, IFN-g and CCL11 were excluded as they were below the level of detection. The p values, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≤ 0.0001 are
reported as *, **, *** and ****, respectively.
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Figure 5B and data not shown). CD8+CD38+ T cells also correlated
significantly between compartments, but only in HIV-infected
individuals (p=0.002, r=0.762; Figure 5C). There was no
association between T cell activation and BAL or plasma viral
load (data not shown).

Direct comparison of T cell activation according to HIV
status demonstrated that compared to uninfected participants,
HIV-infected participants had higher frequencies of BAL CD4+
T cells expressing CD38 (p=0.007, medians 9.97% vs 17.8%) and
Frontiers in Immunology | www.frontiersin.org 6
co-expressing CD38 and HLA-DR (p=0.0006, medians 3.16% vs
6.05%; Figure 5D). Consistent with this, there were significantly
higher frequencies of activated CD4+ T cells in blood of HIV-
infected individuals compared to uninfected individuals
(p=0.0002, medians 19.55% vs 11.1% for CD4+CD38+;
p<0.0001, medians 15.25% vs 5.36% for CD4+HLA-DR+;
p<0.0001, medians 4.29% vs 1.22% for CD4+CD38+HLA-DR+;
Figure 5D). Higher CD8+ T cell activation was also demonstrated
for HIV-infected individuals compared to uninfected individuals
A

B

C

FIGURE 3 | Soluble immune mediators in blood in HIV-infected and uninfected individuals. (A) Box and whisker plots (min-max) comparing cytokine concentrations
in plasma according to HIV status. “R” refers to regulatory cytokines and “GF” refers to growth factors. Statistical analyses were performed using a non-parametric
Mann-Whitney U test with False Discovery Rate (FDR) step down correction. (B) Unsupervised hierarchical clustering of cytokines in blood. (C) Principal component
analysis and permutational multivariate analysis of variance (permANOVA) of soluble immune mediators in HIV-infected (pink; n=24) and uninfected (green; n=31)
participants. GM-CSF, IL-15, IL-1b, IL-22, IL-4 and IL-6 were excluded as they were below the level of detection. The p values, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≤

0.0001 are reported as *, **, *** and ****, respectively.
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in both BAL (p=0.0007, medians 22.9% vs 8.0%, for CD8+CD38+;
p=0.022, medians 21.4% vs 10.7% for CD8+HLA-DR+; p<0.0001,
medians 6.3% vs 1.73% for CD8+CD38+HLA-DR+) and blood
(p=0.0002, medians 21.15% vs 6.83% for CD8+CD38+; p<0.0001,
medians 21.1% vs 9.36% for CD8+HLA-DR+; p<0.0001, medians
9.91% vs 2.1% for CD8+CD38+HLA-DR+; Figure 5E). These
observations confirm that T cell activation was consistently higher
in HIV-infected individuals in both BAL and blood.

Limited Influence of BAL Cytokines on
T Cell Activation
The relationships between cytokines and T cell activation in BAL
was examined next. Figure 6 shows the Spearman rho (r) of each
correlation between cytokines and T cells expressing CD38, HLA-
DR or CCR5. Overall, more associations between cytokines and
activated T cells were observed in HIV-uninfected individuals
Frontiers in Immunology | www.frontiersin.org 7
compared to HIV-infected individuals, which could suggest some
regulatory disruptions duringHIV infection. However, no significant
associations remained after adjusting for multiple comparisons, and
linear regression analysis revealed no associations between T cell
activation and cytokine concentrations (data not shown).
DISCUSSION

This study investigated HIV-associated immune changes in the
airways, to better understand the high incidence of lung disease
during HIV infection. We found distinct compartmentalisation
of cytokines between BAL and blood in terms of relative cytokine
abundance and cytokine concentrations, regardless of HIV
status, leading us to examine the effect of HIV on each
compartment individually. In BAL of HIV-infected, ART-naïve
A

B

C

D

E

F

FIGURE 4 | CXCL10 correlates with HIV viral load and T cell numbers in BAL of HIV-infected individuals. The correlation between CXCL10 concentration and
(A) plasma HIV viral load, (B) blood CD4 count in blood, (C) BAL HIV viral load (n=24), (D) BAL CD3, (E) CD4 and (F) CD8 T cell estimates (n=16). Each dot
represents an individual. Only individuals with absolute BAL cell count data were plotted. The dotted line indicates linear regression for statistically significant
correlations. Statistical analyses were performed using a non-parametric Spearman rank correlation.
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individuals, we detected a high viral load, and more T cells
compared to HIV-uninfected individuals. HIV infection was also
associated with increased frequencies of activated T cells. We
observed a significant positive correlation between BAL viral
load, absolute T cell numbers and the concentration of the
chemokine CXCL10.

We detected high concentrations of HIV RNA in BAL fluid,
consistent with earlier studies (19–21). The presence of HIV in
the lung is likely to contribute to immunopathology and immune
dysfunction, increasing susceptibility to respiratory diseases. We
report a greater number of lymphocytes in HIV-infected airways,
as has previously been described as lymphocytic alveolitis,
Frontiers in Immunology | www.frontiersin.org 8
thought to be predominantly made up of cytotoxic CD8+ T
cells (24, 26, 27, 37). On its own, lymphocytic alveolitis causes
limited pathology (25), but may contribute to the increased
prevalence of pulmonary disease during HIV infection. COPD
is associated with an increase in airway CD8+ T cells, particularly
when combined with smoking or other risk factors (38–40).
Lymphocytic alveolitis may also impair the normal response to
pulmonary infections. A CD4+ T cell infiltration to the lungs
would be expected in response to bacterial pathogens (41, 42),
but this may be skewed towards CD8+ T cells during HIV
infection. Indeed, TB-involved lung tissue from co-infected
macaques (SIV and active TB) had fewer CD4+ T cells than
A

B D

C E

FIGURE 5 | T cell activation in BAL and blood. (A) Representative flow cytometry plots of HLA-DR and CD38 expression on T cells in BAL and blood of HIV-
infected and uninfected participants. (B) The association between CD4+ T cells expressing CD38 in blood and BAL of HIV-uninfected (n=22) and infected (n=15)
individuals. (C) The association between CD8+ T cells expressing CD38 in blood and BAL of HIV-uninfected (n=22) and infected (n=15) individuals. (D) CD38 and
HLA-DR expression on CD4+ T cells in blood and BAL of HIV-uninfected (n=31 and n=25, respectively) and infected (n=30 and n=19, respectively) individuals.
(E) CD38 and HLA-DR expression on CD8+ T cells in blood and BAL of HIV-uninfected and infected individuals. Each dot represents an individual. Open circles
represent HIV-uninfected individuals and filled circles represent HIV-infected individuals. Statistical comparisons were performed using the non-parametric Mann
Whitney, Wilcoxon matched pairs and Spearman correlation tests.
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those with active TB alone (43), suggesting SIV may interfere
with the recruitment of CD4+ T cells into involved tissue.
Furthermore, the infiltration of activated, cytotoxic CD8+ T
cells (37), together with local pathology caused by the HIV Nef
protein, may also considerably compromise mucosal barrier
function via endothelial dysfunction and increased epithelial
permeability (44–48). In this study, HIV-infected individuals
also had lower concentrations of EGF in BAL fluid. Together, our
data and these studies suggest reduced mucosal barrier function
and dysregulated migration of T cells, leading to suboptimal
control of infection and disease.

In HIV-uninfected individuals, BAL CD4+ T cells were
significantly more activated than in blood, which is consistent with
a mucosal effector environment (49–51). HIV infection led to similar
levels of activated CD4+ and CD8+ T cells in BAL and blood, the
likely result of systemically activated cells migrating into the airways.

We found a clear compartmentalisation of cytokine profiles
between blood and BAL, with more differences between
compartments than between HIV-infected and uninfected
individuals. This agrees strongly with a recent study reporting
Frontiers in Immunology | www.frontiersin.org 9
distinct transcriptional profiles between BAL cells and PBMC,
regardless of HIV status (37), underscoring the assertion that
blood may be a poor surrogate for immune processes in the
airways. In BAL, CXCL10 was present at the highest relative
proportion. CXCL10 is responsible for T cell chemoattraction
and is upregulated in the healthy human lung during pulmonary
infection and disease (52, 53). Indeed, the preservation and
increase in the BAL T cell population may be driven by the
local presence of chemokines, which are elevated during HIV
infection (19, 54, 55). We also found that the concentration of
CXCL10 positively correlated with BAL viral load and BAL T cell
numbers; and the latter two also associated with each other.
These data suggest a relationship in which HIV may drive the
expression of chemokines from lung cells, which in turn causes
an infiltration of lymphocytes, including HIV-specific and M.tb-
specific T cells (17, 18, 29, 56). We also observed elevated
concentrations of the proinflammatory cytokines TNF-a and
IFN-g in plasma, consistent with previous studies (10, 57–60). In
contrast, we did not detect elevated proinflammatory cytokines
in BAL, despite high viral loads. Excess inflammation in the lung
A B

FIGURE 6 | Univariate associations between T cell activation markers and cytokine concentrations in BAL of HIV-infected (n=14) and uninfected (n=21) individuals.
Spearman rho (r) of the univariate correlation between each cytokine and the expression of activation markers on (A) CD4+ T cells and (B) CD8+ T cells. Open
circles represent HIV-uninfected individuals and filled circles represent HIV-infected individuals. Statistically significant correlations (p<0.05) are indicated in darker
lines and symbols. Spearman correlation tests, of which Spearman rho and the 95% confidence intervals are reported here. None of the correlations remained
statistically significant after adjusting for multiple comparisons by FDR step down procedures. The p values, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≤ 0.0001 are reported
as *, **, *** and ****, respectively.
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may cause tissue damage, which may be especially detrimental to
the integrity of alveoli, so an aggressive immune response that
would be permissible elsewhere is thought to be tightly
controlled and regulated in the lung (61). Indeed, studies have
reported that BAL CD8+ T cells have lower cytotoxic potential
compared to peripheral blood CD8+ T cells (62).

Although there may be continuous migration of virus
between BAL and the circulation (63), local viral replication
may also be occurring. HIV target cells in the lung include small
alveolar macrophages and resident CD4+ T cells expressing
CCR5 (28, 64). Thus, the lung may also act as a reservoir for
HIV. Previous studies have shown distinct HIV env sequences
isolated from the lung, compared to those isolated from
peripheral blood in the same individual (65, 66). Whether the
lung is an important viral reservoir in the context of viral
suppression and cure needs further investigation.

Our study had several limitations. We were only able to
phenotype BAL T cells on a limited number of participants, due
to the challenge of obtaining sufficient cells from BAL. Although
BAL is representative of the bronchus, it may not necessarily
reflect the immune environment of lung tissue. Further studies
examining lung biopsies or other sources of lung tissue during
HIV infection would give a clearer picture of HIV-associated
pulmonary dysfunction. Longitudinal studies, perhaps in non-
human primate models, are required to fully understand the
dynamics of the immune milieu over the course of HIV infection.

In conclusion, this study demonstrates that the immune
environment of the airways is disrupted during HIV infection,
with readily detectable virus and the accumulation of activated T
lymphocytes that may be driven by high levels of chemokines
such as CXCL10 at this site. Further mechanistic studies are
required to determine whether HIV-associated changes in the
airways contribute to the increased susceptibility to pulmonary
disease during HIV infection.
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