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Critical evaluation of short, long, 
and hybrid assembly for contextual 
analysis of antibiotic resistance 
genes in complex environmental 
metagenomes
Connor L. Brown1,3, Ishi M. Keenum2,3, Dongjuan Dai2, Liqing Zhang1*, Peter J. Vikesland2 & 
Amy Pruden2*

In the fight to limit the global spread of antibiotic resistance, the assembly of environmental 
metagenomes has the potential to provide rich contextual information (e.g., taxonomic hosts, 
carriage on mobile genetic elements) about antibiotic resistance genes (ARG) in the environment. 
However, computational challenges associated with assembly can impact the accuracy of downstream 
analyses. This work critically evaluates the impact of assembly leveraging short reads, nanopore 
MinION long-reads, and a combination of the two (hybrid) on ARG contextualization for ten 
environmental metagenomes using seven prominent assemblers (IDBA-UD, MEGAHIT, Canu, Flye, 
Opera-MS, metaSpades and HybridSpades). While short-read and hybrid assemblies produced 
similar patterns of ARG contextualization, raw or assembled long nanopore reads produced distinct 
patterns. Based on an in-silico spike-in experiment using real and simulated reads, we show that low 
to intermediate coverage species are more likely to be incorporated into chimeric contigs across all 
assemblers and sequencing technologies, while more abundant species produce assemblies with a 
greater frequency of inversions and insertion/deletions (indels). In sum, our analyses support hybrid 
assembly as a valuable technique for boosting the reliability and accuracy of assembly-based analyses 
of ARGs and neighboring genes at environmentally-relevant coverages, provided that sufficient short-
read sequencing depth is achieved.

Antibiotic resistance is one of the greatest health threats of the twenty-first century. Within the United States, it 
is conservatively estimated that 2.8 million people are sickened each year by antibiotic resistant infections due to 
antibiotic resistant pathogens and 35,000 die as a  result1. Understanding how antibiotic resistance amplifies and 
disseminates is a key challenge so that effective mitigation can take place. The environment has been identified 
as a potential source of antibiotic resistance dissemination relevant to human health though further characteriza-
tion is  needed2. The need to better quantify environmental sources and pathways; including sewage, wastewater 
effluents, biosolids, animal manure, and surface runoff, of antibiotic resistance is gaining increasing attention in 
the global battle against the spread of antibiotic resistance spread. Next generation sequencing (NGS) is emerging 
as a powerful tool in this battle, making it possible to comprehensively characterize environmental metagenomes, 
including the full range of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). A typical 
workflow for characterizing environmental antibiotic “resistomes” (i.e., total ARGs and MGEs) involves col-
lecting the sample of interest, extracting DNA, library preparation, and sequencing on an Illumina  platform3–5. 
This approach produces millions of short reads (typically 100–150 bp long) of DNA derived from the sample of 
interest that can be directly compared against publicly available databases to identify ARGs and other genes of 
interest and their relative abundances.

As more environmental metagenomes continue to be evaluated, the sheer diversity of ARGs that exist in vari-
ous environments has been eye-opening6–8. However, the length of short reads precludes the ability to answer key 

OPEN

1Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24060, USA. 2Department of 
Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA. 3These authors contributed equally: 
Connor Brown and Ishi M. Keenum. *email: lqzhang@vt.edu; apruden@vt.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-83081-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3753  | https://doi.org/10.1038/s41598-021-83081-8

www.nature.com/scientificreports/

research questions that must be addressed to better inform monitoring and mitigation of antibiotic resistance 
in the environment. In particular, the contextualization of ARGs, i.e., predicted carriage on MGEs and identi-
fication of host bacteria, especially pathogens, is essential information needed to characterize the drivers of the 
dissemination and attenuation of antibiotic resistance. The assembly of short reads to form longer stretches of 
DNA or “contigs” is one way to achieve this goal. This can be achieved via several available short-read assembly 
algorithms. Alternatively, new technologies such as single-molecule real time sequencing, performed via the 
Oxford Nanopore or Pacific Biosciences sequencing platforms, enable generation of extremely long-reads. Often 
DNA sequences exceeding 20 kilobases (kb) in length can be  produced9, making it possible to directly capture 
associations between ARGs with hosts or MGEs without the need for  assembly10. However, long-read sequenc-
ing, at present, is more costly and has higher error  rates11.

Reference-independent (de novo) assembly of metagenomes has become standard practice for contextual-
izing environmental-borne antibiotic resistance because these environments are typically poorly represented in 
publicly-available databases and thus reference genomes are not  available12–16. While historically de novo assem-
bly methods relied on overlap layout consensus (OLC)17, such an approach is intractable for the millions of reads 
generated by NGS  platforms17. In contrast, most modern short-read assemblers rely on de Bruijn graphs (dBg)18, 
which are n-dimensional directed graphs that represent overlaps of length k-mers extracted from short reads 
as nodes and connections between adjacent k-mers as vertices. However, assembly using dBgs poses additional 
computational challenges, which have been recently reviewed by Ayling et al.19. Briefly, these challenges include 
the selection of an appropriate k-mer size, the handling of uneven genome abundance, resolution of ambiguity 
in the dBg introduced from related strains or sequencing errors, and computational challenges associated with 
handling millions of reads.

While long-reads capture longer stretches of DNA, it remains desirable to assemble the reads into metagen-
ome-assembled genomes (MAGs), enabling in-depth profiling of microbial taxa within a  sample20–22. Compared 
to short-read assembly pipelines, there are relatively few options available for assembly of long-read-derived 
metagenomes. While there are no tools specifically dedicated to long-read metagenome assembly,  Canu23, 
 metaFlye24, and  Miniasm25 have been applied in prior  investigations22,26,27. Such approaches rely on overlap 
layout consensus methods that join and merge overlapping reads into a contig that reflects the consensus of the 
multiple  reads26,28,29.

More recently, hybrid assembly strategies have  emerged30,31, leveraging the value of both short and long-
reads. Hybrid assembly has the potential to enhance detection and contextualization of ARGs in environmental 
metagenomes by combining the high accuracy and greater depth provided by short reads with the increased 
length of long-reads, which may span repeat-rich regions that are difficult to assemble for dBg-based approaches. 
For instance, OPERA-MS; which relies on  MEGAHIT32 to assemble short-reads, an OLC method to extend over 
gaps between short reads using corresponding long-reads, and a reference genome-based binning step, has been 
used to resolve strain-level associations between ARGs and  MGEs30. However, such hybrid assembly approaches 
have not been critically evaluated in the context of complex environmental samples. Environmental samples are 
especially challenging for metagenome assembly due to the presence of tens of thousands of microbial species 
(e.g., Johnston et al.33), including many closely-related  strains34 and low abundance species with similar depth 
profiles that are difficult to  distinguish35,36.

The objective of this study was to assess and compare the performance of short, long, and hybrid read assem-
bly pipelines for the purpose of contextualizing ARGs in complex environmental  samples37. Using a combination 
of real data from ten globally-sourced wastewater metagenomes sequenced both with Nanopore MinION and 
Illumina technologies and simulated reads, we evaluated assembler-driven differences in ARG contextualization 
and compared the results of assembly leveraging one or both sequencing technologies. We further quantified 
assembly error in recovering and accurately assembling an in silico spiked genome from within the samples. 
The results outline critical considerations for the application of shotgun metagenomics and assembly towards 
advancing understanding of key ecological processes driving environmental dissemination and attenuation of 
antibiotic resistance.

Methods
Sample collection and processing. Sampling was conducted at two sites (influent (Inf) and activated 
sludge (AS)) at 5 different WWTPs from five countries (India (IND), Hong Kong (HKG), United States of Amer-
ica (USA), Switzerland (CHE), and Sweden (SWE)), between March 2016 and January 2017 as reported in Li 
et al.38. WWTP capacities ranged from 2.6 to 66 million gallons per day, and all plants relied on conventional 
AS treatment. Sample collection and processing was conducted using standardized protocols that were vali-
dated for preservation and stability of samples during international  shipment39. Briefly, influent and AS sam-
ples for molecular analysis were collected at each WWTP in sterile polypropylene containers. All samples were 
transported to the laboratory on ice. Samples were processed within 12 h of collection. Illumina samples were 
processed in triplicate and aliquots of each sample were concentrated onto 0.22 µm pore size mixed cellulose 
ester membranes (Millipore, Billerica, MA) until clogging. Filters were preserved in 50% ethanol and shipped to 
Virginia Tech on ice packs. Upon arrival, filters were frozen at − 20 °C until DNA extraction. To prepare for DNA 
extraction, filters were aseptically torn into 1  cm2 pieces using sterile forceps and transferred to DNA extraction 
tubes. DNA was extracted using the FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, Ohio) according to the 
manufacturer’s instructions. The resulting DNA was purified with a genomic DNA clean kit (Zymo Research, 
Irvine CA), and quantified with a Qubit Fluorometer (ThermoFisher Scientific, Waltham, MA).

Short reads. Composite DNA samples were prepared by pooling triplicates by equal DNA mass. Influent 
and IND-AS samples were composited and prepared for sequencing using TrueSeq library preparation (Illu-
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mina, San Diego, California). These samples were then sequenced through Illumina HiSeq 2500 using 2 × 100 
paired-end reads. Sequencing was performed at the Virginia Tech Biocomplexity Institute Genomic Sequenc-
ing Center (Blacksburg, VA). The remaining AS activated sludge samples were composited and prepared for 
sequencing using the NEB Ultra II DNA Library Prep kit for Illumina library preparation (New England Biolabs, 
Ipswich, Massachusetts). These samples were then sequenced on an Illumina NextSeq500 using 2 × 75 paired-
end reads. Sequencing was performed at the Scripps Research Institute Next Generation Sequencing Core Facil-
ity Microarray Core Facility (La Jolla, California). The resulting summary statistics, sample information and base 
pairs sequenced are displayed (Table 1).

Long reads. Long-read metagenome samples were sequenced to obtain equivalent total basepairs relative 
to what was captured in the corresponding short-read sequencing run. Samples were pooled with equal mass 
(500  ng) from triplicate samples, and characterized with a NanoPhotometer (Implen, Westlake Village, CA) 
to examine purity (target OD 260/230 = 2.0–2.2, OD 260/280 > 1.8). If required, further concentration (tar-
get > 22 ng/μl), or purification of pooled DNA, was conducted using the genomic DNA clean kit. No degra-
dation during the purification step was confirmed when checking DNA size distribution using DNA Screen 
Tape (Agilent, Santa Clara, CA). Nanopore sequencing was conducted using at least 1000 ng of DNA for each 
library preparation. Each sample was barcoded and used to prepare its own individual library (no multiplexing), 
and sequenced with a new flow cell (R9.0 or R9.4) in a MinION sequencer. Sequences were collected without 
real time base calling. Table  1 contains the resulting summary statistics, sample information and base pairs 
sequenced.

Selected metagenomic assemblers and quality evaluation. Sevem assemblers were selected 
(MEGAHIT, IDBA-UD, metaSPAdes, Canu, metaFlye, HybridSpades, OPERA-MS) based on the popularity of 
use and their potential to assemble highly complex environmental  samples40,41. Short reads were assembled 
using the recommended settings for IDBA-UD (September 2019 release)42, metaSPAdes (v.3.14.1) and MEGA-
HIT (v1.2.8)32. Though not explored in the present work, parameter settings can influence results and should 
be adjusted depending on the specific research objectives and questions. Nanopore reads were assembled using 
Canu (v 1.8)23 and metaFlye (v2.6)24. MetaFlye was run using predicted genome sizes of 10 mb, 1 gb, and 10 gb, 
but was found to produce similar results (not shown), a genome size of 1 gb was chosen. Canu was run using 
the recommended settings for metagenomic samples provided in the supporting documents for v1.843. Hybrid 
assemblies were created using HybridSPADES (v.3.14.1)31 and OPERA-MS (v 0.8.3)30. Commands used for con-
ducting assemblies may be found in (Supplementary Information 2). All evaluations were performed on contigs 
provided by the various assemblers as well as unassembled Illumina and Nanopore reads. Assemblies produced 
in this study can be found in BioProject PRJNA527877 in NCBI GenBank (Sample Data and SRAs can be found 
in Supplementary Table S1, https ://www.ncbi.nlm.nih.gov/biopr oject /PRJNA 52787 7).

Gene annotation. Nanopore reads and assemblies were analyzed for co-occurring ARGs, MGEs, and path-
ogen gene markers using  MetaCompare44, which utilizes an ORF predictor,  Prodigal45, followed by  Diamond46 

Table 1.  Unassembled read data and treatment plant capacity.

Location
Treatment 
process SampleID

Treatment 
plant capacity 
(MGD)

Illumina 
platform 
data (length, 
platform, 
sequencing 
facility)

# of Illumina 
reads

Total bp 
sequenced 
(Illumina)

Average 
length of raw 
nanopore reads N50

# of raw 
nanopore reads

Total 
base pairs 
sequenced 
(Nanopore)

India Influent IND-In 14 HiSeq 2500, 
2 × 100, VT BI 12,961,380 2.59E + 09 1496 1973 8.33E + 05 1.25E + 09

Hong Kong Influent HKG-In 66 HiSeq 2500, 
2 × 100, VT BI 10,069,772 2.01E + 09 2278 3868 2.34E + 06 5.34E + 09

Sweden Influent SWE-In 26 HiSeq 2500, 
2 × 100, VT BI 11,973,421 2.39E + 09 4399 6292 5.47E + 05 2.41E + 09

Switzerland Influent CHE-In 32.6 HiSeq 2500, 
2 × 100, VT BI 15,577,543 3.12E + 09 4141 5950 7.59E + 05 3.14E + 09

USA Influent USA-In 6 HiSeq 2500, 
2 × 100, VT BI 13,534,261 2.71E + 09 1918 3211 7.19E + 05 1.38E + 09

India Activated sludge IND-AS 14 HiSeq 2500, 
2 × 100, VT BI 13,520,740 2.7E + 09 2834 4600 1.50E + 06 4.26E + 09

Hong Kong Activated sludge HKG-AS 66 NextSeq500, 
2 × 75, Scripps 8,124,534 1.22E + 09 2022 3389 3.00E + 06 6.07E + 09

Sweden Activated sludge SWE-AS 26 NextSeq500, 
2 × 75, Scripps 11,953,275 1.79E + 09 2364 3828 1.07E + 06 2.53E + 09

Switzerland Activated sludge CHE-AS 32.6 NextSeq500, 
2 × 75, Scripps 14,454,216 2.17E + 09 2896 4707 5.50E + 05 1.59E + 09

USA Activated sludge USA-AS 6 NextSeq500, 
2 × 75, Scripps 8,541,529 1.28E + 09 3714 5973 5.47E + 05 2.03E + 09

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA527877
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alignment against  CARD47,  ACLAME48, and  PATRIC49. Contextualization results were visualized using a Bray 
Curtis dissimilarity matrix to generate non-metric multidimensional scaling (NMDS) plots.

In silico read spiking. To assess the accuracy of assemblies, simulated short reads and long -reads were 
generated from the Marinobacter hydrocarbonoclasticus ATCC 49840 genome (NCBI-ID: NC_017067.1). This 
organism was chosen because it is a saltwater Gammaproteobacterium absent from the sequenced wastewater 
samples, as validated by no hits using  Nucmer50, to align assemblies from non-spiked samples against the refer-
ence genome (Supplementary Figure S1). Short reads were generated using ART 51 and Nanopore reads were 
generated using NanoSim (v 2.5.1)52. Briefly, short reads from HiSeq2500 (100 bp) or NextSeq (75 bp) were 
simulated and spiked into USA-AS and USA-Inf samples respectively at 1 × , 5 × , 10 × , and 50 × coverage of the 
reference genome in silico (Table S2). Nanopore reads of the Marinobacter hydrocarbonoclasticus genome were 
generated using a custom error profile trained from a 100,000 read subset of a sequencing run of the Zymo mock 
microbial community on an R9.4 flowcell (ENA-ID: ERR3152364)53. Simulated reads were then generated using 
the distribution of Nanopore read sizes from the USA-Inf and USA-AS at 0.1×, 1×, 3× (Inf), or 5 × (AS) coverage 
(Supplementary Table S3). Reads were differentially spiked at 3 times or 5 times coverage so that simulated reads 
would constitute no more than 20 percent of the total number of reads (Supplementary Table S4).

Detecting presumptive misassemblies. To detect presumptive misassemblies, we aligned contigs to 
the reference genome using Nucmer (v3.3)50 and classified contigs as correct or incorrect assemblies using a 
custom algorithm in R (Supplementary Fig. S1). Briefly, we removed background contigs from spiked samples 
(background defined as identity < 95% and alignment length < 210 bp). These criteria were selected because they 
removed > 97% of the non-spiked sample assemblies that aligned with the reference genome using Nucmer (Sup-
plementary Fig. S2). We then separated contigs into presumptive correct and incorrect assemblies for verifica-
tion. Initial presumptive misassemblies were those with alignments that extend to less than 99% of the contig. 
Presumptive correct assemblies were those with alignments that extend to at least 99% of the length of the contig 
but less than or equal to 100%. Contigs that did not meet these criteria were then checked to determine if the 
sum of query coverages of its aligned regions from multiple aligned regions was greater than or equal to 99%, 
but less than or equal to 100%. If these criteria were met, the contig was further evaluated to determine if the 
alignments were in close proximity (within the region spanned by the contig plus 25 bp). If all these criteria 
were met, the contig was assumed to be a minor misassembly and reassigned as a presumptive correct assembly. 
Lastly, presumptive correct assemblies were checked for inversions by assessing the directionality of hits within 
the contig with respect to the hits in the reference genome. Scripts used to perform these analyses are provided 
(Supplementary Information 2).

Statistics. Statistics were performed using a nonparametric Friedman test or rank-sum Wilcoxon tests 
(paired where applicable) in the R(v3.5) software package. ANOSIM correlations were performed on annotated 
matrices and NMDS plots were generated using the “Vegan” package (version 2.5–5) in the R software. Statistical 
significance was set at α = 0.05.

Results
Impact of sequencing technology and assembler on contig length distributions. Sample-
matched short read Illumina and long-read nanopore sequencing runs were assembled for ten wastewater-
derived samples using seven popular assemblers that leveraged differing assembly strategies for short, long, and 
hybrid (short and long) metagenomic reads. Only five out of ten long-read samples were able to be assembled 
by Canu within a five-day period on an institutional high-performance computing cluster with 32 cores and 
493.59 GB of RAM. In contrast, all other assemblers successfully finished all samples in less than two days.

We first evaluated the sequenced metagenomes for common descriptive metrics (N50, total assembly size, 
maximum contig length, and total number of contigs produced), after filtering out contigs less than 500 bp 
(Fig. 1). N50 (the shortest contig length needed to capture 50% of the total assembly size) varied among short, 
long, and hybrid sequence assemblies (Fig. 1a), as did largest contig sizes (Fig. 1b), the total number of contigs 
(Fig. 1c), and the total assembly sizes (Fig. 1d) when comparing for each individual sample (e.g., USA-AS) 
(Friedman block test, respectively: p = 0.01, p < 0.0009, p < 0.00012, p = 0.0002).

IDBA-UD, metaSPAdes, and MEGAHIT produced similar N50s, but numbers of contigs produced by metaS-
PAdes differed (median contig number: 79,722), with a higher median contig number than MEGAHIT and 
IDBA-UD (median contig numbers: 61,204 and 61,284, respectively) (Fig. 1, Supplementary Table S5). Canu 
and metaFlye produced different N50 values (Supplementary Table S5), but the test was unbalanced because 
only six of ten samples could be assembled with Canu. Of the evaluated assemblers, metaFlye produced the 
longest, most contiguous assemblies and the smallest number of contigs overall (Fig. 1). Relative to short and 
long assemblies, the hybrid assemblers produced contig libraries with intermediate size distributions (Fig. 1). 
This is likely because HybridSPAdes and OPERA-MS first generate short read assemblies and then extend those 
assemblies using long-reads.

Sequencing technology and assembler impact ARG contextualization. If the assemblers con-
verge on a true underlying biological result, then it would be expected that they would produce similar profiles 
of co-occurrent genes. Antibiotic resistance is a key example of where information about gene co-occurrence is 
particularly valuable, as it can serve to inform with respect to whether ARGs are mobile (i.e., associated with an 
MGE) and/or putatively present in a pathogen. Consistency of assemblies in terms of relevant biological inter-
pretation was thus assessed via  MetaCompare44, which calculates a risk score based on the frequency of contig 
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annotation with co-occurring ARGs, MGEs, and pathogen gene markers. Notably, different assemblers were 
found to produce distinct resistome risk scores for the same sample (Friedman, assembler by sample p < 0.0001). 
Additionally, the rankings of the risk scores changed between samples within assemblers as well, with Inf sam-
ples consistently ranking lower for long-read assemblers. This difference in assembler risk score was solely due to 
the long-read assemblers, possibly due to differences in the portions of the microbial community sequenced by 
the two respective technologies. It is unlikely that the error rate of nanopore sequences contributed substantially 
to the differences between sequencing technologies, as MetaCompare uses lenient criteria for annotating ARGs, 
MGEs, and pathogen markers (alignment length of 25 amino acids and 60% identity). Short read and hybrid 
assembly produced similar assessments of resistome risk (Fig. 2a), detected differences between samples (Sup-
plementary Table S5), and generally ranked influent samples as having greater resistome risk than AS samples. 
On the other hand, long-read assembly predicted different relative resistome risk assessments (risk score and 
ranking of samples) and generally ranked AS samples as having less risk than influent (Fig. 2a). This demon-
strates that choice of sequencing technology and assembly strategy may lead to different conclusions regarding 
relative resistome risk comparisons.

We next investigated the complete profile of co-occurrent MGEs, ARGs, and pathogen gene markers under-
lying the MetaCompare risk score assessments (Fig. 2b). Both assembler and sample type displayed significant 
differences in co-occurrence profiles (i.e., AS or Inf) (ANOSIM; assembler: p = 0.001,  R2 = 0.26, sample type: 
p = 0.001,  R2 = 0.39; Fig. 2b). This was driven primarily by long-read assemblies and MinION reads (ANOSIM 
excluding long-read assemblies and MinION reads; assembler: p = 0.98,  R2 = − 0.04, sample: p = 0.001, R = 0.64; 
Fig. 2b), highlighting the potential for the two sequencing technologies to yield different conclusions. Interest-
ingly, while metaFlye produced the lowest risk scores of any assembler (Fig. 2a), it also predicted the greatest 
number of unique co-occurrences across all samples. Canu, on the other hand, predicted a similar number of 
co-occurrences as that observed in the unassembled MinION reads (Fig. 3). Examining how summary statistics 
correspond with ARG-MGE cooccurrences and risk scores, we observed significant positive correlations between 
total assembly size and both risk score and unique co-occurrences (Spearman: rho = 0.25, p = 0.04; rho = 0.60, 
p < 0.0001; respectively).

Figure 1.  Descriptive assembly metrics for short, long, and hybrid read assemblies, where each point represents 
one of the ten samples assessed. The box inner line represents the median while the whiskers represent the 25th 
and 75th percentiles. (a) N50 of contig lengths. (b) Total assembly size in basepairs. (c) Largest contig size in 
basepairs. (d) Total number of contigs produced. This figure was generated using the ggplot2(v3.3.0) package in 
R(v3.5.0).



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3753  | https://doi.org/10.1038/s41598-021-83081-8

www.nature.com/scientificreports/

Figure 2.  (a) Boxplot of MetaCompare risk scores by individual sample, where influent is represented as 
squares and activated sludge is represented as circles. The box inner line represents the median while the 
whiskers represent the 25th and 75th percentiles. (b) NMDS plot of annotated of ARGs, MGEs, and pathogen 
gene marker profiles underlying MetaCompare risk scores. Where CHE Switzerland, HKG Hong Kong, IND 
India, SWE Sweden, USA United States of America. Assembler type, treatment stage and sample were significant 
factors in system clustering (ANOSIM; R = 0.26, p = 0.001; R = 0.26, p = 0.001; R = 0.33, p = 0.001). This figure was 
generated using the ggplot2(v3.3.0) package in R(v3.5.0).

Figure 3.  Number of unique co-occurrences of ARGs and MGEs identified among the samples (wastewater 
treatment plant- CHE Switzerland, HKG Hong Kong, IND India, SWE Sweden, USA United States of America; 
stage of treatment- Influent, Activated Sludge) as a function of assembly method. This figure was generated 
using the ggplot2(v3.3.0) package in R(v3.5.0).
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Spiking an exogenous genome at various coverages to assess misassembly frequency. To 
aid in objectively evaluating the frequency of assembly error, we utilized a partial in silico experimental 
design wherein simulated short and long-reads from the M. hydrocarbonoclasticus ATCC 49,840 genome 
(NC_017067.1), an organism absent from the test samples (Supplemental Information Fig. S3-15), were com-
bined with USA-AS and USA-Inf samples. Four short read (1×, 5×, 10×, 50×) and three long-read coverage 
(0.1×, 1×, and 3 × for USA-Inf or 5 × USA-AS). These coverages were selected to simulate low, medium, and high 
abundance scenarios, while the nanopore read sequence length distribution was simulated to correspond to that 
of the actual samples (Table S3). While the spiked-in nanopore read coverages are substantially lower, this was 
necessary to ensure that M. hydrocarbonoclasticus in the spiked-in reads did not exceed more than 20% of the 
total reads, which would represent an unlikely scenario in a true environmental sample (Table 1, Tables S3, S4). 
The spiked samples were then assembled with the seven different assemblers and the resulting assemblies were 
analyzed using a custom R algorithm to evaluate misassembly frequency.

When normalized to the total assembly size, the IDBA-UD assembly of metagenomes with the 1 × coverage 
spike resulted in the highest frequency of misassembly of M. hydrocarbonoclasticus, with nearly ten times more 
misassemblies than those produced by MEGAHIT and metaSPAdes at the same coverage (Fig. 4). Interestingly, 
spiking 5 × coverage of the reference genome into short reads resulted in the assembly of a nearly complete, but 
discontiguous, reference genome by the short read assemblers (Fig. 5a–c). However, there were still a substan-
tial number of misassemblies (Figs. 4a, 5a–c). This suggests that, while the entire genome could essentially be 
recovered from metagenomes with the 5 × spike, there was additionally a high frequency of incorrect contigs 
incurred, likely because of assembly of reads from different genomes into chimeric contigs. 

Canu and metaFlye produced contiguous, mostly accurate, assemblies under conditions of higher coverage 
(Fig. 4a,b). metaFlye performed well at higher coverages. For instance, the ostensibly poor performance apparent 
in Fig. 5d was due to two contigs, one of which was a likely interspecies translocation (Supplementary Informa-
tion Fig. S15A) and the other was a small indel within a contig that extended the entire length of the genome 
(Fig. S15B). At 0.1 × coverage, no metaFlye contigs could be confidently mapped to the reference genome, as 
they did not meet the background filtering step criteria (> 95% identity and alignment length > 210 bp). This 
could relate to the high error rate associated with MinION sequencing. Canu, however, was able to produce 13 
correctly assembled contigs for USA-Inf and 69 for USA-AS, which all mapped to the reference genome at 0.1×, 
likely due to its read correction step. Nonetheless, given the extensive computational time and power required 
to run Canu, our results indicate that we did not arrive at an optimal approach for assembly of nanopore reads 
from complex environmental metagenomes among the tested methods.

Relative to the long- and short- read assemblies, the hybrid assemblers performed well. Among hybrid assem-
blers, low short-read coverage samples (1×) produced the most frequent assembly errors relative to assembly 
size, with more errors produced by samples with higher MinION coverage.

Figure 4.  Assembler performance in assembling the in silico spiked genome of Marinobacter 
hydrocarbonoclasticus ATCC 49840 into two metagenomic samples (where circles represent USA-AS and 
squares represent USA-Inf). (a) Misassemblies per million basepairs within contigs aligning to the M. 
hydrocarbonoclasticus ATCC 8 genome. (b) Ratio of contigs with misassemblies to total contigs aligning to 
the M. hydrocarbonoclasticus genome. Y-axis indicates sequencing coverage, reported as long by short read 
coverages for hybrid assemblers. Hybrid assembly coverage is labeled with the long-read coverage by short-read 
coverage. This figure was generated using the ggplot2(v3.3.0) package in R(v3.5.0).
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Figure 5.  Circular depictions of the Marinobacter hydrocarbonoclasticus ATCC 49,840 genome with assembler 
type from USA-AS samples. (a) MEGAHIT with 1 × , 5 × , 10 × , 50×, alternating between misassemblies (pink) 
and correct assemblies (blue). (b) metaSPAdes with 1 × , 5 × , 10 × , 50×. (c) IDBA-UD with 1 × , 5 × , 10 × , 50×. 
(d) metaFlye with 0.1 × , 1 × , and 5 × coverage. (d) Canu with 1 × and 5 × coverage (no Flye contigs mapped at 
0.1 × coverage). (e) Canu with 0.1 × , 1 × , and 5 × coverage. (d) Canu with 1 × and 5 × coverage (no Flye contigs 
mapped at 0.1 × coverage). (f) OPERA-MS with 10 × short-read and 0.1 × , 1 × , and 5 × long-read coverage. (g) 
HybridSpades with 10 × short-read and 0.1 × , 1 × , and 5 × long-read coverage. Labels are regions of the genome 
annotated with ARGs or MGE genes. Internal red/black dots are GC skew of 1000 basepair sections of the 
genome (red is positive GC skew while red–black is negative GC skew). This figure was generated using the 
Circlize(v0.4.11) package in R(v3.5.0).
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Finally, it is noted that hybrid assembly boosted contiguity (here measured as N50) and reduced assembly 
errors in the in silico spike experiment, particularly at intermediate short-read coverages (5 × –10 ×) (Figs. 5, 6). 
However, contiguity and accuracy were increased with hybrid assembly with increasing coverage in the short, 
but not the long, reads (Fig. 6). This emphasizes that increased long-read sequencing depth will not compensate 
for lower short-read sequencing depth for the hybrid assemblers evaluated for this study.

Discussion
Here we evaluated the impact of hybrid-, long-, and short-read assembly methodologies on the quality and 
accuracy of assemblies derived from complex environmental metagenomes. The implications of the resulting 
assemblies for biological interpretation were assessed by examining the contextualization of ARGs as an exemplar.

metaFlye produced the greatest number of contigs containing co-occurring ARGs and MGEs across most 
samples (Fig. 3), but produced the lowest resistome risk scores. Additionally, metaFlye produced differing rank-
ings of risk scores than other assemblers, though, overall, the trend of Inf producing a lower risk score than AS 
was consistent with Canu. It is expected that AS would produce a lower risk score than Inf, because it is widely 
known that pathogens decrease, as reduction of human pathogens is one of the primary functions of activated 
sludge (Wery et al. 2008). Further, recent studies have also shown that there tends to be a net reduction in MGEs 
(Che et al. 2019). Examining the MetaCompare data more closely (Supplementary 1 Table S6), it is apparent 
that metaFlye yielded the smallest proportion of ARG-MGE-pathogen annotated contigs. This suggests that the 
large number of unique co-occurrences observed across samples (Fig. 3) are likely due to a small number of 
contigs with both ARG and MGE annotations. Furthermore, the high frequency of assembly error produced by 

Figure 6.  Comparison of Misassemblies per Mbp as determined through our contig classifier (SI 2) compared 
to assembly contiguity (N50) for (a) hybrid assemblers, (b) short-read assemblers and (c) long-read assemblers. 
This figure was generated using the ggplot2(v3.3.0) package in R(v3.5.0).
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metaFlye in the in silico spike experiment is concerning (Figs. 4, 5d), thus casting doubt on the large number of 
unique co-occurrences of MGEs and ARGs resulting from this assembly approach (Fig. 3), which could be the 
result of chimeric contigs producing false positive associations. MetaFlye performed well at higher coverages, 
but it is possible that implementing error correction strategies, such as those that target indels could lead alter 
biologically relevant  results54. Canu produced similar numbers of co-occurrences relative to the unassembled 
MinION reads. When considering this and the greater accuracy of Canu (Fig. 5c), it is likely that the frequency 
of co-occurrences was more accurately reflected the microbial community represented within the MinION 
reads. These results highlight that descriptive metrics (Fig. 1) can be a deceptive indicator of assembly quality 
because, while metaFlye produced the largest most contiguous assembly, there was also likely a high frequency 
of assembly error that would be undetected without further scrutiny.

Comparing to previous studies, Latorre-Perez et al. 2020 found that available MinION assembly algorithms 
were able to accurately assemble simple metagenomes of mock microbial communities that were subjected 
to deep sequencing (14–16 giga basepairs per sample that were subsampled 3 and 6 Gbp)55, the present study 
illustrates that there are still significant shortcomings in the application of these pipelines to more complex envi-
ronmental metagenomes. While it is possible that the decreased error  rate56 provided by PacBio HiFi sequencing 
might improve assembly, we suspect that sequencing depth is a larger driver of assembly error rate. Addition-
ally, we note that we did not explore the possibility of error correction in the long-read assemblies. Past work by 
Arumugam et al.54 has shown, in less diverse communities, that frame shift errors present in long-read assem-
blies can affect translation. However, recent work by Arango-Argoty et al.57, which examined ARG detection in 
complex environmental samples, did not find frame shift errors to be problematic and further demonstrated that 
the number of ARGs detected did not increase with additional error correction. Furthermore, Canu performs a 
read polishing step as a part of its assembly pipeline.

We observed that different types of errors are prevalent at different sequencing depths, i.e., at different cover-
ages for a given genome within a sample. For instance, at 5 × coverage of M. hydrocarbonoclasticus spiked into 
the short-read metagenomes, there was a high frequency of misassembly associated with the incorporation of 
unrelated reads into contigs (Figs. 4a, 5a,b). This follows prior observations that species abundance in microbial 
communities follows a power  law19,58, wherein low abundance species are present at similar levels, leading to dif-
ficulty in distinguishing unrelated reads with overlapping k-mers on the basis of coverage. On the other hand, at 
higher coverages (i.e., 10 × and 50 × for short reads, and 3 × and 5 × for MinION reads) across all assemblers, the 
contigs that mapped to the reference genomes showed a tendency to produce inversions and indels at a greater 
frequency than chimeras (Fig. 5). This suggests that contigs with higher coverage are less likely to represent 
false-positive associations. These results suggest that one strategy to ensure validity of assembly-based resistome 
analyses would be to exclude contigs below a given depth, e.g., 10×, as these are more likely to be chimeric.

When designing a metagenomic sequencing experiment, one must weigh many variables, including research 
objectives and cost. While, in the present work, we do not directly evaluate the important consideration of 
cost, we found that hybrid assembly boosted contiguity and accuracy at coverages that are relevant to com-
plex environmental metagenomes (Fig. 6a,b). OPERA-MS and HybridSPAdes performed comparably, but both 
yielded frequent misassemblies, which interestingly often occurred at different regions of the reference genome 
(Fig. 5e,f). Therefore, one strategy to minimize the incorrect inferences drawn by assembly of metagenomes 
might be to instead leverage the consensus of multiple tools. Last, because environmental metagenomes remain 
undersequenced relative to other targets, such as the human gut, the reference sequence-based binning strategy 
of OPERA-MS may make it intrinsically better suited towards more well-archived environments.

Conclusions
This work presents the first critical assessment of methodologies for short-, long-, and hybrid- assembly of 
metagenomes derived from complex environmental samples. In sum, the present study supports hybrid assem-
bly as a valuable technique for boosting contiguity and increasing accuracy of metagenome assembly, but also 
emphasizes the need for adequate short-read sequencing depth to harness the full potential of the approach. The 
findings of this study provide key information towards informing a framework for guiding selection of sequenc-
ing platform(s), depths, and assembly methodologies for complex environmental samples.

Data availability
The assembled and raw reads used for this study are available on NCBI SRA (https ://www.ncbi.nlm.nih.gov/
biopr oject /PRJNA 52787 7). Supplementary Table 1 delineates which SRA ID corresponds to which sample. Code 
used in this study is available in SI II.
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