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Abstract

Mitochondria participate in multiple functions in eukaryotic cells. Although disruption of mito-

chondrial function has been associated with energetic deregulation in cancer, the chrono-

logical changes in mitochondria during cancer development remain unclear. With the aim to

assess the role of mitochondria throughout cancer development, we analyzed samples

chronologically obtained from induced hepatocellular carcinoma (HCC) in rats. In our analy-

ses, we integrated mitochondrial proteomic data, mitochondrial metabolomic data and

nuclear genome transcriptomic data. We used pathway over-representation and weighted

gene co-expression network analysis (WGCNA) to integrate expression profiles of genes,

miRNAs, proteins and metabolite levels throughout HCC development. Our results show

that mitochondria are dynamic organelles presenting specific modifications in different

stages of HCC development. We also found that mitochondrial proteomic profiles from tis-

sues adjacent to nodules or tumor are determined more by the stage of HCC development

than by tissue type, and we evaluated two models to predict HCC stage of the samples

using proteomic profiles. Finally, we propose an omics integration pipeline to massively

identify molecular features that could be further evaluated as key regulators, biomarkers or

therapeutic targets. As an example, we show a group of miRNAs and transcription factors

as candidates, responsible for mitochondrial metabolic modification in HCC.

Introduction

Mitochondria are cellular organelles involved in multiple cell processes, including the synthe-

sis of ATP by oxidative phosphorylation (OXPHOS) and central processes such as Krebs cycle

and apoptosis [1]. Impairment of these functions has been associated with multiple diseases,
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including cancer [2–4]. Since the past century, Warburg proposed the association between

mitochondrial dysfunction and cancer when he described that cancerous cells primarily use

glycolysis to obtain ATP, outperforming OXPHOS even in the presence of oxygen [5]. This

metabolic change is an important step toward cell malignancy, because aerobic glycolysis pro-

vides an advantage for growth and proliferation of cancer cells [6]. Currently, it is known that

mitochondria from cancerous cells rewire their metabolism to supply the needs to grow and

proliferate by massive anabolism, rather than completely oxidize metabolites to obtain energy

[3]. Mitochondria are pivotal in this energetic reorganization that was included in the hall-

marks of cancer development proposed by Hanahan and Weinberg [4]. It is known that bio-

chemical pathways must be coordinated to satisfy cellular energetic demands by catabolism or

enable anabolic metabolism during proliferation. This coordination includes cytoplasmic

pathways and regulatory signaling pathways [7–9] that are not completely understood. In par-

ticular, the chronological changes in the interaction between mitochondria and the rest of the

cell through signaling pathways and the establishment of metabolic reprogramming remains

unclear in cancer development. This is probably due to the lack of a proper model in which

the mitochondrial alterations can be followed during cancer progression. The modified resis-

tant hepatocyte model in rats is a model in which the development of hepatocellular carcinoma

(HCC) is chemically induced [10]. This model provides an interesting opportunity to study

the involvement of mitochondria in very early stages of carcinogenesis and cancer progression.

The initial cell damage is controlled, and liver tissues can be sampled throughout the develop-

ment of HCC. We used this model to chronologically analyze samples collected since the first

day to the advanced tumor after eighteen months of starting the experiment, comprising 11

stages and tissues that were compared against controls with no treatment (Table 1 and Figs 1

and S1). We focused on mitochondrial changes at the proteomic level, whole-exome transcrip-

tional expression and key mitochondrial metabolites since very early stages of HCC develop-

ment, to identify mitochondrial metabolic modifications that support cancerous phenotype.

We integrated omics data using pathways over-representation analysis with a weighted gene

co-expression analysis (WGCNA). This approach allowed us to identify key pathways and

potential regulation during hepatocellular carcinoma development. Furthermore, using sup-

porting vector machine (svm) models we were able to classify samples according to their stage

of HCC development.

Results

Transcriptional and mitochondrial protein expression during chemically

induced HCC development

Rat genome contains 32,833 genes [11]. In rat liver, during HCC development, we recorded

the expression of 13,943 (42.46%) genes (S1 Table). We identified 2,687 (19.91%) differentially

expressed genes; of these 1,828 (13.11%) were upregulated, 904 (6.48%) downregulated and 45

(0.32%) were either upregulated or downregulated in different stages of the experiment (S2 Fig

and S2 Table). The genetic expression in rat liver was most affected in the first three evaluated

stages of HCC development, where carcinogenic treatment was administered. The first day,

during DEN administration, was the stage with the most differentially expressed genes (DEG)

(2,034).

At mitochondrial proteomic level, in all controls and samples, we identified 1,577 proteins

(S3 Table) with a match to a single protein from the rat proteome database [12], which com-

prises 29,998 proteins. In mitochondria from nine-months nodules and from tissues at day

seven, we identified the lowest number of proteins with 661 in each case. As AAF arrests hepa-

tocyte proliferation [13], these few expressed mitochondrial proteins in day seven are probably
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important to cell survival but not involved in proliferation. In control samples, we identified

the highest number of proteins, with more than 1,000 identified proteins in each control sam-

ple (S4 Table). In our contrasts, 363 proteins (22.02% of total identified) were differentially

expressed throughout HCC development (S5 and S6 Tables). Contrary to data observed in

gene expression, there were more subexpressed mitochondrial proteins (281, 17.7%) than

overexpressed ones (60, 3.78%). In addition, 35 (2.2%) differentially expressed proteins (DEP)

were either subexpressed or overexpressed in different stages (S2 Fig). The stage with the most

DEP (114) was the first day in response to DEN administration, in agreement with transcrip-

tomic data. The stage with the second most DEP was nine-months tumor, with 80, followed by

the adjacent tissue at one month, with 39, an eighteen-months tumor, with 38.

Supervised classification models of HCC development stage

With the Pearson coefficient correlation for proteomic profiles clustering, we obtained clades

that contained samples from the same stage of HCC development (Fig 2A). With these results,

Table 1. Stages of HCC development and tissues sampled. The treatment to which the samples were subjected is shown. DEN, diethylnitrosamine; AAF, 2-acetylamino-

fluorene; PH, partial hepatectomy. The abbreviations used in the manuscript are shown in the third column. The controls used for each sample are shown in the fourth

column.

Sample Treatment Abbreviation Control

Control 0 hours No Treatment C0 -

Control 9 months No Treatment C9 -

Control 18 months No Treatment C18 -

Day 1 DEN D1 C0

Day 7 DEN & AAF D7 C0

Day 11 DEN, AAF & PH (Complete) D11 C0

Day 16 Complete D16 C0

Month 1 adjacent to GGT + tissue Complete A1 C0

Month 1 nodules Complete N1 C0

Month 9 adjacent to GGT + tissue Complete A9 C9

Month 9 nodules Complete N9 C9

Month 9 tumor Complete T9 C9

Month 18 adjacent to tumor Complete A18 C18

Month 18 tumor Complete T18 C18

https://doi.org/10.1371/journal.pone.0256016.t001

Fig 1. Tissues collected after inducing hepatocellular carcinoma in rats. (a) Sampling time points. Green lines

under the numbers indicate collection of samples from treated rats. Red lines indicate collection of samples from

untreated controls. (b) Gamma glutamyl transpeptidase histologic stains used to identify adjacent (A), nodular (N) or

tumoral (T) tissues. DEN, diethylnitrosamine; AAF, 2-acetylaminofluorene; PH, partial hepatectomy; HCC,

hepatocellular carcinoma.

https://doi.org/10.1371/journal.pone.0256016.g001
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we decided to evaluate to what extent proteomic profiles predict the stage of HCC, using two

support vector machine (svm) models, as described in methods. Using all DEP information

(S7 Table) for stage classification in our svm models, almost all samples were classified

Fig 2. Proteomic expression profiles and its use for the models of samples classification according to stage of

HCC development. (a) Pearson correlation-based hierarchical clustering using all differentially expressed proteins

(N = 363); the stage of HCC development is shown in horizontal green scale on top. (b) Percentage of error of our

models in classification of HCC development stage (y-axis) in relation to the number of proteins used (x-axis); pink

area represents 10% of error and red area 5% of error; orange points represent ten-fold cross-validation and blue

points 33% random sampling cross-validation, in both cases 250 repeats were used. (c) Independent classification of

the HCC development stage of 33 samples (horizontal green scale on top) using the 16 disclosed proteins in our

classification models.

https://doi.org/10.1371/journal.pone.0256016.g002
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correctly (with an error of 1.45%). Only the sample T9_1 from category 9 was classified into

two categories, 9 and 18 (S8 Table). It is remarkable that with only 16 proteins (SUOX, CFH,

NDUFB1, LOC499136, RGD1566134, YWHAE, HSD17B13, VCP, AK4, UGP2, KTN1,

CYP2E1, SQOR, ACSL5, ACLY, CGN) it was possible to correctly classify more than 90% of

samples, 7.9% and 6.06% of error with two classification models (see Methods) (Fig 2B and S9

Table). Then, considering the fold change of these 16 proteins only, we independently con-

firmed they were good enough to classify the 33 samples (Fig 2C) with a low error rate. Only

the sample N9_2 was misclassified into the first month group (3% of error in this case).

Annotation of differentially expressed genes and proteins

In total, 145 KEGG [14, 15] pathways were over-represented among DEG and mitochondrial

DEP, 110 of them (75.9%) were over-represented only at transcriptomic level, 15 (10.3%) only

at mitochondrial proteomic level and 20 (13.8%) were over-represented at both levels (S10 and

S11 Tables).

Most over-represented pathways were observed during the treatment stages. In the first eval-

uated stage, after DEN administration, 115 pathways were over-represented at transcriptional

level. In this stage, we identified a clear pattern, in which upregulated pathways were related to

signaling pathways, several types of cancer and other diseases, while downregulation was related

to metabolism. Upregulation includes several cancer-associated signaling pathways, such as

p53, TNF, NF-kappa B, MAPK, HIF-1 and AGE-RAGE, but also includes signaling pathways of

T cells, B cells, Toll-like, NOD-like, C-type lectin and cytokine-cytokine receptors. It is of note

that AGE-RAGE signaling pathway was upregulated during the first 5 stages, with probably a

relevant role in HCC carcinogenesis. Besides, the pathway of microRNAs in cancer was also

upregulated during the three first evaluated stages, as well as the platinum drug resistance path-

way in days one, seven and eleven, and in nodules and tumors at nine months.

On the other hand, during day one we observed downregulation almost exclusively in path-

ways related to metabolism at transcriptomic and mitochondrial proteomic levels. Downregu-

lated pathways were related to metabolism of 17 amino acids, including tryptophan, glycine,

serine, threonine, beta-alanine, lysine, alanine, aspartate, glutamate, cysteine, methionine, argi-

nine, tyrosine, proline, histidine, valine, leucine and isoleucine and branched-chain amino

acids. In addition, PPAR signaling pathway, glyoxilate, dicarboxylate, butanoate, retinol, lipids

and fatty acids related metabolism, were also downregulated. Of these, PPAR signaling,

butanoate and fatty acid metabolism were maintained downregulated in day eleven after the

partial hepatectomy, when proliferation is induced; however, also these same pathways were

downregulated in late tumor, when tumor proliferation is higher, suggesting an important role

for the modulation of this process.

Metabolic profiles

Metabolites analyzed here participate as intermediates of the TCA cycle (citric acid, malic acid,

succinic acid, alpha-ketoglutaric acid and fumaric acid) or in anaplerosis (glutamic acid) and

have a central role in cancer. For example, citrate has been demonstrated to participate in de
novo synthesis of fatty acids in cancerous cells [16]. Also, in several types of cancer, glutamine

replenishes carbon to TCA cycle when pyruvate uptake into mitochondria is perturbed [17]. Fur-

thermore, in recent years, various functions have been assigned to metabolites of the TCA cycle,

such as signaling molecules relevant to chromatin remodeling, DNA methylation or response to

hypoxia [18, 19]. Thus, we decided to include metabolites of the TCA cycle and glutaminolysis in

the present study to identify differential concentrations throughout HCC development and

whether these changes are correlated with tumoral phenotype or enriched pathways.
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We identified that malic acid concentration was increased during days 1 (p = 0.06), 7

(p = 0.02), 11 (p = 0.038), and 16 (p = 0.068), ranging from 1.59 to 4.63 in fold change. Further-

more, during day 1, significant decreased levels of glutamic (fold change -3.95, p = 0.003), cit-

ric (fold change -12, p = 0.0003) and alpha-ketoglutaric acids (fold change -17.8, p = 0.000004)

were observed. It is unclear why these metabolites decrease in concentration; however, in day

1 we observed numerous metabolic pathways being downregulated (Fig 3). During the seventh

day, when mitosis is inhibited, the levels of glutamic (fold change 3.37, p = 0.036) and malic

acids (fold change 4.63, p = 0.022) were significantly increased. Although we measured metab-

olites levels in more advanced stages, their concentration levels were not significantly different

when compared with controls, possibly because we were not able to obtain data from all repli-

cates (two replicates of adjacent tissue of one month, one replicate of the adjacent tissue at

nine months, and one replicate of the control at eighteen months were not useful) (S12 Table).

More studies are needed to obtain more information regarding chronological changes of TCA

metabolites during HCC development.

Pathway over-representation-based Integration using Biological level

expression (PIB)

With PIB analysis we can identify pathways with consistent expression, this means upregulated

or downregulated in both transcriptomic and proteomic levels, suggesting that their effects in

cellular function have an important role in the disease [20]. We identified 67 distinct over-rep-

resented pathways (Fig 3 and S13 Table). As several of them were enriched in two or more

stages of HCC development, these pathways were over-represented a total of 131 times among

samples. Most of the times (122, 93.13%), the expression of these pathways was not direction-

ally consistent at both transcriptomics and proteomics levels. This is not surprising, since it is

well known that correlation between the expression of transcripts and proteins is in general

low due to several post-transcriptional, translational and degradation mechanisms [21, 22].

In nine occasions (6.87%), pathway over-representation patterns at transcriptomic and

proteomic levels were consistent. These pathways occurred in two stages of HCC development,

namely during DEN administration and in tumor samples of eighteen months. Interestingly, 8

out of the 9 detected consistent pathways were downregulated and were related to metabolism,

including PPAR signaling pathway, steroid hormone biosynthesis, retinol metabolism, primary

bile acids biosynthesis, peroxisome and fatty acids degradation. The unique upregulated consis-

tent pathway was glutathione metabolism in tumor at eighteen months. On one occasion during

the last evaluated stage, transcriptomic and mitochondrial proteomic information was discor-

dant, in the ferroptosis pathway. Data obtained from DEG and DEP suggest putative post-tran-

scriptional regulation at eighteen months tumor in this pathway (green color in Fig 3), probably

by translational repression or degradation of pathway proteins, since we observed upregulation

at transcript level but downregulation in proteins [23–26]. Another explanation is that 15–30%

of mitochondrial proteins are localized also in other organelles than mitochondria [27, 28],

which could explain the (apparent) downregulation at mitochondrial proteomic level.

Pathway over-representation-based integration by weighted Z test (Z)

With the information obtained in PIB we calculated two p values for each pathway, the first

using transcriptomics and the second using mitochondrial proteomics. These p values were

combined using a weighted sum of Z as described in methods. With this approach, we identi-

fied presumably relevant pathways that are directionally consistent at two biological levels in

HCC development. We identified 34 over-represented pathways and 57 over-representation

events, of which, 19 had not been detected without the combination of p values (S14 Table).
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Fig 3. Pathway over-representation-based Integration using Biological level expression (PIB) and Stouffer sum Z. Statistically significant pathways are

shown in a grid with cells in a color corresponding to upregulation (red scale) or downregulation (blue scale). Pathways with weighted Z score<0.05 are

shown with an asterisk, red if the pathway was upregulated and black if it was downregulated.

https://doi.org/10.1371/journal.pone.0256016.g003
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When using Z, there were not statistically significant over-represented pathways in nodules or

its adjacent tissues in samples collected during months one or nine (Fig 3).

Omics integration based on Weighted Gene Co-expression Network

Analysis (WGCNA)

When we analyzed the expression profiles of DEG, we identified 9 transcriptional modules

throughout HCC development, these modules were labeled using color names as described in

S15 Table. We analyzed the distribution of DEG fold change values in each module to identify

their relevance in specific tissues or HCC stages. We considered a module to be relevant for

the evaluated stage if the median of log fold change values in the module was >|0.9| and the

distribution of the values were significantly different from the other stages (Wilcoxon test, p-

value < 0.05) (Fig 4A and 4B). Relevant downregulated and upregulated modules identified at

each stage can be seen in Fig 4B. We identified over-represented pathways in 5 modules (pur-

ple, royalblue, pink, greenyellow and cyan) (Fig 4C and S16 Table); hence, we were able to

identify transcriptionally regulated pathways and functions relevant to specific stages of HCC.

For instance, in day–one tissues, royalblue module was relevant with upregulation of apopto-

sis, RNA transport, ribosome biogenesis, cell cycle, AGE-RAGE, TNF and p53 signaling path-

ways. On the other hand, greenyellow module showed downregulation in PPAR signaling

pathway, primary bile acid biosynthesis, fatty acid metabolism and degradation, valine, leucine

and isoleucine degradation, glycine, serine, threonine metabolism, tryptophan metabolism,

biosynthesis of cofactors, among others (Fig 4B and 4C).

Fig 4. Transcriptomic modules correlate with specific stages of HCC development indicating a potentially relevant role for these modules. (a) Grey60

transcriptomic module was upregulated during DEN administration in day one. (b) Relevant modules in specific stages of HCC development, upregulated modules are

shown in red color, whereas blue shows downregulated modules. (c) KEGG pathways over-represented in transcriptomic modules, numbers under module color are

the number of genes used in over-representation pathway analysis. Module identification was performed in R usingWGCNA package and over-representation pathway

analysis, using clusterProfiler package, considering a p value< 0.05 and q value<0.1.

https://doi.org/10.1371/journal.pone.0256016.g004
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Cyan module was relevant in one-month tissues, with upregulation in focal adhesion,

ECM-receptor interaction and AGE-RAGE, Rap1, Relaxin, and PI3K-Akt signaling pathways.

Pink module upregulation was relevant in day seven, with the following over-represented

pathways: cell cycle, progesterone-mediated oocyte maturation and oocyte meiosis, and osteo-

clast differentiation. Purple module was upregulated in tumors of nine and eighteen months

and includes the pathways of ferroptosis and metabolism of pentoses, glucuronate, glutathione,

biosynthesis of cofactors, ABC transporters and metabolism of xenobiotics and drugs by cyto-

chrome 450 (Fig 4B and 4C).

Furthermore, salmon module was downregulated during days one and seven, whereas

grey60 module was upregulated in day one and lightcyan was upregulated in several stages,

including days seven and eleven, nodules of one month and tumoral tissues from nine and

eighteen month. Finally, darkturquoise module was downregulated in tumor of eighteen

months. However, none of these modules had over-represented pathways (Fig 4B). With an

enrichment analysis on sequences upstream to genes included in each module (FDR<0.05),

we identified binding motifs of transcription factors (TF) that probably participate in tran-

scriptional regulation of the genes in each module. We identified enrichment in tens of TF

binding motifs in 8 transcriptomic modules. We considered as the most important those bind-

ing motifs in which their TF was differentially expressed or was present in the same module,

therefore, only those TF genes are mentioned here. All enriched binding motifs and their cor-

responding TF from all modules are described in S17 Table. In the royalblue module we found

3 TF binding motifs corresponding to differentially expressed TFs present in the same module,

Egr1, Etv3 and Hes1. Egr2, Ehf and Klf12 binding motifs were also enriched but their corre-

sponding TFs were not part of the module. Nevertheless, we identified these TF in the modules

cyan (Ehf), greenyellow (Klf12), and grey60 (Egr2). Notably, TF binding motifs enriched in

the grey60, royalblue, greenyellow, pink, cyan, lightcyan, and purple modules were enriched

for one or several TF binding sites recognized by Egr1, Egr2, Ehf, Etv3, Hes1 or Klf12.

Furthermore, in each module without enrichment in binding motifs we searched for TFs

present in the same modules and identified Tead1 and Sox9 in lightcyan module; Vdr in pur-

ple module; Ddit3, Hif1a, Irf1, Max, Myc, Nfe2l2, Nr4a2, Rel, Rela, Runx1, Spi1, Stat3, Tbp,

and Tp53 in royalblue module. Using genetic network analysis (see methods) we identified

that Myc and Runx1 were connected respectively to other 10 and 7 of the transcription factors

of the purple module. Mafb was present in salmon module, and Cebpa, Pbx1 and Sox5 were

present in greenyellow module.

To massively identify candidate processes associated with levels of metabolites and with

putative regulators at different biological levels, we correlated profiles of transcriptomic mod-

ules with the expression of the following molecules: mitochondrial proteins, metabolites, and

miRNAs genes (S18 Table), hereafter referred to as molecular features (see methods). In total,

we analyzed 4,014 pairs of molecular features and transcriptomic modules, identifying 159

(3.96%) significant correlations (p.<0.001) that represent 159 putative regulation processes.

These 159 correlations were related to 70 molecular features, including 2 metabolites, 42 miR-

NAs and 26 mitochondrial proteins, some of them correlated with various modules. Molecular

features were clustered according to the Pearson correlation distance with a pre-established

parameter k = 10. Each cluster of molecular features was labeled using letters A to J (Fig 5).

Pearson’s correlation values and statistical significance for each module with all molecular fea-

tures are shown in S4 Fig (S19 Table).

Metabolites of the tricarboxylic acids (TCA) cycle can participate in chromatin modifica-

tions, DNA methylation and post-translational modifications [18]. Using WGCNA we identi-

fied two possible scenarios in which these metabolites may participate in transcriptomic

regulation: i) putative regulation of gene expression mediated by metabolites and ii) a group of
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co-expressed genes which possibly modify metabolites level. Two cases can exemplify these

scenarios, the negative correlation of oxoglutaric acid with royalblue module (-0.55, p = 9e-06)

Fig 5. WGCNA-based omics integration is useful to identify hypothetical regulation mechanisms between biological levels. Nine modules of co-

expressed genes were identified using WGCNA and correlated with profiles of miRNAS genes, proteins and metabolites (first column in blue scale)

throughout HCC development; molecular features are shown in rows, molecular features were clustered (second column, colored clusters A-J) according

to their expression profile using Pearson’s correlation. Only molecular features with a significant Pearson correlation> |0.40| and p<0.001 are shown.

Transcriptomic modules are shown in the top of each column. Negative correlated molecular features in the grid are shown in blue, while those positively

correlated are shown in red.

https://doi.org/10.1371/journal.pone.0256016.g005

PLOS ONE Integration of chronological omics data during the development of hepatocellular carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0256016 August 12, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0256016.g005
https://doi.org/10.1371/journal.pone.0256016


and grey60 module with citric acid (-0.44, p = 8e-04). However, most metabolites and modules

had no significant correlation.

Also, we were able to identify candidate molecules that may participate in putative regula-

tion processes. For instance, greenyellow module was negatively correlated with miR147

(-0.71, p = 1e-09). We identified over-representation in several pathways of greenyellow mod-

ule genes, which includes steroid biosynthesis, fatty acid and BCAA degradation, tryptophan,

and propanoate metabolism, as well as PPAR signaling pathway; thus, these pathways could

have been downregulated by miR147. Moreover, it is possible to identify groups of molecular

features correlated with transcriptional modules (e.g., proteins from cluster I had a significant

negative correlation with cyan transcriptional module, also several miRNAs (miR211,

miR125b2, miR194-2, miR6323, miR154, among others) from the same cluster I had negative

correlation with royalbue module. These results are just a few examples of all the candidate

molecules identified with individual significant correlation with each transcriptomic module

(Fig 5).

Discussion

In this work, for the first time and using an integrative approach we chronologically analyzed

mitochondria throughout DEN-induced carcinogenic process in a rat model. DEN-induced

HCC has been previously shown to have similar hepatic alterations that resemble the progres-

sion of human chronic liver disease to HCC. Mice subjected to DEN treatment develop histo-

logical modifications including neutrophil infiltration, bile conduct proliferation,

centrilobular hemorrhagic necrosis, and bridging necrosis [29]. Nevertheless, fibrosis and cir-

rhosis, a common feature of human HCC, are not observed in our model. However, as the ini-

tiation is controlled, tissue sampling can be designed to study very early stages of

carcinogenesis, thus having the opportunity to study mitochondrial function during the pro-

cess in more detail. In total, we analyzed 11 stages, from the first day of carcinogenic treatment

to late tumor at eighteen months after initiation. We focused on determining whether mito-

chondrial metabolic rewiring occurs progressively with cumulative alteration since early

stages, or suddenly, when tumor phenotype is already observed. We integrated comparative

mitochondrial proteomics and metabolic profiles with whole-exome transcriptomics, combin-

ing pathway over-representation tests and WGCNA to identify correlated molecules that may

have relevant roles in mitochondrial regulation during disease progression.

During the first 5 stages analyzed, we observed upregulation of the receptor of advanced

glycation end products (AGE-RAGE) signaling pathway. This upregulation was detected using

both transcriptomic and mitochondrial proteomic information, as well as with their integra-

tion (Fig 3). This pathway has been suggested as a potential target for therapeutic intervention

in HCC patients, because it was associated with proliferation induction in HCC, and with sora-

fenib resistance via AMPK/mTOR signaling pathway [30]. Our analysis indicates an active

role of AGE-RAGE signaling pathway during HCC carcinogenesis.

Our integrative approach allowed us to identify several molecules, TF binding motifs and

altered pathways that have been previously related to HCC or other cancers. However, as we

collected samples since the first day of HCC development, our results are relevant in the study

of carcinogenesis and the role of mitochondria in the process. We identified several alterations

and candidate molecules relevant for carcinogenesis since very early stages of HCC develop-

ment. For example, in the royalblue module we identified three TFs, Egr1, Etv3 and Hes1, that

recognize enriched TF binding motifs of genes of the same module, as well as Egr2 in grey60

module. EGR1 is transcribed downstream in AGE-RAGE signaling and activates expression of

p53 and TGFB1 [31]. EGR2 induces apoptosis in several cancer cell lines [32], ETV3
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contributes to growth arrest [33], HES1 is involved in DNA interstrand crosslink damage

repair [34] and could participate in response to DNA adducts induced by DEN. Taken

together, this information suggests that these TFs could orchestrate the hepatocyte response to

chemical damage produced by DEN. However, as previously shown [35], HES1 allows cancer

cells to evade differentiation and irreversible cell cycle arrest, indicating an active role of HES1

in the carcinogenic process. Additionally, during day one, we observed a massive metabolic

downregulation, at transcriptomic and mitochondrial proteomic levels (Fig 3), putatively

mediated by genes of greenyellow and salmon modules. Greenyellow TFs Cebpa, Pbx1 and

Sox5, have relevant roles; Sox5 as potential biomarker of HCC [36] and Pbx related to cell

stemness [37]. CEBPA coordinates gluconeogenesis, lipogenesis, proliferation arrest, and dif-

ferentiation of hepatocytes [38–43]. Low CEPBA/CEPBB ratio, as observed in different stages

of our experiment, is related to undifferentiation, proliferative state of hepatocytes, and devel-

opment of tumors [41–45]. On the other hand, CEBPA upregulation suppresses Hes1 activa-

tion, and overexpression of Hes1 partially abolished the anti-proliferation effect of CEBPA

[44]. CEPBA and HES1 have antagonistic roles in proliferation in HCC and both TFs must be

under a delicate regulation in order to maintain metabolic and homeostatic functions of cell

cycle progression [42]. We detected this antagonistic correlation between Cebpa and Hes1

expression in our experiment. More studies are warranted to evaluate CEPBA and HES1 as

key TFs in early stages of carcinogenesis. Finally, the expression of greenyellow and royalblue

modules, where Cepba and Hes1 are present, were negatively correlated throughout HCC

development, and they also had an inverse correlation with the same clusters of miRNAs and

proteins (Fig 5). These modules probably have an antagonistic regulation, and as WGCNA

integration suggests, their regulation could be mediated upstream by miR147 (Fig 5). More

studies are necessary to understand the antagonistic expression of the signaling and metabolic

pathways over-represented in these modules.

Other relevant TFs with enriched binding motifs were identified: Ehf, in cyan module,

influence recruitment of neutrophils during progression of hepatocellular carcinoma [46].

Mafb (salmon module) was expressed at low levels while Maff at high levels in nodules after

one month and in tumors, similar results have been described before [47]. Also, in tumoral tis-

sues, we observed the upregulation of purple, and lightcyan modules, the latter also relevant in

days seven and eleven and in nodules of one month. TFs Tead1 and Sox9 were present in the

purple module, whereas Vdr was in lightcyan module. TEAD1 is associated with aggres-

siveness [48], as well as high levels of SOX9 with poor survival in HCC patients [49]. Vdr

appears to be an indicator in the development of HCC among HCV-infected patients [50].

Also, we identify previously not described molecules that could have an active role in HCC

development. For example, TFs Klf12 and Sp40 were present in the pink module and genes in

the module were enriched in binding sites that these TFs recognize, thus these TFs could be

regulating genes of this module. More studies are needed to understand the participation of

these TFs in carcinogenesis or in supporting cancer development.

Our proteomic analysis revealed that mitochondria are dynamic organelles with stage-

related responses during HCC development. Mitochondrial DEP profiles were specific to the

stage of HCC development. Also, and surprisingly, we found that mitochondria of adjacent tis-

sues had an identifiable proteomic expression profile correlated with their adjacent affected tis-

sue counterparts in the same stage of HCC development. This occurs from the first month

after initiation. These results suggest that there is a communication mechanism between mito-

chondria from both tissues within the liver that makes more similar their regulation of mito-

chondrial protein expression. This communication can be either one-way, from affected to

adjacent tissues, or two-way implying feedback. Communication for this shared regulation

could be mediated by several mechanisms: metabolites or proteins produced by affected tissues
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and secreted to the cell microenvironment (e.g. tumor-excreted lactic acid); transporting of

miRNAs, mitochondrial enzymes, metabolites and even complete mitochondrial genomes in

tumor exosomes [51]; and mitochondrial migration from affected cells to adjacent cells [52].

Circulating cell-free competent mitochondria have been found in blood, suggesting a role in

signaling and cell to cell communication for these organelles [53]. It would be difficult to

detect this mitochondrial communication using cell lines or tumor biopsies. Also, in HCC

with focal origin, the communication signal will be diluted in a positive correlation with the

distance to the nodular or tumoral tissue, making it more difficult to detect. On the other

hand, the multifocal origin of HCC in our rat model distributes these signals across the liver

facilitating its characterization; therefore, our model provides an opportunity to study these

mechanisms in more detail.

Because the proteomic profiles of adjacent tissues are more similar to their adjacent tissue

counterparts than to any other tissue from other HCC stages, our method could help in the

HCC diagnosis and provide information on the stage of development using information of

hundreds of mitochondrial proteins. Furthermore, our svm models shows that it is possible to

correctly classify 92% of the samples according to their HCC stage using information from

only 16 proteins and from adjacent tissue samples, making unnecessary the collection of

tumor or nodular samples. However, we used a relatively low number of samples (33) and our

model might present some problems of overfitting. Therefore, we propose to further investi-

gate these candidates in humans to evaluate whether these are useful in stage classification or

as a diagnostic method in patients with high risk and genetic predisposition to develop HCC.

Mitochondrial proteomic expression profiles represent a new potential screening method for

early diagnosis, to be evaluated in human HCC with multifocal origin, such as HCC caused by

nonalcoholic steatohepatitis.

The results of our chronological analysis of metabolic pathways suggest that from very early

stages, mitochondrial metabolism is modified. We observed a massive metabolic downregula-

tion since day one, very likely in response to chemical treatment; however, once carcinogenic

treatment was ended, several mitochondrial pathways were modified at transcriptomic or

proteomic level. This change not only occurred in nodules or tumor samples but was also

detected in adjacent tissues from the first month after DEN administration and throughout

the development of HCC (Fig 3). Remarkably, we observed tumoral phenotypes after nine

months but not at five months (S1 Fig), which suggest that the mitochondria actively partici-

pate in the carcinogenic process, and that the modifications observed are possibly aimed at sat-

isfying the proliferative needs of pre-neoplastic nodules and its progression into tumors. In

this study, and in agreement with previous studies in mice model [54], we observed downregu-

lation of lipids-related degradation pathways, probably to support cell membrane synthesis by

blocking fatty acids degradation in mitochondria [55, 56]. Similar downregulation in lipids

metabolism has been reported in human HCC samples of The Cancer Genome Atlas and it

was correlated with reduced survival [57]. Several over-represented pathways were stage-spe-

cific, suggesting that mitochondria are highly dynamic organelles, with differential roles dur-

ing HCC development according to the stage of disease development. Difficulty in obtaining

an early diagnosis also makes it difficult to obtain tissue samples in the early stages, which may

explain why other studies have missed the pathways, proteins, and transcripts that we detected

in these stages.

WGCNA was useful to identify putative key regulators in several of the evaluated stages,

e.g. antagonistic expressions of Cepba and Hes1 are likely to participate in carcinogenesis, per-

haps promoting a metabolic state of the cell that enhances proliferation and undifferentiated

behavior by signaling and metabolic regulation. Likewise, antagonistic expressions of miRNAs

and transcriptomic modules were also interesting. For example, miR28 were negatively

PLOS ONE Integration of chronological omics data during the development of hepatocellular carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0256016 August 12, 2021 13 / 24

https://doi.org/10.1371/journal.pone.0256016


correlated to blue module that include apoptosis, cell cycle p53 and AGE-RAGE signaling

pathways, indicating a probable regulatory role. Furthermore, miR147 was identified as candi-

date for downregulation of modules that showed over-representation in degradation of fatty

acids, BCAA and tryptophan, and PPAR signaling pathways. Additionally, miR223 was nega-

tively correlated with salmon cluster, and previous analysis suggested miR223 as an HCC bio-

marker [58]; hence other candidate miRNAs identified with our approach could also be

relevant. Therefore, WGCNA-based integration can be useful to guide experimental tests to

know the role of novel genes, proteins and metabolites in cancer development.

Conclusion

We developed a pipeline to analyze and interpret complex data from different omics obtained

from multiple time points and tissues of DEN-induced HCC. We applied this pipeline to

describe the role of mitochondria throughout cancer development, as well as to shed light on

the very early stages of the carcinogenic process and its progression towards advanced stages

of HCC. Our analysis suggests that mitochondria are dynamic organelles with metabolic mod-

ifications that precedes tumor phenotype and are related to each stage of HCC development

with specific regulation. Using mitochondrial omics integration is possible to massively iden-

tify novel candidates that could be further evaluated as regulatory mediators, therapeutic tar-

gets and biomarkers. Furthermore, using mitochondrial information and a svm model we

were able to classify each stage of HCC development. This classification method may have

potential applications in diagnosis and precision medicine warranting further efforts. Also,

WGCNA as an omics integration method could be useful to investigate whether mitochondrial

characteristics observed herein are correlated with prognosis or clinical features to provide a

better clinical management. These strategies can be used in similar multiomics projects.

Methods

Chemical induction of hepatocellular carcinoma in rats

All animal experiments were performed in accordance with the institutional guidelines and

approved by the Internal Committee for the Care and Use of Laboratory Animals of the Center

for Research and Advanced Studies of the National Polytechnic Institute under number 0001–

02 and following the guidelines of the Official Mexican Standard NOM-062-ZOO-1999. Male

Fischer-344 rats weighting 180 to 200 g, from the Production Unit of Experimental Laboratory

Animals (UPEAL-CINVESTAV, Mexico), were feed ad libitum and housed in a controlled

environment (12 h light/12 h dark cycle; at 22 ± 2˚C, and humidity at 55 ± 10%). For carcino-

genesis, a modified resistant hepatocyte model was used [10]. Rats were initiated with diethyl-

nitrosamine (DEN) (200 mg/kg of body weight) at day 0. Then, 2-acetylaminofluorene (AAF)

was administered (20 mg/kg per dose) at days 7, 8 and 9, followed by 3/5 partial hepatectomy

(PH) at day 10 (Fig 1). Three groups of non-treated animals were sacrificed by exsanguination

on the first day and at 9 and 18 months after the beginning of the experiment. Treated animals

were sacrificed at 1, 7, 11 and 16 days and at 1, 9 and 18 months. Their livers were excised,

washed in physiological saline solution, frozen with liquid nitrogen in 2-methyl butane

(Sigma-Aldrich) and stored at -80˚C.

Histochemical analysis and tissue selection

Samples from total liver tissue were taken from control and treated rats at days 1, 7, 11 and 16.

Based on histochemical analysis, pre-neoplastic nodules, tumoral tissues and their adjacent tis-

sues were identified and excised at 1, 9 and 18 months (Figs 1 and S1). Tissues were selected

PLOS ONE Integration of chronological omics data during the development of hepatocellular carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0256016 August 12, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0256016


using a histochemical reaction of gamma-glutamyl transpeptidase (GGT) activity in tissues

slides of 20 μm following the protocol described by Rutenburg [59] (Fig 1B). Images of GGT-

positive lesions were captured with a digital camera (Color view 12, Soft Imaging System

GmbH, Muenster, Germany) and quantified with image analysis software (AnalySIS Soft

Imaging System GmbH, version 3.00).

In total we had 11 pairwise contrasts for the differential expression analysis, described as fol-

lows. We grouped all evaluated conditions in three categories: i) early stages, including samples

obtained in days 1, 7, 11, 16 and from nodules and its adjacent tissues obtained in the first

month after treatment initiation. These were compared against rats without treatment sacrificed

the first day; ii) nodular, tumor and its adjacent tissue samples obtained from nine months rats

were compared against rats without treatment of the same age; and iii) tumor and adjacent tis-

sues samples obtained from eighteen months rats were compared against rats without treatment

of the same age (Table 1). For transcriptomic analysis a total of 40 rats were sacrificed, four rep-

licates per stage of HCC development, tissue and controls. For proteomic and metabolic analy-

sis 30 rats were sacrificed, three replicates in each evaluated stage, tissue, and controls (Table 1).

Independent rats were used to obtain transcriptomic, proteomic, and metabolic data.

RNA extraction and microarray hybridization

Once selected and separately collected nodular, tumoral and its adjacent tissues, total RNA

was isolated using TriPureIsolation Reagent (Roche) according to the manufacturer’s protocol.

The microarray analysis was performed as previously reported [60] using GeneChip Rat Exon

1.0 ST Arrays (Affymetrix, Inc., Santa Clara, CA, USA), which are genome-wide arrays con-

taining over 1 million probe sets, spread across the exons of all the known genes, with >4 per-

fect match probes each, plus a number of additional regions.

Differential gene expression analysis in rat HCC

Four replicas for each condition and controls were analyzed. This created the 11 pairwise con-

trasts for the differential expression analysis as described in histochemical analysis and tissue
selection section and in Table 1.

Data analysis was performed using the packages oligo [61] (version 1.38.0) and pd.raex.1.0.

st.v1 [62] (version 3.14.1) in R (version 3.3.2). Normalization and probe summarization were

performed using the Robust Multichip Average algorithm [63, 64], and differential gene

expression analysis was performed using limma [65] (version 3.34.6). DEG were selected based

on a fold-change >1. The p value was adjusted for multiple tests [66] and the cut-off value was

set to adjusted p value < 0.05.

Mitochondria isolation and proteomic profiles

Mitochondria were extracted from rat liver samples according to Frezza et al. [67], with modi-

fications. Samples of liver tissue in 1.5 ml tubes were macerated in a dry ice bath using a sterile

plastic pestle. IBc buffer (0.1 M Tris-MOPS, 0.001 M EGTA-Tris, 0.2 M sucrose, pH 7.4) was

added, the tubes were centrifuged at 600 g for 10 minutes at 4˚C, and the supernatant was

recovered in a new tube. This tube was centrifuged at 7000 g for 10 minutes at 4˚C and the

supernatant was discarded. This last step was repeated until the supernatant was clear. The

remaining pellet contained isolated mitochondria that were further purified by ultracentrifu-

gation in discontinuous sucrose gradients [68].

Mitochondrial proteins were extracted using one volume of extraction buffer (6 M urea, 2

M thiourea, 3% CHAPS) per volume of purified mitochondria. Total proteins were precipi-

tated using trichloroacetic acid and resuspended in water. Protein concentration was
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determined using Bradford assay (S20 Table). Three replicas of mitochondrial protein extracts

from each of the samples and control tissues were sent to the Proteomics Core Facility of the

University of California, Davis to be analyzed. Total mitochondrial proteins were digested

with trypsin (20:1) and run on an Orbitrap Q-Exactive mass spectrometer (Thermo Scientific)

coupled to a Proxeon Easy-nLC II HPLC (Thermo Scientific) using a C18 column of 120 cm

for 90 minutes.

A database of 29,998 amino acid sequences, downloaded from Uniprot [12] (http://www.

uniprot.org) and constituting all rat proteins was used as reference for protein identification.

Protein identification and quantification was done with MaxQuant [69] version 1.5.2.8. For

identification, the peptides were of minimum 6 amino acids and had at least 1 unique peptide

identified per protein. A false discovery rate (FDR) of 1% at both peptide and protein level was

used. Average absolute mass deviation was set to 0.2 parts per million. For quantitation we

used intensity based absolute quantification (iBAQ) [70].

Differential protein expression analysis

Differential expression analysis was based on iBAQ values, normalized by the amount of pro-

tein of each sample injected in the LC-MS system (S20 Table). Three replicas for each condi-

tion and controls were analyzed against the same age controls as described in histochemical
analysis and tissue selection section and shown in Table 1. For data analysis we used DEP pack-

age [71] version 1.0.1 in R. Proteins quantified in the three replicates of at least one of the eval-

uated conditions were included in the analysis (531). Normalization of data was performed

using the vsn [72] package in R. Imputation of missing values was done withMSnbase package

version 2.4.2 [73] using the smallest non-missing value withMinDet function. To evaluate the

significance of differentially expressed proteins we used the DEP package that depends on

limma [65] (version 3.34.6). DEP were considered as such when the adjusted p value� 0.05

and presented a one-fold change in expression level in comparison with the control.

Metabolic profiling

To extract metabolites, 100 μl of water was added to 100 μg of purified mitochondria along with

0.005 μg/ml of malonic acid as standard. The solution was frozen at -20˚C, thawed, mixed in

vortex for 2 minutes, and centrifuged at 10,000 g. The supernatant was collected, frozen at

-80˚C and lyophilized. Samples were derivatized using BSTFA-TMCS (99:1) and pyridine in a

4:1 volume relation at 80˚C for 30 minutes. Then, the solution was centrifuged at 10,000 g and

1 μl of the supernatant was injected in a GC-MS system (Agilent GC 7890B, Agilent MS 5977A,

available at our institution) according to chromatographic conditions described previously [74].

Quantitation was done with Agilent MassHunter Quantitative Analysis (for GCMS) software

version B.07.00/Build 7.0.457.0 (Agilent Technologies, 2008). Area under the intensity curve

was used to quantify metabolites using a known concentration curve of standard metabolites,

namely citric acid, malic acid, succinic acid, glutamate, glutamine, lactic acid, alpha-ketoglutaric

acid and fumaric acid from Sigma-Aldrich (St. Louis, MO, USA). Three replicas for each condi-

tion and controls were analyzed against the same age controls as described in histochemical
analysis and tissue selection section and shown in Table 1. Differential concentration analysis of

metabolites was done using Student´s T test in Perseus [75, 76] (S12 Table).

Hierarchical clustering and supervised classification of HCC development

stage

Hierarchical clustering for genes and mitochondrial proteins were done using ComplexHeat-
map [77] in R using only DEG or DEP, respectively. Non-differential genes and proteins were
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excluded for all posterior analyses. Clustering and heat map visualization were done using a

table containing the log2 fold change mean of all replicas for each sample. For columns (HCC

development stages) Pearson’s correlation was used, while Euclidean distance was used for

rows (DEG or DEP).

We evaluated two models for sample classification according to stage of HCC development

using the proteomic profile of each replicate. We separated samples into 3 groups according to

stage of HCC development regardless of sampled tissue type. Group 1 included samples col-

lected within the first month, the groups 9 and 18, were samples collected after nine and eigh-

teen months of carcinogenic treatment, respectively. Group 1 had 18 samples; group 9, 9

samples; and group 18, 6 samples. Classification was done using a supporting vector machine

algorithm, with a linear kernel, C = 10, considering 363 features ranked using ANOVA and

s0 = 0. For cross-validation we performed 250 repeats by random sampling with a test set of

33% and another 250 repeats using ten-fold cross-validation in Perseus [75, 76]. Then, the

expression profile of the top ranking 16 proteins that lead to classification error rate less than

10% were used to perform a hierarchical clustering using Pearson’s correlation.

Pathway over-representation-based Integration using Biological level

expression (PIB)

First, we classified DEG by stage of HCC development as described above. Then, DEG were

separated into two categories, upregulated and downregulated, and were mapped into the

pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [14, 15]. We

used upregulated or downregulated mapped genes separately to perform an analysis of path-

ways over-representation with clusterProfiler [78] package (version 3.6.0) using enrichKEGG
function in R. Pathways were considered statistically significant if the adjusted p value was

<0.05, and significant pathways were included in the table. For DEP analysis we used an iden-

tical pipeline to obtain another table that was combined with the previously obtained DEG

table to obtain an “enrichment status” for each pathway. Enrichment status classification was

performed according to biological level over-representation significance (RNA, protein, both

or none) and expression values of DEG or DEP (downregulation, upregulation or no regula-

tion). This gave us a table containing 11 categories of enrichment status. The table with all clas-

sifications is shown in S21 Table.

Pathway enrichment integration analysis by weighed sum of Z (Stouffer)

test

This method combines the p values from each independent test into one [79], where each

independent test is a pathway over-representation test for each omics data. P values were

weighted with transcriptomic and mitochondrial proteomics universe size, respectively, to

reduce false positives [80, 81]. To perform this analysis themetap [82] package was used in R.

Weighted Gene Co-expression Network Analysis (WGCNA)

WGCNA [83] assesses similarities in expression patterns through correlation, with the

assumption that genes with similar expression profiles undergo similar regulation processes

and are likely to share common biochemical pathways or cellular functions, and therefore can

be grouped into co-expression modules. Then, modules are correlated with other features, i.e.

body weight or blood metabolite levels. Here we usedWGCNA package to find transcriptional

modules and correlate them with the profiles of quantified mitochondrial proteins and metab-

olites as well as miRNAs genes (all these here referred to as molecular features).
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We used 137 samples, 56 of transcriptomic, 42 of proteomic and 38 of metabolic data, rep-

resenting 11 stages and three control groups, as described inHistochemical analysis and tissue
selection section. First, we imputed missing values in the proteomic dataset of 531 proteins

described in Differential protein expression analysis section. Missing values were imputed con-

sidering its nature of origin, missing at random (MAR) or missing not at random (MNAR),

according to Lazar et al. [84] (S22 Table) using the package ImputeLCMD [85]. MNAR values

were imputed using random draws from a Gaussian distribution centered in the minimal

value detected using the function impute.MinProb (q = 0.1, tune.sigma = 1), while MAR data

was imputed using k nearest neighbor algorithm, using k = 11 [84, 85].

For WGCNA, gene expression profiles were correlated with each other using biweigthed

midcorrelation. Correlation coefficients were transformed into adjacency and Topological

Overlap Matrix (TOM) similarity matrices, based on the soft-threshold power (β) of 24 that

was chosen using pickSoftThreshold function [83], because it was the smallest threshold that

resulted in a scale-free R2 fit>0.85. Genes were clustered into modules with similar expression

profiles by using hierarchical clustering based on the TOM dissimilarity (1-TOM) using flash-
Clust function. Signed module identification was done using cutreeDynamic function with a

minimum module size of 20. The resulting 9 modules of co-expressed genes were used to cal-

culate module eigengenes (MEs; or the first principal component of the module). Finally, MEs,

were correlated with the molecular features, according to their expression patterns. Since hun-

dreds of molecular features were quantified in our experiment and correlated with transcrip-

tomic modules, we filtered out all features with no significant correlation (p� 0.001) with at

least one transcriptional module.

Transcription factor binding site enrichment analysis

Genes within each co-expressed transcriptomic module were compared to the rest of the rat

genome in order to identify over-represented TF binding sites using the online tool ShinyGO

[86] v0.61 (http://bioinformatics.sdstate.edu/go/).

Transcription factors interaction network of royalblue module

TF interaction network was performed in GeneMANIA [87, 88] (https://genemania.org/) with

TF present in each module and TF with over-represented binding sites in the modules were

used as input.
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