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Abstract

Background: In the present study, we applied microarray technology to define biosignatures by microarray transcriptome
analysis in lung and spleen samples after BCG vaccination and M. bovis infection of BALB/c mice. The aims were two-fold,
namely to define biosignatures that could predict vaccine success before challenge, and biomarker patterns that correlated
with anamnestic protective responses following exposure to virulent M. bovis. Further, these biosignatures should be
detectable without in vitro antigenic challenge.

Principal Findings: After BCG vaccination, we defined a specific pulmonary gene expression signature related to the
connective tissue development and function network that predicted vaccine success before M. bovis challenge. In addition,
a Th17-related cytokine profile was found that correlated with vaccine-induced protective immunity following infection
with virulent M. bovis in the lung as well as additional genes that were up-regulated in the spleens of vaccinated animals
post-infection related to neutrophil biology and inflammation.

Conclusions: This study has therefore prioritized both biomarkers predicting vaccination success before challenge and bio-
signatures that are potentially associated with protective immune responses that will be useful to evaluate future vaccine
candidates.
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Introduction

BCG is the most widely used human vaccine with an excellent

and unmatched safety record in immuno-competent humans.

Protection against TB conferred by BCG is thought to be

mediated by the induction of cell mediated immune responses

characterized by the cytokine IFN-c. Although necessary, IFN-c
alone is not sufficient for protection and therefore, it is unreliable

as a predictor or correlate of protection (rev. in [1]). More reliable

markers of protection would accelerate the development of novel

and more effective vaccination strategies against human and

bovine tuberculosis.

Biomics approaches (transcripto- proteo- and metabolo- mics)

have changed the way researchers are conducting experiments.

For example, transcriptome analysis measure changes in global

gene expression comparing different gene expression profiles

between different experimental conditions. This approach has

been used, for example, in cancer related studies in order to obtain

prognostic values [2] and predicting therapeutic outcome [3]. In

addition, these approaches are now also being used to identify

biomarkers of infection [4] or to study vaccine-induced responses,

such as after yellow fever vaccination [5].

The effect of BCG vaccination to protect cattle against M. bovis

infection has been studied since 1911, and several recent reviews

have covered these studies in details [1,6]. The results of the

majority of experimental vaccine challenge studies have demon-

strated a considerable degree of protection. Further, BCG

vaccination constitutes a good model vaccine to investigate the

mechanisms of protective immunity against tuberculosis infection

in small and large animal models. We have shown that the murine

M. bovis infection model is predictive of BCG and sub-unit

vaccination success in cattle [7], and have therefore applied

microarray technology to define biosignatures from the whole

transcriptome in lung and spleens of BALB/c mice following BCG

vaccination and M. bovis infection. We identified specific

pulmonary gene expression signatures related to connective tissue

development and a Th17-related cytokine profile. These signa-

tures predicted vaccine success prior to challenge, or correlated

with vaccine-induced protective immunity following infection with

virulent M. bovis.

Materials and Methods

Animals
Female BALB/C mice were obtained from SPF facilities at

Charles River Laboratories, Margate, UK. All animals were

housed in appropriate biological containment facilities at VLA and

work was carried out in accordance with the UK Home Office

Animal (Scientific Procedures) Act 1986, following approval by the

VLA Ethical Review Board and the UK Home Office.
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Mycobacteria
The vaccination strain used was M. bovis BCG Danish strain

1331 (SSI, Copenhagen, Denmark) which was reconstituted from

freeze-dried stocks stored at 4uC in Sauton’s medium supplied as

per instructions. M. bovis isolate AF2122/97 grown to mid log

phase in Middlebrook 7H9 broth supplemented with 4.16 g/L

pyruvic acid, 10% (v/v) oleic acid, albumin, dextrose, and catalase

(OADC) and 0.05% (v/v) Tween 80, subsequently stored at

280uC, was used for all virulent challenges.

Immunisation and mycobacterial challenge
Two groups of 15 mice each were immunised by a single

intradermal injection of 26105 CFU of M. bovis BCG (Vaccinat-

ed), or Sauton’s medium (Unvaccinated). Vaccinations were

carried out into the base of the tail in 50 ml volumes. Six weeks

later 5 mice from each group were euthanized for immunological

analyses and the remaining mice from each group were challenged

with approx 600 CFU M. bovis via the intranasal route [8]. At days

3 and 14 post challenge five mice per group were euthanized and

spleens and lungs harvested (Table 1). To validate results obtained

from samples before infection, we also prepared cells (as described

below) from a further experiment conducted in the same way as

described above. In this experiment, 5 vaccinated and 5

unvaccinated control mice were euthanized 6 weeks post-

vaccination and cells and RNA prepared for qRT-PCR analysis

as described below.

Cell isolation
Five mice per group were euthanized to evaluate the immune

response of splenic lymphocytes. Spleen cells were prepared by

passage through a 40 mm cell strainer into DMEM supplemented

with 10% (v/v) foetal calf serum (FCS) and antibiotics (100 U/ml

penicillin and 100 mg/ml streptomycin) (Gibco, UK) Following

washing at 3006g for 10 minutes cells were suspended at 56106/ml

for assay.

Lung cells were isolated as follows. Briefly, thoracic cavities were

opened, descending aorta transected and sterile HBSS gently

injected into right heart ventricles to perfuse lungs. Lungs were

excised, resuspended into digestion media (DMEM supplemented

plus 10 U/ml DNAse II (Sigma) and 150 U/ml collagenase type I

(Gibco)) and incubated for 1 hour at 37uC with gentle agitation

(200 rpm). After digestion lungs were prepared by passage through

100 mm cell strainer into supplemented DMEM. Following

washing at 1600 rpm for 5 minutes, cells were poured into

another tube through a 40 mm cell strainer, washed and used at

56105/well.

Determination of bacterial load
Spleen and lungs were removed and homogenised in distilled

H2O containing 0.05% v/v Tween 80 using a 10 mm coarse

dispersing homogeniser. Serial dilutions were plated onto modified

Middlebrook 7H11 agar media (Gallagher, et. al. 1977) and

incubated at 37uC for 4 weeks prior to Colony Forming Units

(CFU) determination.

RNA preparation and microarray hybridization
Spleen and lung cells prepared as and identical to the samples

described above were pelleted, and then resuspended in Trizol

and stored at 280uC until further processing. Trizol was chosen

as storage medium because our validation experiments had

demonstrated that M. bovis was effectively killed in Trizol.

Therefore, further processing could be performed outside a

biosafety containment level 3 (CL3) facility. RNA was isolated

from spleen and lung cells derived from BCG vaccinated and

control mice before and after M. bovis challenge using standard

RNA extraction protocols (Miltenyi Biotech Ltd, Bergisch

Gladbach, Germany). The quality of RNA samples was assessed

using the Agilent 2100 Bioanalyzer platform. All RNA samples

revealed acceptable RNA Integrity Number (RIN) values

between 6.8 and 9.5. For the linear T7-based amplification step,

0.5 mg of each total RNA samples was used. To produce Cy3-

labeled cDNA, the RNA samples were amplified and labeled

using the Agilent Low RNA Input Linear Amp Kit following the

manufacturer’s protocol. Yields of cDNA and the dye-incorpo-

ration rate were measured with the ND-1000 Spectrophotometer.

The hybridization procedure was performed according to

the Agilent 60-mer oligo microarray processing protocol using

the Agilent Gene Expression Hybridization Kit. Briefly, 1.65 mg

Cy3-labeled fragmented cDNA in hybridization buffer was

hybridized overnight (17 hours, 65uC) to Agilent Whole Mouse

Genome Oligo Microarrays 4644K using Agilent’s recommend-

ed hybridization chamber and oven. Finally, the microarrays

were washed once with 66 SSPE buffer (3.6 M NaCl, 0.2 M

NaH2PO4, 0.02 M EDTA pH 7.4) containing 0.005% N-

lauroylsarcosine for 1 min at room termperature followed by a

second wash with preheated 0.066 SSPE buffer (37uC)

containing 0.005% N-lauroylsarcosine for 1 min. The last

washing step was performed with acetonitrile for 30 seconds.

Normalization, filtering procedures and data analysis
Fluorescence signals of the hybridized Agilent Microarrays

were detected using Agilent’s Microarray Scanner System. The

Agilent Feature Software (FES) was used to read out and process

the microarray image files. The software determines feature

intensities (including background subtraction), rejects outliers and

calculates statistical confidences. For determination of differential

gene expression FES derived output data files were further

analyzed using GeneSpring GX 11 (Agilent). The default

normalization for Agilent one-color data in the GeneSpring

GX program is quantile normalization following Agilent’

guidelines. This was done across all arrays and caused all

distributions to be the same. Therefore, this non-linear normal-

ization corrects array biases. After normalization and baseline

transformation performed using median of UU samples as a

baseline; we decided to focus on those genes that reliably change

their expression, then we filtered the microarrays following three

conditions: 1) Filter by value. Genes that do not have normalized

signal intensity values of more than 20.5 and 0.5 were

disregarded. 2) Filter by flags. All the genes with flag present in

at least 100% of the values in any 1 out of the 6 conditions (see

Table 1) were considered. Flags are attributes that denote the

Table 1. Vaccination and challenge design.

Pre-Infection Post-Infection

Day 3 Day 14

Naı̈ve 5 animals (UU) 5 animals (UI3d) 5 animals (UI14d)

BCG Vaccinated 5 animals (VU) 5 animals (VI3d) 5 animals (VI14d)

Experimental design used for microarray study of gene expression in spleen and
lung from vaccinated and unvaccinated mice. 6 groups with 5 animals per
group and one microarray for each animal (30 microarrays) were used.
Definition of abbreviations used: UU = Unvaccinated prior to infection; UI3d,
UI14d = Unvaccinated euthanized 3 or 14 days post-M. bovis infection; VU =
BCG Vaccinated Prior infection; VI3d, VI14d = Vaccinated 3 or 14 days post-
infection.
doi:10.1371/journal.pone.0011319.t001

Protective Biosignature in TB
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quality of the entities. Using these attribute values in GeneSpring

we filtered the genes. based on the feature quality on the chip,

like signal saturation and signal uniformity. The genes which are

given a low significance attribute in the data file were marked as

’Absent’ and those with high significance values were marked as

‘Present’. Thus, the following flags are possible: ‘present’

(transcription), ‘marginal’ (could be transcription, linking or

mismatch) or absent (no transcription). 3) Filter by percentile. All

the genes with normalized signal intensity values between 25 and

100 in any 1 out of the 6 conditions (see Table 1) were also

considered. Finally, all the genes in coincidence between filtering

by flags group and filtering by percentile group were kept for

statistical analysis.

After filtering, analysis of variance was applied to compare

mean expression levels in each analysis. Data were considered

significant when the Benjamini Hochberg false discovery rate

(FDR) for the comparison under analysis was ,0.05, and the

significance level was ,0.05. In order to focus on highly regulated

genes, we also restricted the majority of the analysis to genes with

changes in expression levels of at least 1.7-fold change in all the

conditions.

Lists of genes resulting from analyses were submitted to

Ingenuity Pathway Analysis (IPA; IngenuityH Systems, Redwood

City, Ca, www.ingenuity.com) in order to obtain the most

significant networks and canonical pathways related. By default

p,0.05 was used in all the analyses. All data set can be

downloaded from Gene Expression Omnibus public data base at

www.ncbi.nml.nih.gov/geo/ with the GEO accession number

GSE21149.

Real-time quantitative PCR validation
Fast SYBR Green real time PCR was used to validate

microarray gene expression results. cDNA was synthesized from

total RNA samples using reverse transcription with Verso reverse

transcriptase following the manufacturers protocol (Thermo

Scientific, Epson, Surrey, UK). QRT-PCR analysis was performed

using the Applied Biosystem ABI 7500 Fast machine in triplicate

from five biological independent samples of total RNA from the

lung and spleen of unvaccinated and vaccinated animals. The fold

increase in signal over the G3PDH housekeeping gene was

determined using the 22DDct calculation [9].

Results

Protective efficacy
Groups of 5 BALB/c mice, vaccinated with M. bovis BCG or

sham vaccinated, were challenged with M. bovis via the

intranasal route. Bacterial burdens (Table 2) were determined

28 days post infection. Host immune and transcriptional

responses were determined prior to, and 3 and 14 days after

infection. The data shown in table 2 demonstrated that BCG

vaccination induced significant protection in spleens and lungs

of vaccinated mice.

BCG vaccination induces a specific pulmonary gene-
expression signature

In order to define a specific biosignature that can identify

vaccine success after BCG vaccination but before M. bovis

challenge (predictors of protection), lung and spleen samples were

collected and RNA prepared without prior in vitro stimulation (ex

vivo samples). We compared samples from BCG vaccinated

animals (VU samples, see Table 1 for definitions of groups)

against all the other groups and time points post-vaccination and

post-challenge (UI3d/UI14d and VI3d/VI14d). Genes were

considered significant when their corrected r-values were below

0.05 with more than 1.7 fold changes of expression. Applying these

criteria, the expression of 169 (164 genes in the lungs, Figure 1A,

and 5 genes in the spleens, Figure 1B) genes was significantly

modulated in the BCG vaccinated VU group compared to

unvaccinated groups before and after challenge, as well as

vaccinated groups after challenge (Fig. 1). Unsupervised hierar-

chical cluster was performed using a centroid linkage with a

Person centered measure. VU samples were found to cluster

together with a clear differentiation between VU and either VI or

UI samples. Figure 2 shows the analysis of the lung samples which

demonstrated a specific gene expression profile after vaccination

with BCG six weeks after vaccination (VU), with 121 genes down-

regulated and 43 up-regulated compared with the gene expression

in all other groups and time points (UU, VI3d/14d and UI3d/

14d, Fig. 2 and Table S1).

Ingenuity Pathway Analysis
Ingenuity Pathway Analysis (IPA) was performed on these 164

genes up-or-down-regulated in the lung of vaccinated animal and

revealed that they were highly significantly related with

connective tissue development and function (32 genes, r-

value = 0.65E-04), cell death (26 genes, r-value = 3.93E-05),

cellular development (22 genes, p-value = 2.15E-04), cell-to-cell

signaling and interaction (n = 19 genes, p-value = 4.92E-05) and

cellular assembly and organization (9 genes, p-value = 4.90E-05).

In contrast, the five genes significantly over or under-expressed in

spleen samples from vaccinated mice were all poorly annotated at

the time of the analysis (classified as hypothetical or unclassifiable

genes).

Most of the genes involved directly or indirectly related with

connective tissue development and function network were

down-regulated after vaccination alone but were consistently

up-regulated after challenged with M. bovis (Figures 2 and Table

S1). For example, the gene encoding matrix metalloproteinase-3

(mmp3) was down-regulated 36-fold in VU samples compared

with VI and UI samples and down-regulated 2.5-fold compared

with UU samples (Table S1). In contrast, another gene from the

same MMP family, mmp7 was up-regulated only in VU samples

with a 5-fold change compared with all the other samples.

Other genes related to this pathway that were modulated

differentially in VU lungs were decorin and pentraxin 3

(Figure 3 and Table S1).

Table 2. M. bovis bacterial loads in the spleen and lung.

Spleen (Log10 cfu) S.E. Spleen Log10 protection Lung (Log10 cfu) S.E. Lung Log10 protection

Controls (n = 5) 4.86 0.17 - 6.95 0.30 -

BCG (n = 5) 3.38 0.10 1.48 *** 5.07 0.14 1.88 **

**p,0.005 *** p,0.0005 vs. control (two-tailed t test with Welch correction).
doi:10.1371/journal.pone.0011319.t002
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The validity of these micro-array data was confirmed by

conventional qRT-PCR analysis of a selection of genes including

mmp3, mmp7, decorin and pentraxin 3 (figure 4) using lung

samples from VU and UU mice obtained from an independent

experiment using BCG vaccinated and control mice vaccinated

identically to the mice from the experiment used for the array

analysis.

Correlates of protection
In order to define biomarker signatures indicative of a

protective host response in BCG vaccinated animals following

M. bovis infection, i.e. potential correlates of protection, the

differences in the transcriptional profiles between unvaccinated

mice 3 and 14 days after infection (UI3d and UI14d) were

compared against vaccinated mice at the same time points (VI3d,

Figure 1. Venn diagram showing the distribution of genes that define vaccine success after BCG vaccination but before M. bovis
challenge in lung and spleen. Comparisons of at least 1.7-times over- or under-expressed gene obtained for UU, VI and UI samples relative to VU,
resulting in gene expression patterns that predict protection in lung (A) and in spleen (B). A list of these genes is provided in Table S1.
doi:10.1371/journal.pone.0011319.g001

Protective Biosignature in TB
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Figure 2. Pulmonary gene signature after BCG vaccination but before M. bovis challenge. By using unsupervised hierarchical clustering of
transcripts and samples with centroid linkage and Pearson centered measure, lung samples were segregated into two distinct groups based on the
164 genes identified previously (Fig.1A). All VU samples (red squares at the bottom) were clustered together with two UU samples. Bright red
represents a 3.4-fold increase in expression above the mean and bright blue represents a 3.4-fold change decrease in the expression from the average
to all UU mice. Yellow indicates the unchanged expression level of a partiuclar gene between vaccinated and uninfected control mice (VU and UU
groups, respectively).
doi:10.1371/journal.pone.0011319.g002
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VI14d). At day 3 and 14-post infection, 44 and 742 genes,

respectively, were significantly differentially expressed between

vaccinated and unvaccinated mice in lung samples, respectively.

Only 9 genes of these 786 genes were differentially expressed at

both time-points post-infection (Fig. 5A). When we assessed the

functions of these 786 differentially expressed genes, we found that

genes associated with the TH17 differentiation and effector

pathways were prominent amongst them. For example, both

expression of Interleukin-17A and F encoding genes was up-

regulated in the lung samples of BCG vaccinated animals both 3

and 14 days after challenge with M. bovis, whilst expression of the

genes encoding interleukin-22 and interleukin-23 receptor were

up-regulated in lung samples from vaccinated animals 14 days

after challenge with M. bovis (Figure 6A). As expected, IFN-c was

also strongly and significantly up-regulated in the lungs of

protected mice (Fig. 6A).

After comparative analysis of the spleen samples we found 65

and 50 genes, respectively, to be differentially expressed at days 3

and 14 between vaccinated and unvaccinated animals (Fig. 6B),

with 25 genes differentially expressed at both time points post-

infection. For this set of genes IPA analysis revealed that genes

associated with inflammatory responses were found to be the

primary network up-regulated (score 39) in vaccinated samples.

For example, three days post-challenge, the eosinophil related

genes eosinophil peroxidase (Epx), proteoglycan 2 and eosinophil

granule major basic protein (MBP2) were up-regulated (Table S2).

Interestingly, 8/25 of these up-regulated genes listed in Table S2

were neutrophil-related (Figure 6B): myeloperosidase (mpo),

CD177, neutrophilic granule protein (npg), lactotransferrin (ltf),

cathepsin G (ctsg), chitinase 3-like 3 (chi3l3); chemokines related to

neutrophil chemotaxis (Figure 6B: cxcl-10, cxcl-11); or related to

the IL-8 activity of neutrophils (Figure 6B: elastase-2 (ela2),

proteoglucan 3 (prg3). Further, interferon related genes, for

example, 29-59 oligoadenylate synthetase-like2 (oasl2) and inter-

feron-induced protein tetrapeptide repeats 3 (ifit3); Lymphocyte

Figure 3. Connective tissue disorder network genes are differentially modulated after BCG vaccination but before M. bovis
challenge in lungs. The connective tissue disorder network was identified after Ingenuity Analysis (p-value 1.65E-4) based on a subset of 164 genes
identified previously in lung (Fig.1A). The relationship between individual genes is depicted in this figure. Red: up-regulated; Blue: down-regulated;
White: not found to be modulated.
doi:10.1371/journal.pone.0011319.g003

Figure 4. Confirmation of the modulation of selected genes by
quantitative RT-PCR. To confirm the expression patterns of some
genes identified in the microarray studies, real-time RT-PCR (QRT-PCR)
was performed using total RNA collected from vaccinated and
unvaccinated mice prior to infection form an experiment independent
from the original experiment that provided samples for the microarray
analysis. Data are expressed as log10 relative expression levels in
vaccinated compared to naı̈ve control mice.
doi:10.1371/journal.pone.0011319.g004
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Antigen 6 complex (ly6a); and Ficolin B (fcnb), a member of the

collectin family, an intracellular scanvenger that recognize

pathogen-associated molecular pattern on microbial surfaces

[10], were also up-regulated in vaccinated compared to unvacci-

nated mice after challenge (Table S2).

Discussion

This study probed transcriptional responses in BCG vaccinated

and naı̈ve mice before and after M. bovis challenge. The aims were

two-fold, namely to define biosignatures that could predict vaccine

success before challenge, and biomarker patterns that correlated

with anamnestic protective responses following exposure to

virulent M. bovis. As our objective was to define markers which

are detectable without further in vitro antigenic stimulation, we

prepared RNA from lung and spleen cells directly after cell

preparation (ex vivo sampling).

Our results are consistent with previous studies, demonstrating

that after vaccination with BCG a biosignature, rather than a

single marker, will be required to predict the subsequent outcome

of infection in respect to protection status [11,12,13,14].

Significantly, following vaccination, we found that the differen-

tially expressed genes in the BCG vaccinated unchallenged

animals compared to all other groups were involved in connective

tissue development and MMP protein function. One can therefore

hypothesize that parenteral BCG vaccination resulted in re-

modeling of the lung tissue conferring resistance to later areogenic

infection. As it has been described that systemic BCG vaccination

of mice leads to the dissemination of BCG throughout the body

including the lungs [15,16], one could further hypothesize that this

effect was induced by the presence of live BCG in the lungs of

vaccinated mice. We detected this differential expression of these

connective tissue associated genes in our study 6 weeks post-

vaccination, and it will be of interest to determine how long the

Figure 5. Venn diagrams of genes defining protective host responses after M. bovis challenge. Comparisons of genes that were over or
under-expressed at least 1.7- times in the lungs and spleens of vaccinated compared to unvaccinated mice after M. bovis challenge are shown (UI
samples relative to VI samples at day 3 and 14 post challenge). (A) Lung cell responses; (B) spleen cells responses (B). Genes involved are listed in
Table S2).
doi:10.1371/journal.pone.0011319.g005

Protective Biosignature in TB

PLoS ONE | www.plosone.org 7 June 2010 | Volume 5 | Issue 6 | e11319



Figure 6. Transcription profiles in lung and spleen cells of selected genes differentially modulated between vaccinated and
unvaccinated mice post-infection. Each line shows expression levels determined by microarray analysis in lung (A) and spleen cells (B) of
individual transcripts between unvaccinated and vaccinated samples. (A) Pulmonary (lung cell) expression profiles of TH17 pathway related genes. (B)

Protective Biosignature in TB

PLoS ONE | www.plosone.org 8 June 2010 | Volume 5 | Issue 6 | e11319



up-regulation of these genes is detectable following vaccination.

Although we have not determined BCG persistence in this

experiments, we have found in a subsequent and still on-going

experiment that BCG can be cultured in the lungs of a proportion

of vaccinated mice for up to 4 months post-vaccination (Kaveh

and Hogarth, unpublished observation), thus supporting our

hypothesis. However, future studies need to be conducted, using

for example gene knock out mice, to determine whether this tissue

re-modeling is needed for protection or is only correlated with the

presence of BCG in the lung tissue.

The proteins of the MMP family have been described to play a

dual role in the eradication of infections. Lymphocyte migration,

tissue remodeling, granuloma formation, defensin and cytokine

activation are required by the host in order to control and

eradicate successfully pathogens. However, MMP’s also are

responsible for excessive tissue damage, pulmonary cavitation

and increased blood brain barrier permeability that would help

pathogen dissemination or persistence in the host [17]. It had been

shown that MMP7, also known as matrilysin, is involved in

inflammatory and healing process in the lung [18]. For instance,

mmp72/2 mice developed an attenuated asthmatic phenotype and

airway epithelial expression of MMP-7 was critical for develop-

ment-asthma like disease [19]. Conversly, in obliterative bronchi-

olitis [20], matrilisyn showed a protective role in chronic lung

injury, regulating a population of CD103+ DC that limit acute

inflammation and inhibit progression of pulmonary fibrosis [21];

as well as repairing airway epithelium and re-epithelialization of

airway wounds by facilitating cell migration. MMP family

members are also key factors responsible for degradation and

tissue remodeling of the extracellular matrix [22]. Several studies

have demonstrated the importance of MMPs in tuberculosis as

pulmonary damage, mainly granuloma formation, is fundamental

to Mycobacterium tuberculosis and Mycobacterium bovis pathology

[23,24,25,26]. A recent study using M. marinum infection of zebra

fish as a model system, suggested the involvement of mmp-9 in the

interaction of bacterial secreted proteins with the host epithelium

contributing to early bacteria growth, local expansion and systemic

dissemination [27].

Other genes associated with connective tissue development that

we found to be differentially modulated in VU lungs were decorin

and pentraxin 3. Decorin is a leucine proteoglycan, which is a key

regulator of collagen fibrogenesis [28] and TGF-b [29]. It has

been localized in epithelioid cells of noncaseating granulomas in

TB patients [30]. Pentraxin 3, an acute phase protein produced in

lungs following infection and inflammation, correlates with

protective immunity against Aspergillus fumigatus and Pseudomonas

aeruginosa in lungs [31] and a specific haplotype frequency was

associated with a protective effect against pulmonary tuberculosis

in West Africans [32].

Correlates of protection, i.e. markers that are associated with

the anamnestic immune response after challenge of vaccinated

mice, could be not only useful as biosignatures in clinical trials, but

could also be useful to describing protective immunity induced by

BCG vaccination. Our study prioritized genes associated with

TH17 cell differentiation and effector function in addition to TH1

responses defined by IFN-c production. However, one cannot rule

out that the TH-17 responses found in our study were up-

regulated due to BCG persistence in tissues and did not directly

correlate with the protective immune response post-challenge.

However, our responses occurred post-challenge and this therefore

makes it more probable that TH17 responses do contribute to

protective immunity. Previously, it has been demonstrated that a

population of IL-17-producing cells are induced in lungs by

ESAT-6 peptide subunit immunization and their absence

compromised TH1 responses and protection [33]. In addition,

IL-17 and IL-21 gene expression were up-regulated in lungs from

mice vaccinated with BCG or a M. tuberculosis DsecA2 mutant strain

post challenge [11]. Further, Kolibab and co-workers [34] have

recently extended these results using sub-unit vaccination based on

recombinant viral subunits by demonstrating IL-17 production in

the lungs of vaccinated mice post-challenge. Interestingly, we have

recently also detected strong TH-17-associated responses associ-

ated with protection of cattle after heterologous prime-boost

vaccination using BCG and recombinant attenuated viral subunit

vaccines by demonstrating increased IL-17 [35], IL-23 and

RORct expression (Aranday-Cortes and Vordermeier, unpub-

lished data) in protected animals. Therefore, we have validated to

some degree the findings described in this paper in mice in a target

species of vaccination. Taken together, there is therefore a

mounting body of evidence that is suggestive of a role of IL-17

in protective immunity. By contrast, the evidence for a protective

role of IL-17-associated responses after vaccination with DNA

vaccines against tuberculosis appears to be less clear. The study by

Lim and co-workers [11] did not demonstrate IL-17 responses in

the lungs of mice vaccinated mice with a DNA vaccine after

challenge, which is in contrast to their data demonstrating IL-17

responses in mice vaccinated with live mycobacterial vaccines

[11]. Furthermore, an earlier study described a negative

association of IL-17 production following vaccination and

protection following a BCG/DNA heterologous prime-boost

protocol [36]. Therefore, these discrepancies between different

subunit vaccine types need to be examined in future studies.

In the spleens of vaccinated mice examined in the present study,

epx and mpo were differentially expressed after challenge. Both

proteins have demonstrated antimycobacterial roles in eosinophils

[37,38]. Proteoglycan-2 or eosinophil granule major basic protein

(mbp2) is a specific eosinophil marker [39]. Moreover, mpo,

CD177, neutrophilic granule protein (npg), lactotransferrin (ltf)

and cathepsin G have been associated with the function of

neutrophils [40,41,42]. Furthermore, the chitinase 3-like 3 (chi3l3)

or ym1, (an alternative activation macrophage marker), is also

expressed in neutrophilic granules [43]. It has been demonstrated

that eosinophils and neutrophils are attracted to the site of M.

tuberculosis infection [44] and the role of neutrophils against

mycobacterial infection has been evaluated in several studies. For

example, neutrophils played a protective role at the early phase of

infection with M. tuberculosis in one study; where neutrophil

depletion significantly compromised host defense [45]. In other

studies, immunization with BCG resulted in increased production

of the neutrophil chemoattractant IL-8 by alveolar macrophages

associated with neutrophilia [46,47] following challenge. Interest-

ingly, both the up-regulation of genes associated with neutrophil

biology and chemoattraction and the differential regulation of

TH17-related genes that we observed has been reported by others.

Khader et al. [48] also demonstrated reciprocal interaction of

neutrophils and Th17 cells via chemokine and cytokine interaction

(e.g. IL-17A/F, IL-23, CXCL10, CXCL11 [49,50]).

In conclusion, our study has prioritized both biomarkers

predicting vaccination success before challenge and bio-signatures

that are potentially associated with protective immune responses.

Spleen cell expression profiles of genes related to neutrophil-biology. For (B): N = genes related to neutrophil activity; Q = genes related to neutrophil
chemotaxis; IL8 = genes related to interleukin-8 biosynthesis.
doi:10.1371/journal.pone.0011319.g006
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We are currently assessing these markers in cattle, the target

species of vaccines against bovine tuberculosis.

Supporting Information

Table S1 List of pulmonary biosignature genes found after

vaccination.

Found at: doi:10.1371/journal.pone.0011319.s001 (0.07 MB

XLS)

Table S2 List of biosignature genes found after infection.

Found at: doi:10.1371/journal.pone.0011319.s002 (0.02 MB

XLS)
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