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Abstract

GABA is generally known as the principal inhibitory neurotransmitter in the nervous system,

usually acting by hyperpolarizing membrane potential. However, GABAergic currents some-

times exhibit non-inhibitory effects, depending on the brain region, developmental stage or

pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of

several single neuron models, using both analytical calculations and numerical simulations.

We find that GABAergic synaptic conductance and output firing rate exhibit three qualita-

tively different regimes as a function of GABA reversal potential, EGABA: monotonically

decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above

firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA.

In the non-monotonic regime, small GABA conductances have an excitatory effect while

large GABA conductances show an inhibitory effect. We provide a phase diagram of differ-

ent GABAergic effects as a function of GABA reversal potential and glutamate conductance.

We find that noisy inputs increase the range of EGABA for which the non-monotonic effect

can be observed. We also construct a micro-circuit model of striatum to explain observed

effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-

monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic

explanation of paradoxical effects of GABAergic synaptic inputs, with implications for under-

standing the effects of GABA in neural computation and development.

Author summary

Neurons in nervous systems mainly communicate at chemical synapses by releasing neu-

rotransmitters from the presynaptic side that bind to receptors on the post-synaptic side,

triggering ion flow through ion channels on the cell membrane and changes in the mem-

brane potential of the post-synaptic neuron. Gamma-aminobutyric acid (GABA) is the

principal neurotransmitter expressed by inhibitory neurons. Its binding to GABAergic

ionotropic receptors mainly causes a flow of chloride ions across the membrane, and
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typically hyperpolarizes the post-synaptic neuron, resulting in firing suppression. While

GABA is canonically viewed as an inhibitory neurotransmitter, non-inhibitory effects

have been observed in early stages of development, in stress-related disorders, and in spe-

cific parts of brain structures such as cortex, cerebellum and hippocampus. Here, we

employ analytical and computational approaches on spiking neuronal models to investi-

gate the mechanisms of diverse effects of GABAergic synaptic inputs. We find that in

addition to monotonically excitatory or monotonically inhibitory effects, GABAergic

inputs show non-monotonic effects, for which the effect depends on the strength of the

input. This effect is stronger in the presence of noise, and is observed in different models

both at the single cell, and at the network level. Our findings provide a mechanistic expla-

nation of several paradoxical experimental observations, with potential implications for

neural network dynamics and computation.

Introduction

GABA is the principal inhibitory neurotransmitter in the nervous system. In adult animals,

GABA usually suppresses action potentials in target neurons by hyperpolarizing the mem-

brane potential. This hyperpolarization is mediated by GABA receptor channels, that are per-

meable to Cl− and HCO�
3

ions. The flux of these ions usually causes a decrease in membrane

potential upon GABA channels opening [1, 2].

GABAergic synapses are canonically viewed as inhibitory. However, multiple studies have

found that GABA can have non-inhibitory effects. For instance, excitation mediated by GABA

plays an important role in early phases of development and neural integration during neuro-

genesis. It has been shown that this excitatory effect is caused by a depolarizing effect of GABA

on neurons [3–7]. Other studies suggest that pathological conditions of stress or trauma can

lead to excitatory effects of GABA [8, 9]. Moreover, even in healthy adult animals, GABA

mediates excitatory effects in certain brain regions. This excitatory effect of GABA has been

observed in several brain regions including cortex, basal ganglia, thalamus and cerebellum

[10–15]. In addition to excitatory effects of GABA, other studies have shown non-monotonic

effects of GABA, suggesting that GABAergic synaptic currents produce excitation or inhibition

based on their strength. In hippocampal interneurons, it has been shown that changing tonic

GABA conductance by varying extra-cellular GABA concentration affects neuronal firing in a

non-monotonic way [16]. In the striatum, one study shows that bidirectional optogenetic

manipulations (inhibition and excitation) of fast spiking interneurons (FSIs) cause spiny pro-

jection neurons (SPNs) population activity inhibition [17, Fig 1], suggesting that SPNs activity

may depend on FSI GABAergic inputs in a non-monotonic way. In the non-monotonic cases,

small GABAergic inputs promote neural firing while large currents have an inhibitory effect.

Non-inhibitory GABAergic inputs significantly influence network dynamics too. Experimen-

tal studies and computational models show effects of such depolarizing GABA currents on

neural synchrony and rhythmicity [18–20]. Understanding the mechanisms of such effects in

neural dynamics is central to unravel their role on neural computation and plasticity and com-

bat related diseases.

In this paper, we investigate potential mechanisms of different GABA effects in neuronal

and circuit models. We show how changing GABA reversal potential affects the firing rate of

neurons. In particular, we show that GABA can be inhibitory, non-monotonic or excitatory

depending on neuron’s reversal potential for GABA. The non-monotonic regime is observed

when GABA reversal potential is below, but close to the neuron’s firing threshold. Using
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analytical calculations in a leaky integrate and fire (LIF) conductance-based model, we provide

a phase diagram of the dynamics and analyze it in the presence of input noise, showing that

noisy input expands the non-monotonic regime. We also investigate a more realistic model

that describes more accurately the electrophysiological properties of SPNs in the striatum, to

check the robustness of our model. Finally, we study a network model of striatum to explain

several observed paradoxical effects of GABAergic currents from striatal FSIs. The motivation

to focus on striatum is the observation of multiple effects of FSIs on their SPN targets that can-

not be explained by GABA actions that are solely inhibitory or solely excitatory [12, 17, 21].

Furthermore, it is known that striatal FSIs influence behavioral outputs, and their dysfunction

is implicated in neurological disease and movement disorders such as dystonia and Tourette

syndrome [22–26]. We use network simulations and computational analysis to provide possi-

ble insights into non-monotonic and heterogeneous effects of GABAergic inputs on their tar-

gets. These analyses can be used to reconcile several experimental findings and to provide a

framework for understanding the role of GABA in network dynamics and plasticity in differ-

ent brain regions and developmental stages.

Materials and methods

We use three different models to study the effects of GABAergic synaptic inputs on neuronal

firing rate. We start by analyzing a single-cell conductance-based LIF model which is analyti-

cally tractable. We then expand our computational analysis on a more realistic neuronal

model. Finally, we implement and analyze a micro-circuit model of striatum.

Leaky integrate-and-fire model

This model describes the dynamics of the membrane potential which is given by a current bal-

ance equation, with capacitive and leak currents, together with conductance-based GABAergic

and glutamatergic synaptic currents. Additionally a stochastic Gaussian noise is used to study

the effect of noisy inputs. The model can be described by a small number of variables, and at

the same time captures different effects of GABAergic conductance on firing activity. The evo-

lution of the membrane potential follows

t
dv
dt
¼ � ðv � ELÞ � gGABAðv � EGABAÞ � gGluðv � EGluÞ þ InoiseðtÞ ð1Þ

when the membrane potential is smaller than a threshold, v< Ethr. Spikes are emitted when-

ever v = Ethr, after which the voltage is reset instantaneously to Ereset. We use standard model

parameters, set to be in the range of experimentally observed values and shown in Table 1,

Table 1. LIF model parameters.

parameter description value

τ membrane time constant 20 ms

EL leak reversal potential −80 mV

gGABA GABA conductance (normalized by gL) variable

gGlu glutamate conductance (normalized by gL) variable

EGABA GABA reversal potential variable

EGlu glutamate reversal potential 0 mV

Ethr spike threshold −60 mV

Ereset reset potential −70 mV

Inoise noise term s
ffiffiffi
t
p
zðtÞ

https://doi.org/10.1371/journal.pcbi.1010226.t001
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except when specified otherwise. However, the space of glutamatergic and GABAergic con-

ductances is explored systematically. The reported results are qualitatively robust to changes of

single neuron variables in a wide range of such parameters. Note that in Eq (1), gGABA and gGlu

are dimensionless, as both sides of the equation have been divided by the leak conductance gL.

The last term in the right hand side of Eq (1) is a noise term, Inoise ¼ s
ffiffiffi
t
p
zðtÞ in which z is a

Gaussian white noise with unit variance. We first analyze the dynamics in the absence of noise

(σ = 0) and then investigate the effects of noise on the dynamics. We study two different classes

of noise. First, we consider additive noise in which σ is a constant, independent of membrane

potential and conductances. Second, we study noise that represents fluctuations caused by

Poisson firing of presynaptic neurons, in which case, σ depends on several model parameters

and membrane potential.

EIF-Kir model

While most of our analysis is based on the model of Eq (1), we also analyze a more realistic

neuronal model to show the qualitative robustness of our results. In this model, as represented

in Eq (2), two more currents are added: an exponential current (IExp) [27] that represents in a

simplified fashion the fast sodium currents near the spiking threshold, and an Inward-Rectifier

potassium current (IKir) that captures the nonlinear dependence of effective conductance of

membrane potential. The dynamics of this EIF-Kir model is given by

t
dv
dt
¼ � ðv � ELÞ � gGABAðv � EGABAÞ � gGluðv � EGluÞ þ IExpðvÞ þ IKirðvÞ

IExpðvÞ ¼ DT expð
v � VT

DT
Þ

IKirðvÞ ¼ gK=ð1þ expð
v � VP

K
ÞÞðv � EKÞ

ð2Þ

The parameters of the model are chosen such that it reproduces sub-threshold (current-voltage

relation) and supra-threshold (current-firing rate relation) properties of a typical spiny projec-

tion neuron in striatum (see ref [28]). Model parameters are shown in Tables 1 and 2 unless

specified otherwise. As in the LIF model, all conductances, including gK, are normalized by

the leak conductance and thus dimensionless. In this model, there is no hard spike threshold,

rather the membrane potential resets when the voltage diverges to infinity due to the exponen-

tial spike-generating current. To calculate V-I and f-I curves, we add a constant current of

form Iconst = I/gL to Eq (1b) in which I is in the units of pA and we set gL = 5nS.

Table 2. EIF-Kir model parameters.

parameter description value

ΔT Exp spike slope factor 2 mV

VT Exp term threshold −60 mV

gK Kir conductance (normalized by gL) 5

K Kir inactivation curve slope factor 16 mV

VP Kir half conductance potential −80 mV

EK Kir reversal potential −80 mV

https://doi.org/10.1371/journal.pcbi.1010226.t002

PLOS COMPUTATIONAL BIOLOGY Non-monotonic effects of GABAergic synaptic inputs on neuronal firing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010226 June 6, 2022 4 / 21

https://doi.org/10.1371/journal.pcbi.1010226.t002
https://doi.org/10.1371/journal.pcbi.1010226


Population-level model

We used a micro-circuit model of a striatal network to demonstrate paradoxical effects of

GABA at the network level. Single neurons were described by Eq (1) with only leak, GABAer-

gic and glutamatergic currents. There are three types of neurons in the model: direct and indi-

rect spiny projection neurons (dSPN and iSPN) and fast spiking interneurons (FSI). The

network is composed of N = 1000 neurons with 2% FSI, 49% dSPN and 49% iSPN, approxi-

mating a simplified micro-circuit of� 0.01 mm3 of mouse striatum [28, 29], but not account-

ing for other interneuron cell types as FSIs provide the major GABAergic inputs to SPNs [28,

30]. FSIs have a GABA reversal potential of −80 mV and provide feedforward GABAergic cur-

rents to SPNs. The glutamatergic conductances are taken for simplicity to be driven by inde-

pendent Poisson inputs convoluted with an exponential kernel and a frequency of 1000 Hz,

approximating the total cortical input to a striatal neuron. The exponential kernel has a decay

time constant of 5.6 ms (similar to [31]). The mean value of this Poisson excitatory input is

chosen to reproduce the desired firing rates in the model. Neurons are connected by GABAer-

gic synapses in which a spike in presynaptic neuron produces a post-synaptic conductance

(PSC) of form

gGABAðtÞ ¼ g0 e�
t
t1 � e�

t
t2

� �
; ð3Þ

with a decay time of τ1 = 20 ms and a rise time of τ2 = 1.5 ms [32]. The connectivity probabili-

ties and strengths are inferred from experimental studies [30, 32]. The connection probabilities

Pij and strengths Gij of synaptic connections from population j to population i (from column j
to row i), where indices 1, 2, 3 stand for FSIs, dSPNs and iSPNs respectively, are

P ¼

0:58 0 0

0:53 0:26 0:27

0:36 0:06 0:36

2

6
6
6
4

3

7
7
7
5

G ¼

0:06 0 0

0:5 0:04 0:13

0:5 0:11 0:11

2

6
6
6
4

3

7
7
7
5

ð4Þ

Note that G entries are normalized and dimensionless, being the ratio of synaptic to leak con-

ductances, similar to gGABA in Eq (2). The average total normalized conductance from popula-

tion j with Nj neurons, firing at a mean rate of νj, to population i is GijPijNjνj(τ1 − τ2). In

simulations, the first 100 ms are removed from any analysis to avoid transient effects.

Results

Effects of GABA on the deterministic LIF model

To gain insight into the mechanisms of different effects of GABA, we start by analyzing the

simplest possible model, i.e. the one-dimensional LIF model described Eq (1), with no added

noise and constant synaptic conductances. The simplicity of this model allows us to rigorously

characterize the different regimes of GABA effects on neuronal firing rate through analytical

calculations. The dynamics of the membrane potential is in this case deterministic and can be

rewritten as

t
dv
dt
¼ � geffðv � EeffÞ; ð5Þ

where the effective input conductance geff (relative to the leak) and the effective reversal
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potential Eeff are given by

geff ¼ 1þ gGABA þ gGlu ð6Þ

Eeff ¼
EL þ gGABAEGABA þ gGluEGlu

1þ gGABA þ gGlu
ð7Þ

According to Eq (5), the membrane potential relaxes exponentially to an effective potential,

Eeff, with an effective time constant τeff = τ/geff. If Eeff is greater than Ethr, the neuron spikes

with a non-zero firing rate ν, given by

n ¼
geff

t ln Eeff � Ereset
Eeff � Ethr

� �
ð8Þ

Fig 1 shows examples of how the firing rate depends on gGABA for different values of gGlu

and EGABA. As shown in Fig 1A and 1B, the firing rate vs GABA conductance curves can be

decreasing, non-monotonic or increasing, depending on EGABA and gGlu. When EGABA > Ethr,

GABAergic current is always excitatory. When EGABA < Ethr, large gGABA leads to inhibition;

however, it can be excitatory for smaller values of gGABA.

When EGABA < Ethr, large enough gGABA silences the neuron. The GABAergic conductance

for which the firing stops, gsGABA, can be calculated using the condition Eeff = Ethr. This leads to

gsGABA ¼
ðEthr � ELÞ þ gGluðEthr � EGluÞ

EGABA � Ethr
:

Fig 1C and 1D show the collapse of zero-firing onset when gGABA is scaled appropriately with

respect to EGABA and gGlu. This onset increases with gGlu and EGABA and diverges to infinity as

EGABA! Ethr.

The occurrence of the different regimes of GABA effects on firing rate can be understood

by analyzing Eq (8). In this equation, gGABA acts on the firing rate in two ways: Through its

effects on geff, and on Eeff. Increasing GABA conductance increases geff, which tends to increase

the firing rate due to the decrease in effective membrane time constant of the neuron, while

the effect of GABA on Eeff depends on the GABA reversal potential. The competition between

these two effects can be analyzed by computing the derivative of the firing rate with respect to

the GABA conductance,

dn
dgGABA

¼
n

geff
1þ ðEGABA � EeffÞ

ðEthr � EresetÞ

ðEeff � EresetÞðEeff � EthrÞ

tn

geff

� �

ð9Þ

where the first and second terms within the parentheses represent the effects of geff and Eeff on

the firing rate, respectively. The sign of this derivative determines whether GABAergic con-

ductance is inhibitory or excitatory. The sufficient conditions for non-monotonic effect can be

summarized as:

ðaÞ dn
dgGABA

jgGABA¼0
> 0

ðbÞ EGABA < Ethr

Condition (a) makes GABA excitatory for small gGABA and the condition (b) makes GABA

inhibitory for large gGABA. These conditions can be met when the term Eeff − EGABA in Eq (9)

is positive but not too large, which means Eeff should be above and close to EGABA. The critical

value of EGABA that separates the inhibitory and non-monotonic regime, E�GABA, can be
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obtained from Eq (9) setting dν/dgGABA = 0 at gGABA = 0:

E�GABA ¼ Eeff �
ðEeff � EresetÞðEeff � EthrÞ

ðEthr � EresetÞ
ln

Eeff � Ereset

Eeff � Ethr

� �

ð10Þ

For values of gGlu that are just above the threshold for firing (given by gGlu = (Ethr − EL) = (EGlu

− Ethr)� 0.33 here), Eeff� Ethr. This leads to E�GABA ¼ Ethr. On the other hand, for large gGlu,

Eeff� Ethr, which leads to E�GABA converging to (Ereset + Ethr)/2. This result shows that in the

deterministic LIF model, the non-monotonic effect can be observed when EGABA is between

(Ereset + Ethr)/2 and Ethr. Using model parameters of Table 1, non-monotonic behavior can be

present whenever −5 mV < (EGABA − Ethr)< 0.

Fig 1. Effect of gGABA on firing rate in the deterministic LIF model. A) Firing rate ν, as a function of GABAergic

conductance for different GABA reversal potentials (gGlu = 0.4). When GABA reversal potential is below and close to

firing threshold, Ethr, the firing rate has a non-monotonic dependence on gGABA. B) Firing rate vs gGABA for different

gGlu, (EGABA − Ethr = −3 mV). The non-monotonicity appears when the glutamatergic conductance is sufficiently large.

C) Firing rate vs GABA conductance rescaled with Ethr − EGABA, for Ethr > EGABA. For GABA reversal potentials

smaller than the threshold, complete inhibition occurs for large GABA conductances. The onset of zero-firing scales

with 1/(Ethr − EGABA) as shown by the collapsed curves (same color code as above). D) Firing rate vs rescaled gGABA.

The collapsed curves show how the zero-firing onset scales with gGlu (same color code as above). E) Heatmap of firing

rate as a function of GABAergic and glutamatergic conductances for EGABA − Ethr = −2 mV. The yellow curves are

contour lines of constant firing rates.

https://doi.org/10.1371/journal.pcbi.1010226.g001
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These results are shown in the phase diagram of Fig 2A. This phase diagram separates the

EGABA − gGlu plane into five regions: For sufficiently high gGlu (above the horizontal line in Fig

2A), GABA is always inhibitory for EGABA < E�GABA (Fig 2B); The GABA effect is non-mono-

tonic for Ethr > EGABA > E�GABA (Fig 2C); GABA is always excitatory for Ethr < EGABA (Fig 2D).

Finally, for low gGlu (below the horizontal line in Fig 2A), the neuron either remains silent for

all GABA conductances for EGABA < Ethr, or starts firing with an increasing rate beyond a criti-

cal value of the GABA conductance for EGABA > Ethr. Fig 2A also shows how the slope of the

firing rate vs gGABA curve at zero GABA conductance, i.e. dn
dgGABA

, depends on both glutamatergic

conductance and GABA reversal potential.

Fig 2E and 2F provide additional characterizations of the non-monotonic regime. Fig 2E

shows how the GABA conductance that maximizes the firing rate depends on EGABA and gGlu.

The colorbar represents g�GABA as shown in Fig 2C example. Fig 2F shows the strength of the non-

monotonic effect, i.e. the ratio between maximal firing rate νmax and firing rate in the absence of

GABA νinit in the non-monotonic region. Here νinit = ν(gGABA = 0) and νmax = max(ν(gGABA)).

This ratio converges to 1 when EGABA ! E�GABA, and diverges in the limit that EGABA! Ethr.

To conclude, in the deterministic LIF model, there is a region of parameters for which

GABA has a non-monotonic effect on neuronal firing rate, when EGABA is below but

Fig 2. GABA effect phase diagram in the deterministic LIF model. A) Phase diagram of GABA effects. The colorbar

indicates the initial slope of firing curves with respect to g� gGABA as shown in Fig 2B, 2C and 2D. B,C,D) As EGABA

increases, GABA effect changes from inhibitory to excitatory with a non-monotonic region in between. In this region,

GABA conductance below a certain threshold, g�GABA, has an excitatory effect while large GABA conductances have an

inhibitory effect. B, C and D marked in the phase diagram of Fig 2A correspond to these three example firing rate

curves. E) Phase diagram of g�GABA (GABA conductance that maximizes output firing rate, shown in Fig 2C). F) Phase

diagram of ratio of maximum firing rate to firing rate at gGABA = 0 (νmax/νinit shown in Fig 2C), as a measure of non-

monotonic effect strength. In E and F, the non-monotonic regime is on the right of the blue curves and colorbars are

in logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1010226.g002
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sufficiently close to Ethr. However, this effect is weak except in a narrow range of EGABA close

to threshold, as shown in Fig 2F.

Input noise expands the non-monotonic regime

So far, we have investigated the effect of constant deterministic GABAergic synaptic inputs. In

real neurons, the synaptic currents are noisy for multiple reasons, including stochastic vesicle

release and channel opening. In addition, presynaptic neuronal firing can often exhibit a large

degree of irregularity, which is typically approximated by a Poisson process. The total synaptic

currents to a neuron can then be described by the sum of their temporal mean, and stochastic

fluctuations around the mean. Here, we consider two simplified models for noise. First, we

use a noise of a constant amplitude, that is independent of the glutamatergic and GABAergic

conductances. This simplification facilitates calculations and provides insights into the effect

of noise. Second, we consider noise as originating from fluctuations in glutamatergic and

GABAergic conductances. This is a more realistic assumption and is discussed in the latter

part of this section.

We start by investigating the effects of white noise with a fixed amplitude on how GABA

affects neuronal firing rate. The firing rate of the neuronal model of Eq (1) in the presence of

noise is given by [33, 34]:

n ¼ teff
ffiffiffi
p
p
Z xmax

xmin

expðx2Þð1þ erfðxÞÞdx
� �� 1

xmin ¼
Ereset � Eeff

seff
; xmax ¼

Ethr � Eeff

seff

teff ¼
t

geff
; seff ¼

s
ffiffiffiffiffiffigeff
p

ð11Þ

We start by considering the case when σ is independent of other parameters. Fig 3A shows

the firing rate as a function of gGlu for different values of σ (color-coded) and gGABA = 0. When

there is no noise, σ = 0, the firing rate is zero below a certain threshold of gGlu, increases sharply

near this threshold and finally converges to a linear relation (note that the lack of saturation is

due to our choice of setting the refractory period to zero). As σ increases, the curves become

smoother with the neuron firing for sub-threshold values of gGlu, due to fluctuations of mem-

brane potential. This effect allows the neuron to have low firing rates for a wider range of gGlu,

compatible with the observed low firing rate in vivo in many brain regions (� 1 Hz). The effect

of noise on the different regimes of how GABA affects neuronal firing rate are illustrated in

Fig 3B and 3C. Both of these figures show firing rate as a function of GABAergic conductance

for different values of noise. In Fig 3B all curves receive the same gGlu, so the noise increases

the firing rate and non-monotonic effect simultaneously. In Fig 3C, gGlu is chosen such that

initial firing rate is the same (νinit = 1 Hz) for different noise levels. This figure also shows that

increasing σ makes the curves peak value larger, thus the non-monotonic effect becomes stron-

ger with increasing noise level.

For non-zero noise, the neuron exhibits a non-zero firing rate for any value of gGlu. Thus,

the silent region of the phase diagram in Fig 2 disappears. The boundary between non-mono-

tonic and excitatory regions remains unchanged at EGABA = Ethr. In the case that EGABA > Ethr,

for large gGABA, Eeff! EGABA > Ethr and geff! inf; using Eq (8), the firing rate diverges and

GABAergic currents are always excitatory. However, noise changes the boundary that sepa-

rates the inhibitory and non-monotonic regions. Fig 3D shows how the boundary between

inhibitory and non-monotonic regions of the phase diagram changes as σ increases, while Fig
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3E shows examples of the phase diagram for several values of σ. Increasing σ expands the non-

monotonic region, with a stronger effect for smaller values of gGlu. This effect can be shown

mathematically using Eq (11) in the limit of large σ and small gGlu and gGABA. In this case, as

the limits of integral tend to zero, the integrand can be approximated by 1, resulting in:

n � ½teff
ffiffiffi
p
p
ðxmax � xminÞ�

� 1
¼

s

t
ffiffiffi
p
p
ðEthr � EresetÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gGABA

p
ð12Þ

In this limit, the firing rate is an increasing function of gGABA which shows an excitatory effect

for small GABAergic conductances, as expected in the non-monotonic regime. As a result, in

the presence of strong fluctuating noise, non-monotonic effect of GABA input is present for a

Fig 3. Effect of current-based input noise. A) Transfer functions for different noise levels. Increasing noise smooths

the transfer function for low firing rates and results in firing for subthreshold values of gGlu. B) Effect of gGABA on

firing rate for different noise levels (gGlu = 0.25, EGABA − Ethr = −5 mV). Increasing noise level, while keeping gGlu

constant, increases both the firing rate and the non-monotonic effect. C) Effect of gGABA on firing rate for different

noise levels (νinit = 1 Hz, EGABA − Ethr = −5 mV). Here gGlu is modified for different values of σ to get same initial firing

rate. Increasing noise in this case also strengthens the non-monotonic effect. D) Boundary between the non-

monotonic and inhibitory regions of phase diagrams for different noise levels. Increasing noise extends the non-

monotonic region for all values of gGlu, with a more drastic change for smaller gGlu. E) Examples of phase diagrams

similar to that of Fig 2A for different noise levels. Introducing noise removes the silent region and enlarges the non-

monotonic region. F) Similar phase diagrams as in E, showing g�GABA. G) Similar phase diagrams as in E, showing the

ratio of max firing rate to initial firing rate.

https://doi.org/10.1371/journal.pcbi.1010226.g003
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wide range of EGABA. Fig 3F shows how the GABA conductance g�GABA that maximizes firing

rate depends on other parameters, while Fig 3G shows how the strength of the non-monotonic

effect depends on EGABA and gGlu. In particular, this figure shows that there is a much larger

range of these parameters for which the non-monotonic effect is strong (i.e. ratio of maximal

to initial firing rate significantly higher than 1).

So far, we have investigated the effect of noise whose amplitude σ is a constant and is inde-

pendent of conductances. This approach reveals the qualitative effect of noise; however, here

we extend our analysis by considering a more realistic representation of noise. The main

source of noise in vivo is thought to have a synaptic origin, and be due to both irregular firing

of presynaptic neurons and stochastic release of synaptic vesicles. This stochasticity causes

fluctuations that depend on the strengths of inputs, i.e. stronger inputs cause higher fluctua-

tions. Here, we assume instantaneous synaptic conductances that are a sum of delta functions:

gs ¼ tas
X

j

dðt � tjÞ

in which s 2 {Glu,GABA}, presynaptic spikes are generated at times tj leading to an instanta-

neous change of magnitude as(vs − v) in neuron’s membrane potential. A neuron receives syn-

aptic inputs of type s 2 {Glu,GABA} from Ks other neurons. In the limit of Ks� 1, as� 1,

assuming uncorrelated Poisson firing of presynaptic neurons, synaptic inputs can be approxi-

mated by (e.g. [34–36]):

~g sðtÞ ¼ ast½Ksrs þ
ffiffiffiffiffiffiffiffi
Ksrs
p

zsðtÞ� ð13Þ

in which s can be Glu or GABA, gs = asτKsrs is the average synaptic input, rs is the average firing

rate of connected neurons and zs is a white Gaussian noise with zero mean and unit variance.

Assuming independent glutamatergic and GABAergic synaptic inputs, the equation for the

membrane voltage reduces to Eq (1) with noise term parameter:

s2ðvÞ ¼
X

s2fGlu;GABAg

asgsðv � vsÞ
2
: ð14Þ

Here, as the noise term depends on the membrane potential v, it is a multiplicative noise.

It can be shown, however, [35] that this term can be approximated by substituting v by

Eeff, σ(v) � σ(Eeff), which makes the noise term independent of v and easier to analyze.

Using this approximation, we can obtain firing curves by applying Eq (11). Fig 4A shows

examples of firing rate vs GABA conductance curves obtained using this approximation. In

this case, we set the individual synaptic strengths aGlu = aGABA = a. A non-monotonic effect

of GABA can be observed with this model, similar to the constant noise case. The strength

of noise in this model can be modulated by the value of a, as can be seen in Eq (14). Fig 4B,

4C and 4D provide phase diagrams of GABA effects for three different values of a. As can be

seen in Fig 4, increasing noise expands the non-monotonic regime. This expansion is more

significant for higher values of gGlu. This is in contrast to the effect of constant noise, shown

in Fig 3E, in which noise predominantly expands this regime for lower values of gGlu. This

effect is due to the fact that in the conductance-dependent noise case, the noise term

depends on the value of gGlu and σ vanishes as conductances go to zero, such that the noise

has little effect for low values of gGlu. Overall, the results of both current-based and conduc-

tance-based noise suggest that non-monotonic effects become stronger as input noise

increases.
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Non-monotonic effects in a more realistic neuronal model

To check that GABA effects are not specific to the LIF model, we analyze the dynamics of a

neuronal model described by Eq (2), in which two more currents are added: An exponential

current (Exp) that influences the near threshold dynamics and spike generation [27], and an

inward-rectifier potassium current (Kir) that accounts for non-linear dependence of mem-

brane conductivity as a function of membrane potential (see e.g. [37] chapter 4.4.3). Fig 5B

shows an example simulation of this model in response to a constant input conductance. The

Exp term changes the near threshold dynamics and the Kir current reproduces the non-linear

dependence of voltage on current, as observed in several neuronal types, including striatal neu-

rons [28, 38] (see Fig 5C). In this model, there is no hard spiking threshold as in Eq (1), rather

the Exp term generates spikes whenever the voltage gets sufficiently close to VT, the Exp term

threshold, so that the Exp term leads to divergence of the voltage. Fig 5E shows the effect of

GABAergic currents for different GABA reversal potentials. As shown in the figure, the non-

monotonic effect is observed when the GABA reversal potential is close to VT. For EGABA far

from VT, the GABA is effectively inhibitory or excitatory, qualitatively similar to that of Eq (1).

The non-monotonic curves of Fig 5E are slightly different compared to those of Fig 1A mainly

because of the Exp term. The effect of the exponential spike-generating current on the non-

monotonic regime can be seen in Fig 5F. As ΔT in Eq (2) increases (and therefore spike genera-

tion becomes less sharp), the influence of the exponential term grows. For low values of

EGABA, the non-monotonic regime becomes inhibitory, while for higher values of EGABA, the

Fig 4. Effect of conductance-dependent input noise. A) Examples of firing rate vs GABAergic conductance curves,

showing non-monotonic effect. Different colors represent different glutamatergic inputs. Here, a = 0.1 and EGABA −
Ethr = −5 mV. B,C,D) Phase diagrams of GABA effect, similar to Fig 3E, for noise parameters a = 0.01, 0.05, 0.1

respectively. Non-monotonic regime extends with increasing noise.

https://doi.org/10.1371/journal.pcbi.1010226.g004
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excitatory regime becomes non-monotonic. Thus, increasing ΔT effectively shifts the non-

monotonic regime to higher values of GABA reversal potential.

Population-level effects of GABA

In the previous sections, we investigated the effect of GABAergic currents at the single neuron

level. In this section, we turn to the effects of GABA at the population level. In particular, we

ask if similar non-monotonic effects can be reproduced in a recurrent neural network, and

what is the distribution of such effects across the population. We choose to focus on a network

model of a striatal micro-circuit, for several reasons: striatal SPNs show relatively high GABA

reversal potentials [29, 39, 40]; their activity is strongly modulated by the feedforward GABAer-

gic synaptic inputs from FSIs; and several experiments have shown paradoxical effects of FSI

feedforward inputs on SPNs [12, 17, 21]. The network consists of three different populations,

fast spiking interneurons (FSIs), and direct and indirect spiny projection neurons (dSPNs,

iSPNs). There are several other interneuron types in striatum; however, here we only include

FSIs as they provide the major GABAergic inputs to SPNs [28, 30].

Fig 6A presents a schematic of the model in which neurons receive uncorrelated glutama-

tergic Poisson inputs, representing cortical synaptic currents, and are connected by GABAer-

gic synapses. Action potentials of GABAergic neurons generates post-synaptic conductances,

gGABA(t), of form Eq 3 shown in Fig 6B [32]. The excitatory inputs are tuned such that the

average firing rate of SPNs and FSIs are close to those recorded in awake rodents, which are

about 1 Hz and 10 Hz respectively [17]. Fig 6C and 6D show raster plots and membrane poten-

tials of randomly selected neurons. Membrane potentials fluctuate in the sub-threshold range

due to the random arrival of synaptic inputs, leading to irregular firing at low rates. The distri-

bution of membrane potential of SPNs are presented in Fig 6E. It is close to a Gaussian, with a

Fig 5. Dynamics of EIF-Kir neuronal model. A) Example of membrane potential dynamics of the LIF model of Eq

(1) in response to a constant conductance with gGlu = 0.4. B) Example of membrane potential dynamics of EIF-Kir

model of Eq (2) in response to gGlu = 0.8. This is similar to LIF model with the addition of a Kir current and a spike

generating exponential current. Note the smooth dynamics leading to spike generation in the EIF-Kir model. C) V-I

curve of the LIF (orange) and EIF-Kir (blue) models. Note the non-linearity of the blue curve due to Kir current. D) f-I

relationship of the LIF (orange) and EIF-Kir (blue) models. E) Firing rate vs GABA conductance in the EIF-Kir model,

for different values of GABA reversal potentials and gGlu = 0.8. The non-monotonic effect is clearly observed in this

model for EGABA near VT, similar to the LIF model. F) Effect of the exponential spike generating current on non-

monotonicity: Increasing ΔT (Eq (2), diminishes non-monotocity for low values of EGABA (left) and shifts non-

monotonicity for high values of EGABA (right), effectively moving non-monotonic regime to higher values of EGABA.

https://doi.org/10.1371/journal.pcbi.1010226.g005
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width of 1.1 mV. Fig 6F shows how SPN population mean firing rate depends on FSI popula-

tion mean rate. When EGABA is within a few mV of Ethr, (here 1 mV), a non-monotonic depen-

dence can be observed, while lower EGABA results in an average inhibitory effect of FSIs on

SPNs, in agreement with the results at the single neuron level. Thus, in these simulations, both

increasing or decreasing FSI activity from its normal firing rate (10 Hz) results in inhibition of

the SPN population, similar to in vivo observations [17]. The difference between dSPN and

iSPN curves are due to asymmetric connectivity of FSIs to these two populations [28]. As

FSIs are connected to dSPNs with higher probability, the direct pathway is modulated more

strongly by FSI feedforward currents. Thus, these analyses show prominent effects of FSIs on

direct-indirect pathway balance. In addition to a change in SPN mean firing rate, FSIs also

affect the width of the distribution of SPN firing rates. Fig 6G shows the distributions of SPNs

firing rates for two values of FSI activity, 0 Hz and 25 Hz. While the mean rates are similar, the

width of the distribution increases with increasing FSI activity. Thus, there is a strong

Fig 6. Non-monotonic effects of GABA in a striatal microcircuit model. A) Schematic of striatal micro-circuit,

composed of three types of neurons, fast spiking interneurons (FSIs) and direct and indirect spiny projection neurons

(dSPNs and iSPNs representing direct and indirect pathways). All three cell types receive glutamatergic cortical inputs

(orange), and interact through GABAergic synapses (blue). B) GABAergic post-synaptic conductance (PSC) triggered

by a single pre-synaptic spike (Eq 3). C) Raster plot of randomly selected neurons from different populations. External

inputs are chosen so that FSIs and SPNs fire at experimentally recorded rates in vivo (10 Hz and 1 Hz respectively) D)

Examples of membrane potentials of randomly selected SPNs. E) Probability distribution function of SPNs membrane

potential. The orange line is a fitted Gaussian with a standard deviation of 1.1 mV. F) Non-monotonic response of SPN

population mean firing rate as a function of FSI population mean firing rate, when EGABA is 1 mV below Ethr in SPNs.

The shaded area represents standard deviation on the mean, computed from a total of 100 independent network

realizations. G) Distribution of SPN firing rates when FSI mean firing rate is 0 Hz (blue) and 25 Hz (orange) computed

from 100s of network simulations. The mean rates are similar, while the standard deviations of the distributions are 1.1

and 1.9 Hz respectively. H) Distribution of the change in firing rate of individual SPNs when FSI rate changes from 0

Hz to 25 Hz. Individual SPNs respond heterogeneously to changes of FSI activity while the mean rate does not change

significantly. I) Scatter plot of change in SPN firing rate (as described in G) as a function of number of incoming FSI

connections. The change in firing rate of an SPN is strongly correlated with the number of its afferent FSI connections.

https://doi.org/10.1371/journal.pcbi.1010226.g006
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heterogeneity in changes in individual SPNs firing rate, shown in Fig 6H. This heterogeneity

can be explained by non-monotonic effects of FSI input on SPNs firing rate. As shown in Fig

6I, SPNs with smaller numbers of FSI inputs tend to increase their firing rate, while SPNs

receiving strong FSI inputs tend to decrease their rates. Thus, our network model can explain

why manipulations of FSI activity can result in excitatory or inhibitory effect in different sub-

sets of SPNs [12, 21].

Discussion

GABAergic synaptic currents show hyperpolarizing or depolarizing effects depending on neu-

ronal identity, brain region, and developmental stage. It has also been shown that the charac-

teristics of GABAergic transmission are affected in several pathological conditions. Intuitively,

sufficiently low (high) GABA reversal potentials lead to exclusively inhibitory (excitatory)

effect of GABA, as GABA drives the membrane potential towards its reversal potential. How-

ever, the effect of GABA on neuronal firing rate can be more subtle than this inhibition-excita-

tion dichotomy. In this paper, we used a leaky integrate and fire model to quantify the

different effects of GABA and provided a phase diagram of such effects. In particular, we

showed that as GABA reversal potential increases, there exists a non-monotonic regime in

between purely inhibitory and excitatory regimes, in which small GABAergic currents have an

excitatory effect on firing rate, while large ones inhibit the firing rate of the post-synaptic neu-

ron. In other words, in the non-monotonic regime, GABA can be inhibitory or excitatory

depending on its input strength. The non-monotonic regime appears when the GABA reversal

potential is below, but sufficiently close to the firing threshold. We also studied the effects of

GABA in the presence of input noise. We found that the non-monotonic region expands with

increasing noise level, showing that fluctuations in synaptic input make the non-monotonic

effect stronger and present in a wider range of GABA reversal potentials. We also showed that

this non-monotonic effect is qualitatively observed in a more realistic neuronal model that

captures some of the electrophysiological properties of striatal spiny projection neurons. Fur-

thermore, using simulations of a network model of local striatal circuit, we showed that non-

monotonicity can also be observed at the population level. In addition, we showed that in the

network model, the effects of changing FSI firing rates on SPNs are strongly heterogeneous.

To observe non-monotonicity, two conditions should hold: (i) The GABA reversal potential

should be sufficiently close to threshold; (ii) The strength of GABAergic inputs should be in a

range that encompasses the GABA conductance that maximizes the firing rate (g�GABA in Figs

2E and 3F). These conditions are potentially satisfied in several neuronal types in physiological

conditions. In particular, striatal SPNs [29, 39, 40], fast spiking interneurons in amygdala, cor-

tex [41], and cerebellar interneurons [14] have all been shown to have GABA reversal poten-

tials that are close to the spike threshold.

The non-monotonic effect can be intuitively understood as a competition of two factors. In

the deterministic case, the neuronal firing rate depends on GABAergic conductance gGABA

through two quantities: the effective time constant, τeff = τ/geff, and the effective reversal poten-

tial Eeff. On one hand, increasing gGABA decreases the effective time constant, leading to poten-

tially faster firing. On the other hand, it decreases the effective reversal potential, leading

potentially to a reduction in firing rate. In the non-monotonic regime and when GABAergic

conductance is small enough, the effect of τeff shortening wins over that of Eeff decrease. How-

ever, the effect of Eeff wins when the GABAergic conductance is large enough, since in the

limit of large gGABA, the membrane potential converges to Eeff! EGABA < Ethr, and thus never

crosses the firing threshold. Another way to understand the effect of GABA in this regime is

that when EGABA is in between the reset and the threshold, the dynamics of the membrane
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potential is initially below EGABA, but then crosses EGABA before in turn crossing threshold.

Thus, in the initial part of the trajectory GABA tends to speed up the voltage increase towards

threshold, while close to threshold it tends to slow it down. The net effect of GABA thus

depends on the relative fraction of time spent below and above EGABA. This argument explains

why GABA is initially excitatory when EGABA is close enough to threshold, since in that case,

GABA is excitatory in most of the trajectory leading to an action potential. However, as the

inhibitory conductance increases, Eeff decreases and eventually falls below Ethr, therefore stop-

ping firing altogether.

In the stochastic case, fluctuations in the inputs make it possible for the neuron to fire

even when Eeff is below Ethr. As the amplitude of noise increases, at a parity of output rate, the

distribution of membrane potential is pushed towards more hyperpolarized values. Thus, the

membrane potential spends an increasing fraction of time below EGABA as the GABAergic con-

ductance increases, leading to an enlargement of the non-monotonic regime. Increasing gGABA

eventually leads to a decrease in firing rate, because of the dampening of the effective noise

with increasing conductance (Eq 11).

Our findings at both single neuron and population levels can explain apparently paradoxi-

cal effects reported in the experimental literature. In the adult striatum, GABA reversal poten-

tials are believed to be relatively high in spiny projection neurons (SPNs) [29, 39, 40], which

could be due to low levels of the KCC2 co-transporter expression in this cell type [42]. This

high GABA reversal potential can explain several results in in vitro preparations: In particular,

why GABA synaptic inputs can sometimes potentiate the response of SPNs to glutamatergic

inputs, depending on the relative timing between the two current types [40], and also why

pharmacological inhibition of FSIs can reduce such responses [12]. In vivo experiments show

even more varied SPN responses to FSI manipulations. One of the most puzzling results come

from the study of [17], in which they found that both optogenetic activation and inactivation

of FSIs inhibit SPN population activity. While this observed non-monotonicity might be due

to experimental artifacts [43] or disynaptic effects [17], our results show that it could also arise

due to the non-monotonic dependence of neuronal firing rate on GABA conductance. In par-

ticular, this would be consistent with the hypothesis that the striatum is set in a state close to

the peak of the firing rate vs GABA conductance curve (see Fig 6F), so that both increasing

and decreasing FSI activity leads to a reduction of average SPN firing rates. Note however that

other studies have failed to reproduce the reduction of population SPN firing rate when FSI

activity is decreased, observed in [17]. In these studies, inhibition of FSIs by pharmacological,

chemogenetic and optogenetic methods showed disinhibitory effects on SPN firing in vivo [12,

21]. Importantly, however, these studies also showed that the effects of FSI inhibition on single

SPNs are heterogeneous. FSI inhibition leads to both positive and negative SPN activity modu-

lations for different subsets of SPNs—about 60% of SPNs were disinhibited, while the other

40% were inhibited in ref. [21], while this ratio was 74% to 26% in ref. [12]). This strong het-

erogeneity of effects can be explained in our network model by non-monotonic effects of FSI

in which SPNs can be excited or inhibited depending on their FSI GABAergic inputs. Thus,

our model reproduces the diversity of effects seen in experimental studies of striatum.

Effects of GABA conductance on neuronal firing rate that differ from pure excitation or

pure inhibition have been observed in other cell types and model studies. A non-monotonic

dependence of firing rate on GABA conductance has also been found in vitro in hippocampal

CA1 stratum radiatum interneurons [16]. These authors found that increasing GABAergic

conductance first leads to an increase of firing rate, but eventually to a decrease at sufficiently

high conductance, and reproduced the effect using a Hodgkin-Huxley type model. Morita

et al. used a two-compartmental Hodgkin-Huxley type model, introduced by Wilson [44],

with periodic GABAergic synaptic inputs and showed that a similar non-monotonic effect of
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GABAergic inputs on neuronal firing can be obtained [45, 46]. Wu et al. used a striatal circuit

model in which SPNs have an elevated GABA reversal potential, and found that excitatory and

inhibitory GABA currents can coexist [47]. In all these models, mixed inhibitory-excitatory

effects of GABA are related to a depolarized GABA reversal potential compared to resting

membrane potential. Our study complements these previous studies in several ways: First, we

used a simplified model that allowed us to analytically characterize the different GABA effects

and dissect the mechanisms and parameter space of the non-monotonic effect. Second, we

investigated steady states with stationary inputs, rather than transient dynamics or periodic

inputs as in some of the previous studies [46]. Third, we systematically analyzed the role of

input noise and how it influences the effects of GABA on neuronal firing. Additionally, we

speculate that as many neuronal types in several brain regions undergo a reduction in GABA

reversal potential through development and neurogenesis [4, 5], this non-monotonic effect

should have important effects at specific developmental stages and may play a role in network

formation and neural integration into an existing network. Indeed, an excitatory-inhibitory

dual role of GABA has been experimentally observed in immature rat hippocampus and neo-

cortex [48, 49].

While the simplicity of our models provide insight into the mechanisms underlying para-

doxical GABA effects, our models also have a number of limitations. Parameters in the single

neuron models that are considered constants, such as Ethr or EGABA, are rather dynamic and

depend on complex conductance and ion concentration dynamics. In this paper, we consid-

ered steady conductances and neglected the spatiotemporal complexity of GABAergic and glu-

tamatergic currents. GABAergic synaptic currents lead to changes in Cl− concentration due to

passage of chloride ions through GABA receptor-channels, and consequently changes in

the effective GABA reversal potential [50, 51]. It has also been been shown that in spatially

extended models, GABAergic currents can have complex interactions with other inputs

depending on their respective locations, which can alter their effects [52, 53]. While our model

does not directly address these complex interactions, we believe it provides a good first-order

approximation when the time scale of these effects is much longer than the membrane time

constant, τ. For instance, Cl− concentration in SNr neurons changes on time scales of� 1s

[53]. In these cases, GABA reversal potential can be considered effectively constant on faster

time scales. Our model predicts that small changes of EGABA, when close to Ethr, can shift

GABAergic currents inhibitory-excitatory role. These small shifts could be physiologically

obtained by different ionic mechanisms such as activity-dependent Cl− accumulation [51–57]

and chloride transporter alterations [58, 59]. Another simplification is that in the population

model, we use a simplified binary distribution of synaptic weights (either zero or Gij in Eq 4).

In reality, synaptic weights exhibit broad distributions. A wider distribution of weights would

result in higher temporal fluctuations of synaptic inputs, which would then enlarge the non-

monotonic region. Heterogeneity of synaptic weights also leads to a broader distribution of

synaptic conductances from neuron to neuron, potentially increasing the heterogeneity of

GABA effects that we observed in our network model.

Previous works have also explored the potential functional consequences of high GABA

reversal potentials. Shunting inhibition has been shown to affect the gain of the input/output

neuronal transfer function [60, 61]. GABAergic reversal potentials also have a strong effect on

synchronization properties of GABAergic neurons, as shown by several studies [19, 20]. In

particular, Vida et al. [19] showed that GABA reversal potentials that are higher than resting

membrane potentials lead to oscillation generation with smaller excitatory drive, compared to

hyperpolarizing inhibition. In addition, they showed that network oscillations in such net-

works are more robust to heterogeneity in excitatory drive. During development, depolarizing

GABAergic currents have been implicated in the generation of rhythmic activity in neonatal
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hippocampus [62], and in thalamic reticular nucleus [18]. Studies on epileptic patients point

to excitatory GABA effects in several brain regions that contribute to this pathological condi-

tion [63–67]. Our results suggest potential additional mechanisms contributing to these effects

by providing detailed analysis of GABAergic inputs and their relevant variables in several neu-

ronal models.

In conclusion, the results presented in this paper can explain several experimentally

observed paradoxical effects of GABAergic synaptic currents and provide a framework to clas-

sify the different effects of GABA on neuronal firing rate, as a function of single neuron and

network parameters. We suggest that the dichotomous framework of inhibition-excitation for

GABAergic currents does not capture the full spectrum of GABA effects, as it ignores non-

monotonic effects that could potentially be relevant in several brain regions. These findings

have potential implications for understanding brain development, neural network formation

and neural dynamics, in both normal and pathological conditions.
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