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A B S T R A C T   

The neurophysiology of face processing has been studied extensively in the context of social impairments 
associated with autism spectrum disorder (ASD), but the existing studies have concentrated mainly on univariate 
analyses of responses to upright faces, and, less frequently, inverted faces. The small number of existing studies 
on neurophysiological responses to inverted face in ASD have used univariate approaches, with divergent results. 
Here, we used a data-driven, classification-based, multivariate machine learning decoding approach to investi-
gate the temporal and spatial properties of the neurophysiological evoked response for upright and inverted 
faces, relative to the neurophysiological evoked response for houses, a neutral stimulus. 21 (2 females) ASD and 
29 (4 females) TD participants ages 7 to 19 took part in this study. Group level classification accuracies were 
obtained for each condition, using first the temporal domain of the evoked responses, and then the spatial 
distribution of the evoked responses on the cortical surface, each separately. We found that classification of 
responses to inverted neutral faces vs. houses was less accurate in ASD compared to TD, in both the temporal and 
spatial domains. In contrast, there were no group differences in the classification of evoked responses to upright 
neutral faces relative to houses. Using the classification in the temporal domain, lower decoding accuracies in 
ASD were found around 120 ms and 170 ms, corresponding the known components of the evoked responses to 
faces. Using the classification in the spatial domain, lower decoding accuracies in ASD were found in the right 
superior marginal gyrus (SMG), intra-parietal sulcus (IPS) and posterior superior temporal sulcus (pSTS), but not 
in core face processing areas. Importantly, individual classification accuracies from both the temporal and spatial 
classifiers correlated with ASD severity, confirming the relevance of the results to the ASD phenotype.   

1. Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder 
characterized by, among other traits, impaired social communication 
and interaction (American Psychiatric Association, 2013). Face 
perception plays a critical role in social interactions, and involves a large 
network of brain areas (Haxby et al., 2000; Li et al., 2009; Magnuson 
et al., 2019; Turk-Browne et al., 2010) that includes the highly 

specialized fusiform face area (FFA) (Humphreys et al., 2008; Kanwisher 
et al., 1997). Face processing is also associated with specific neuro-
physiological time signatures (Barbeau et al., 2008; Eimer, 2000; Itier 
et al., 2006; Linkenkaer-Hansen et al., 1998; Puce et al., 2013). In in-
vestigations of face processing in ASD, many studies have documented 
behavioral impairments in processing faces in ASD (Gauthier et al., 
2009; Jiang et al., 2013; Tang et al., 2015), alongside neurophysiolog-
ical abnormalities (Khan et al., 2013; Mamashli et al., 2018; Naumann 
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et al., 2018; O’Connor et al., 2007). 
One line of research on abnormalities associated with face processing 

in ASD revolves around comparing the processing of upright faces in 
ASD to the processing of inverted faces. For upright faces, the non-verbal 
information extracted from the combination of mutable face elements 
requires a holistic perception that decodes face expression by taking into 
account several elements in conjunction (McKone et al., 2007; Piepers 
and Robbins, 2012). In contrast, inverted faces are believed to disrupt 
this holistic processing, and result in greater impairment in face recog-
nition than the impairments in recognition produced by inverting other, 
non-face, images (Bruyer, 2011; Yin, 1969). The resulting effect, 
commonly referred to as the Face Inversion effect (FIE), has been 
investigated in ASD, again with mixed results. The FIE is typically 
assessed by measuring the reaction time to identify upright faces, versus 
the reaction time to identify inverted faces. While some earlier studies 
found a reduced FIE in ASD (Gauthier et al., 2009; Teunisse and De 
Gelder, 2003), other studies found no such indications (Tang et al., 
2015; Tavares et al., 2016; Weigelt et al., 2012). These inconsistencies 
could be due to differences in study design such as stimulus parameters, 
specific methodological details, age groups, or cohort characteristics 
more generally, and thus the question of neurophysiological differences 
associated with cortical responses to upright faces relative to the cortical 
responses to inverted faces in ASD remains unresolved. 

Here, we chose to combine the inverted versus upright processing 
line of research with a machine learning multivarate approach. Previous 
studies used machine learning decoding in visual perception (King et al., 
2016), object recognition (Cichy et al., 2016), face processing (Van de 
Nieuwenhuijzen et al., 2013) and timing of face perception (Dobs et al., 
2019), and to detect participants with mild cognitive impairment 
(Hughes et al., 2019), neurological or brain injuries (Aoe et al., 2019; 
Claassen et al., 2019), and schizophrenia (Shim et al., 2016), to mention 
a few. In this study we use machine learning-based brain signal decoding 
to investigate the spatial and temporal characterisitics of the evoked 
response to neutral upright faces and inverted faces, in ASD versus 
typically developing (TD) participants, using whole head magnetoen-
cephalography (MEG). More specifically, we tested whether evoked 
responses to upright faces and evoked responses to house could be 
classified with better than chance probability in both ASD and TD 
groups, and whether evoked responses to inverted faces and evoked 
responses to house could be classified with better than chance proba-
bility in both ASD and TD. We tested this using both temporal and spatial 
dimensions of the evoked response. While this approach does not 
address the FIE directly, due to the lack of behavioral reaction time data 
demonstrating this effect in our cohort, it nonetheless addresses cortical 
processing of upright versus inverted neutral faces in a novel way. We 
were interested in this question because previously, when studying the 
processing of neutral upright faces, we found no group differences in 
cortical evoked responses between individuals with ASD and IQ and age 
matched TD individuals (Khan et al., 2013; Mamashli et al., 2018). 
However, we had used a univariate approach to studying the evoked 
responses. We were further interested in studying the responses to 
inverted faces in parallel, in order to follow the line of research on 
dissociating holistic and non holistic processing of faces in ASD, given 
their different contribution to communication. 

The multivariate data-driven approach pursued here is more sensi-
tive to multidimensional parameters captured by the MEG data, and so 
presents a novel approach with which to revisit this question. While 
classical statistical modelling approaches rely on theoretical models 
with assumptions and probabilities to infer univariate relations between 
conditions, machine learning decoding is a multi-variate data-driven 
approach that makes predictions based on combinations of patterns in 
the data. We had previously found neurophysiological group differences 
in ASD in the cortical processing of faces (Khan et al., 2013; Mamashli 
et al., 2018), but none of these differences were at the level of evoked 
resonses. Therefore, we hypothesized that our prior, univariate, ap-
proaches might not have been sufficiently sensitive to group differences, 

and that a multivariate approach will detect group differences between 
the ASD and TD group when processing upright faces that were not 
previously detectable. In addition, given that inverted faces hinder ho-
listic processing in comparison to upright faces, and generally elicit a 
stronger response, we expected to find significantly greater group dif-
ferences when classifying evoked responses to inverted faces relative to 
evoked responses to houses. Lastly, we expected that classification by 
spatial characteristics would yield significant group differences, but that 
this would not be the case for classification by temporal charateristics 
because the temporal parameters are simpler to capture also with pre-
viously studied univariate approaches. We tested these hypotheses using 
data from 21 individuals with ASD, ages 8–16, and 29 age and IQ 
matched controls (Table 1). For the temporal domain, we used data from 
the MEG sensors, since temporal characteristics do not change from 
sensor space to source space. For the spatial classification, we used 
source space data, i.e. MEG signals projected from the MEG sensors onto 
the cortical surface. 

2. Methods 

2.1. Participants 

Fifty right-handed participants from the age of 7 to 19 years un-
derwent an MEG recording and a structural T1 MRI scan. 21 participants 
had a diagnosis of ASD and the ASD group had a mean age of 12.1 ± 2.5, 
and 29 TD comparison participants had a mean age of 11.9 ± 3.5. Verbal 
IQ (VIQ) and nonverbal IQ (NVIQ) were assessed using the Kaufman 
Brief Intelligence Test – II (Kaufman, 2004) or the Differential Ability 
Scales – II (Elliot, 2007). There were no signficant group differences in 
age, NVIQ, or VIQ. The Autism Diagnostic Observation Schedule, Second 
Edition (ADOS-2) (Lord et al., 2012) was administered by a trained 
researcher. Of the 21 participants diagnosed with ASD, 14 participants 
were administered Module 3 and 7 participants were administered 
Module 4 of the ADOS assessment. For those that were administered 
Module 4, a revised algorithm to increase comparability across modules 
was used (Hus and Lord, 2014). The ADOS raw overall total and raw 
domain totals were calculated. For the correlations with ADOS, we used 
the Social Affect domain total of the ADOS algorithm (ADOSSA), which 
consists of communication and reciprocal social interaction scores, and 
is comparable across modules 3 and 4. Exlusion criteria included major 
comorbidities such as epilepsy, major psychiatric episodes, Fragile-X 
syndrome or substance use over the 6 months prior to enrollment. 
This study was approved by MGH institutional review board and 
informed written consent was obtained for every participant and their 
parents or guardians. 

2.2. Experimental paradigm 

During the MEG recording, houses, upright neutral faces, inverted 
neutral faces, and emotional faces (the latter condition is not discussed 
here), were presented on the screen for 1 s in random order, followed by 
an intertrial period of 1 s with a fixation cross. To assess attention, 
participants were asked to press a button when the same face appeared 
successively (1-back); this occurred on 15% of the trials and repeat 
presentations were excluded from the analyses, and from the count of 
trials per condition. The experiment was broken down into three 

Table 1 
Demographic information and phenotypic data.   

ASD TD 

Sample size (females) 21 (2) 29 (4) 
Age, years 12.3 ± 2.4 11.7 ± 3.3 
NVIQ 109.0 ± 19. 106.9 ± 10.0 
VIQ 108.2 ± 15.9 111.3 ± 14.0 
ADOSSA 9.7 ± 4.7   
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recordings with short breaks for rests. In total, each stimulus condition 
was presented for at least 150 trials, in random order (exclusive of 1- 
back trials). The face stimuli were collected from three databases: Kar-
olinska Directed Emotional Faces (KDEF) (Lundqvist et al., 1998), 
NimStim Face Stimulus Set (Tottenham et al., 2009), and Gur (Gur et al., 
2002). The houses stimuli were obtained from the Kanwisher Laboratory 
database at the Massachusetts Institute of Technology. All stimuli were 
homogenized for brightness and contrast, and by using an oval black 
mask. The sequence of stimuli was generated and presented using the 
psychophysics toolbox (Brainard, 1997; Pelli, 1997), and presented with 
a projector through an opening in the wall onto a back-projection screen 
placed 100 cm in front of the participant inside a magnetically shielded 
room. Fig. 1A illustrates the timeline and stimuli used in this paradigm. 

2.3. MEG and aMRI data acquisition 

The MEG data were acquired at the Athinoula A. Martinos Center for 
Biomedical Imaging, Massachusetts General Hospital, with a 306-chan-
nel Neuromag Vectorview whole-head system (Elekta Neuromag, 
Finland) inside a magnetically shielded room. The HPI locations and the 
participant’s head shape were digitized using a Fastrak digitizer (Pol-
hemus Inc., Colchester, VT) integrated with the VectorView system, and 
later used for MEG and MRI corregistration. The vertical and horizontal 
electrooculogram (EOG) and electrocardiogram (ECG) signals were also 
acquired. The data were bandpass filtered between 0.5 and 200 Hz prior 

to sampling at 600 Hz. Additionally, five min of empty room data were 
collected immediately before or immediately after each experimental 
session, for noise estimation purposes. Structural T1-weighted MPRAGE 
images were acquired on a 3T scanner (Siemens Medical Systems, 
Erlangen, Germany) using a 32-channel phase array head coil. Seg-
mentation of the cortical surface was estimated using FreeSurfer (Dale 
et al., 1999; Fischl et al., 1999), subjects cortical surfaces were morphed 
into a common space with ~ 10.000 vertices per hemisphere. 

2.4. MEG preprocessing 

A signal space separation spatial filter was applied to the data to 
correct for head motion and suppress external source noise (Taulu et al., 
2004; Taulu and Simola, 2006), using the default MNE-python v.19 SSS 
parameters. To remove eye and cardiac artifacts, signal space projection 
was employed (Gramfort et al., 2014). Then, the data were bandpass 
filtered between 0.1 and 40 Hz and a 60 Hz notch filter was applied to 
suppress line-frequency noise. The MEG recordings were divided into 
epochs of 1 s, from − 500 ms before the stimuli presentation and 500 ms 
after the onset. For the analyses, gradiometers sensors were selected and 
epochs with peak-to-peak amplitude above 1000 fT/cm in any of the 
gradiometers were excluded from further analysis. There were no group 
differences in head motion, or in the number of “bad trials” dropped due 
to excessive artefacts, as illustrated in supplementary Fig. S1. A mini-
mum of 47 trials per participants per condition were used. The number 

Fig. 1. Study design. A: Stimuli and experimental design. B: Pipeline workflow of the data-driven machine learning decoding.  
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of trials per participant per condition ranged from 47 to 156, with no 
significant differences in the total number of trials per subject between 
groups (t-test: p = 0.18). In Suppl. Fig. S2, a swarm plot illustrates the 
number of trials per conditions by group, and in Suppl. Fig. S3, a scat-
terplot shows the relationship between mean decoding accuracy and 
number of trials, demonstrating that these two values are not correlated. 

2.5. MEG source reconstruction 

Source reconstruction was estimated on the cortical surface for each 
participant using Freesurfer cortical segmentation. A watershed algo-
rithm was used to generate the inner skull surface triangulations. The 
MEG forward solution was calculated using a single compartment 
boundary-element model (Hämäläinen and Sarvas, 1989). Minimum- 
norm estimate (MNE) software was used to estimate the cortical cur-
rent distribution and the orientation of the sources were fixed perpen-
dicular to the cortical mesh. Empty-room recordings were used as a 
noise–covariance matrix to calculate the inverse operator. To reduce the 
bias toward superficial currents, a depth weighting was used to adjust 
the source covariance matrix to favor deep source locations (Lin et al., 
2006). 

2.6. Temporal classification 

To compute classification accuracies using the temporal patterns of 
the evoked responses to the different stimuli (“temporal classification”, 
irrespective of the spatial distribution, a linear kernel support vector 
classifier (SVC, Cortes and Vapnik, 1995), implemented in the sci-kit 
learn Python library (Pedregosa et al., 2011), was used for each 
participant to estimate the stimuli type at each time point of the trial 
using the 204 sensor gradiometer signals. An SVC finds a hyperplane 
that separates the condition classes as best as possible. SVCs learn a 
linear binary decision rule, h(x) = sign{wTx+ b}, where the weight 
vector w and threshold b together define a hyperplane L : wTx + b = 0. 
The function h(x) thus indicates the location of a given point x with 
respect to L and divides the data into two classes. The classification 
accuracy metric used was the Area Under the Curve (AUC), as it is a 
metric that balances specificity and sensitivity. A 5-fold cross-validation 
(CV) was used to test the generalizability, and the accuracies were 
averaged across CVs. The stimuli of interest for classification were (1) 
upright neutral faces versus houses, and (2) inverted neutral faces versus 
houses. A statistical learning model was used to test if the subject’s 
temporal accuracies are sufficient for classifying ASD and TD partici-
pants using SVC. 

2.7. Spatial classification 

To compute classification accuracies using the spatial patterns of the 
evoked responses to the different stimuli (“spatial classification”), irre-
spective of the temporal parameters, we first projected sensor data onto 
the cortical surface. At each vertex, the time series dimensionality were 
reduced using Principal Component Analysis (PCA, probabilistic 
implementation, Tipping and Bishop, 1999) and extracting the first 50 
PCA components in order to reduce the temporal dimensionality of the 
time series. These components were used as features for SVC classifi-
cation. Again, as for the temporal domain analysis, the stimuli of interest 
for classification were (1) upright neutral faces versus houses, and (2) 
inverted neutral faces versus houses. The spatial accuracies for all 
vertices were used to classify ASD and TD groups. Fig. 1B illustrates the 
workflow for the temporal and spatial classification analyses. 

2.8. Statistical analysis 

To test for group differences and for correlations with the ADOS 
Social Affect domain totals (ADOSSA), Partial Least Squares (PLS) 

multivariate statistical analysis was used (Krishnan et al., 2011; McIn-
tosh and Lobaugh, 2004). Mean-centred PLS was used for assessing 
group differences in accuracy and behavioral PLS for testing associations 
between accuracy and ADOSSA scores. The inputs for mean-centred PLS 
were two data matrices with dimensions subjects × features (where 
features are timepoints in case of temporal classification and vertices in 
case of spatial classification) for ASD and TD groups containing SVC 
accuracies. The input for behavioral PLS was a data matrix with SVC 
accuracies in ASD group and a matrix containing ADOSSA scores for each 
participant with ASD. PLS decomposes the data matrix M with m fea-
tures and n groups through singular value decomposition (SVD), giving 
M = UΣVT, where U is the eigenvectors of the row space, V the the ei-
genvectors of the column space, and the singular values Σ as a diagonal 
matrix. U reprents the feature subspace, V represents the group subspace 
and Σ captures their magnitude or variance of the eigenvectors. A per-
mutation test is applied to assess if Σ from the original subspace is 
significantly higher than the null distribution where group labels are 
randomized. The permutation test results in a single p-value indicating 
statistical significance, which intrinsically addresses the multiple com-
parision concern, by having only one test. Then, boostraping is applied 
by removing members of the group one by one to estimate the standard 
error (SE) of each feature and U is divided by the SE to provide a 
measure of feature reliability generating a z-score bootstrap ratio for 
each feature. In this study, 5000 permutation and bootstrapping itera-
tions were performed and the threshold for z-scores was set to 3, which 
represents a reliability index above the 99th percentile of a normal 
distribution. 

3. Results 

3.1. Temporal classification between conditions, within and between 
groups 

We first computed classification accuracies using the temporal pat-
terns of the evoked responses, irrespective of the spatial distribution. 
The accuracies of classifying (1) evoked responses patterns in response 
to neutral upright faces stimuli relative to evoked responses to houses 
stimuli, and (2) evoked responses patterns in response to neutral 
inverted faces stimuli relative to evoked responses to houses stimuli, 
were both computed at each time point, for both the TD and ASD groups. 
The accurracy before stimulus onset and immediately following stimulus 
onset was at chance level in all cases, as expected. For both the upright 
faces condition (Fig. 2A) and the inverted faces condition (Fig. 2B), the 
accuracy of classification relative to the houses condition began to 
exceed chance level at around 90 ms post stimulus onset, for both the TD 
and ASD groups, and then increased sharply until peaking, before the 
200 ms mark. 

Differences between groups were assessed statistically using PLS. For 
the upright faces condition, there were no significant group difference in 
decoding accuracies (Fig. 2A). In contrast, for the inverted faces con-
dition, classification accuracies differed between groups, reaching sig-
nificance around 120 and 170 ms (Fig. 2B). At both time windows, 
classification accuracy was lower in the ASD group. 

Given the significant group differences in the inverted faces relative 
to houses condition, we tested whether an SVM classifier could classify 
TD and ASD participants based on the temporal pattern of the decoding 
(inverted faces relative to houses) accuracies for each participant. The 
resulting classification accuracy was 78%, well above the chance level of 
50%. 

3.2. Correlation between temporal classification accuracy and ASD 
sympton severity 

Next, we tested whether the temporal classification accuracy for 
individual ASD participants was correlated with ASD symtomatology as 
measured using the ADOS Social Affect domain total (ADOSSA). We 
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focuses on the ADOSSA because face processing is generally associated 
with deficits in the social-affective domain, rather than with deficits in 
the RRB domain. We found that ASD severity was significantly nega-
tively correlated with inverted faces versus houses classification accu-
racy (p < 0.01). In other words, more severe ASD symptomatology was 
associated with lower classification accuracies. The time windows 
where classification was most predictive of ASD severity (with z-scores 
> 3) were between 90 ms and 200 ms, in accordance with the results for 
general group difference above, with a second significant time window 
emerging at around 400 ms (Fig. 3A). The association between ADOSSA 
scores for the ASD participants and mean accuracies of time windows 
with z-scores > 3 was found to be r = 0.46, and p = 0.039, and is shown 
in Fig. 3B. To ensure the results were not due to outliers, we further 
checked it using robust correlation (Wada et al., 2016), and the corre-
lation remained significant. 

3.3. Spatial classification between conditions, within and between groups 

We then computed the classification accuracies using the spatial 
patterns of the evoked responses, irrespective of temporal patterns. 
Specifically, we tested how predictive the time series of each vertex in 
space is in discriminating upright or inverted neutral faces relative to 
houses. To that end, we projected the data from the MEG sensors onto 
the cortical surface. Using the first 50 PCA components of the vertex 
time series across trials, an SVC was trained in classifying the stimuli 
conditions. Condition classification never exceed chance level for up-
right faces relative to houses, for either group. In contrast, for inverted 
faces relative to houses, classification accuracies exceeding chance level 
were found in multiple loci in both groups, and were located mostly in 
the occipital region, as well as in temporoccipital regions such as 
intraparietal sulcus, and temporal areas including the mid-temporal 
sulcus and the inferior temporal gyrus. The results were similar for 
both the TD (Fig. 4A) and ASD (Fig. 4B) groups. 

Group differences in spatial classification accuracies were assessed 
statistically using PLS, as was done for temporal classification. When the 

same thresholds of p < 0.01 and z scores > 3 were applied, group dif-
ferences in spatial classification accuracy emerged in three cortical re-
gions: the left supramarginal gyrus, posterior temporal sulcus (pTPS) 
and intrapaieral sulcus (IPS), as shown in Fig. 4C. The negative values 
indicate that the ASD group had lower condition classification accu-
racies. Overall, group classification using the vertex accuracies from 
classification of inverted faces relative to houses was 72%, i.e. above 
chance level. 

3.4. Correlation between spatial classification accuracy and ASD 
symptom severity 

As with temporal classification, for spatial classification we again 
tested the association between ASD symptom severity assesed using the 
ADOSSA domain totals, and vertex accuracies from classifying inverted 
faces and houses. Higher ADOSSA values (i.e. increased ASD severity) 
were, again, associated with lower accuracies. The areas with the most 
significant z-scores were similar to those illustated in Fig. 4C, with some 
additional contributions from occipital regions, as shown in Fig. 5A. The 
scatterplot of ADOSSA versus mean accuracies of time windows with z- 
scores > 3 is shown in Fig. 5B, and had a correlation coefficient of r =
-0.73 and a p-value < 0.001. To ensure the results were not due to 
outliers, we further checked them using robust correlation (Wada et al., 
2016), and the correlation remained significant. 

4. Discussion 

We used a multivariate machine-learning decoding approach to 
identify altered cortical response patterns to inverted and upright 
neutral faces in ASD. We were interested in a dual set of questions. The 
first question was whether responses to upright faces and responses to 
inverted faces would be equally accurately classifiable relative to re-
sponses to houses, for both the ASD and TD groups. We found that while 
it was possible to accurately classify evoked responses to upright faces 
relative to houses for both groups, differences between the TD and ASD 

Fig. 2. Temporal classification accuracies. A: Clas-
sification accuracy plots for decoding upright faces 
vs. houses. The metric used to assess accuracy was 
the area under the curve (AUC), with percentiles as 
units. B: Classification accuracy plots for decoding 
inverted faces vs. houses, in ASD (red) and TD (blue). 
Line shadows are ± 1 STD. Time points where group 
differences were significant, thresholded at z-scores 
> 3, are represented with gray horizontal shaded 
areas. Chance level is marked by a horizontal dashed 
black line.   

Fig. 3. Correlation between ADOSSA and temporal 
classification accuracies for inverted faces relative to 
houses. A: Time points where correlation with the 
ADOSSA score were significant. Z-scores >3 z-scores 
are plotted as gray vertical shaded areas. The metric 
used to assess accuracy was the AUC, with percen-
tiles as units. B: Scatterplot of ADOSSA scores relative 
to mean accuracy scores with Z-scores >3. The red 
line indicates the best linear fit. Chance level is 
marked by a horizontal dashed black line.   
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groups emerged only for classification accuracies in response to inverted 
faces relative to houses. The results for upright faces align with prior 
studies from our group and others showing no group differences in 
evoked responses to upright faces in ASD (Apicella et al., 2013; Khan 
et al., 2013; Mamashli et al., 2018), and confirms that a multivariate 
approach to this question yields results that are in line with previously 
used univariate approaches, as expected. The results for inverted neutral 
faces, in contrast, were novel, and did show a group difference that did 
not manifest for upright neutral faces. The second question was whether 

any differences that do emerge between the groups and conditions, 
would manifest equally in both the temporal and spatial dimensions of 
the responses. In response to this question, we found significant group 
differences in both the temporal and spatial domains of the evoked re-
sponses to inverted neutral faces in ASD. Importantly, the accuracy 
associated with each participant in classifying cortical responses to 
inverted faces vs houses correlated significantly with ASD severity in the 
the spatial and temporal domains. 

The results in the temporal domain, while not in line with our 

Fig. 4. Accuracy of spatial classification between the inverted faces and houses conditions. Averaged classsification accuracies for classifying between the two 
conditions in the A: ASD and B: TD groups. The metric used for classification accuracy was the AUC, with percentiles as units. C: Z-scores from PLS group differences 
in classification accuracy. Negative z-scores indicate reliably lower classification accuracy in the ASD group. 

Fig. 5. Correlation between ADOSSA and spatial classification accuracies for inverted faces relative to houses. A. Z-scores of the correlation between classification 
accuracy and ADOSSA scores, where thresholded at z-score > 3. Negative z-scores indicate an association between higher ADOSSA scores and lower classification 
accuracies. B. Scatter plot showing classification accuracy scores versus ADOSSA scores. The red line indicates the best linear fit. 
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original hypothesis, are consistent with observations that responses to 
faces are known to peak between 100 ms and 200 ms. Classification 
accuracies for inverted faces versus houses differed significantly be-
tween the groups around the two known components of the response to 
faces – the M120 and the M170. The M120, which has been measures 
using both EEG and MEG, and occurs between 100 and 130 ms typically, 
in response to upright or inverted faces (also referred to as P1 / P120 / 
P100 when measured using EEG) is believed to correlate with face 
categorization or selectivity, but not face recognition (Eimer and 
Holmes, 2002; Linkenkaer-Hansen et al., 1998; Liu et al., 2002). The 
response component at 170 ms is of course the the best known compo-
nent of the evoked response to faces, and has been documented using 
both EEG and MEG (Eimer, 2000; Itier et al., 2006; Liu et al., 2013). It is 
particularly interesting to note that in spite of the fact that decoding 
accurracies remained high throughout the trial, even at 500 ms after 
stimulus onset, the group differences were only significant at time 
windows that overlapped with known components of the evoked 
response to faces. This is likely because it is as those time windows that 
the response is most face specific, and therefore is more likely to be 
impacted in ASD. Furthermore, fact that our methodology detected 
differences in the temporal domain that overlap with known peaks of the 
response to faces, substantially increases confidence in the validity of 
the results. The fact that these differences were not observed previously, 
speaks to the strength of this multivariate data-driven approach. 
Importantly, lower classification accuracy was correlated with increased 
ASD severity as measured using the ADOS, confirming the relevance of 
the results to the ASD phenotype. 

In our spatially-based analyses, the classification accuracy was 
significantly lower in the ASD vs. TD participants in the SMG, IPS and 
pSTS areas. It was unexpected that all the differences in evoked re-
sponses to inverted faces emerged from non-specialized face processing 
areas. Previous studies suggest that the face-processing “core” system 
involves the FFA, occipital face area (OFA) and posterior superior 
temporal sulcus (pSTS) (Haxby and Gobbini, 2011; Nunes et al., 2019). 
We did not find any group differences in either the FFA or the OFA. It is 
possible that with univariate approaches, the lack of group differences in 
these more dominant face processing areas overshadows differences in 
less prominent face processing areas. The multivariate approach taken 
here, in contrast, picked up non-specialized areas associated with the 
face processing network. The pSTS is a higher order associative area 
with top-down regulation (Turk-Browne et al., 2010), while the IPS is 
part of the dorsal attention system that is involved in reorienting 
attention to unexpected stimuli, and is also involved in Theory of Mind 
tasks (Krall et al., 2015). The SMG has been shown to also be critical for 
holistic processing (Huberle and Karnath, 2012; Rennig et al., 2013). 
Thus, while none of these areas are specialized for faces, they are all part 
of the face processing cortical network. Importantly, again affirming the 
relevance of the results to ASD, group differences in classification ac-
curacies of classifying inverted faces relative to houses in all of these 
areas were correlated with ASD severity. More specifically, lower clas-
sification accuracy was correlated with increased ASD severity, and has 
more generally previously been associated with discriminative deficits 
in processing inverted faces (Jiang et al., 2013; Zürcher et al., 2013). 

Overall, these findings are consistent with mounting evidence that 
the ASD brain is more idiosyncratic both at rest and during processing of 
stimuli (Hahamy et al., 2015; Magnuson et al., 2020; Nunes et al., 2018). 
Such variability in brain function might explain reduced ability of the 
classifier to distinguish brain activity patterns elicited by different 
stimuli. Alternatively, our results are also consistent with the hypothesis 
that face processing difficulties arise due to reduced interest in facial 
stimuli starting early in life, which in turn would result in an underde-
veloped face-processing network (Pierce et al., 2011; Rice et al., 2012). 
This could result in less differentiation in responses to upright versus 
inverted faces, and classification accuracies for inverted faces that are 
more similar to those found for upright faces in the ASD group. One 
limitation of the study stems from the relatively small sample size, as 

well as from the smaller number of trials in a few of the participants; 
while we did not observe a correlation between accuracy and number of 
trials, the relatively low variability in number of trials per participant 
means this result is not conclusive. Another potential limitation is the 
relatively large age range, although that is likely mitigated at least 
somewhat by the groups being matched on age. Furthermore, the 
maturation of the M170 attenuates substantially (i.e. is close to mature) 
by around age 8 or 9, and there is evidence this is the case also for earlier 
components of the response (Haist and Anzures, 2017; Kuefner et al., 
2010), meaning the age range is not likely to be a significant concern for 
this study. In the spatial domain, there is indeed evidence of refinement 
of the spatial distribution of the response with age (Zhu et al., 2016). So, 
while this remains a limitation and, the fact that the groups were age 
matched, along with the correlations with ASD severity and the fact that 
the identified areas are indeed part of the face processing network, all 
increase the confidence in the findings. One caveat of data-driven 
decoding approaches concerns the relevance of the features used for 
classification, which are derived from the data blindly, and therefore the 
neurophysiological interpretation of these features is not necessarily 
obvious or intuitive. That said, the correlations with the behaviorally 
derived ASD measures reinforce our hypotheses that these features are 
in fact relevant to the ASD phenotype. 

More generally, the differences observed here between the process-
ing of upright faces in ASD, which appears intact relative to the TD 
group, and the processing of inverted faces in ASD, which is abnormal 
relative to the TD group, merits further discussion. It is possible that the 
abnormalities observed in the context of inverted face but not upright 
faces stem for the greater reliance of processing of inverted faces on top- 
down regulation (Papathomas and Bono, 2004; Gazzaley and Nobre, 
2012; Mayer et al., 2007). Reduced top-down modulations is consistent 
with multiple reports of abnormalities in top-down processing in ASD 
(Cook et al., 2012; Frith, 2004; Gomot and Wicker, 2012; Khan et al., 
2015; Mamashli et al., 2017; Neumann et al., 2006; Seymour et al., 
2019; Sinha et al., 2014), including during face processing (Leung et al., 
2014; Loth et al., 2010). Thus, while this study does not examine directly 
what specific changes yield the differences in the processing of inverted, 
but not upright, faces in the ASD group, abnormal top-down modula-
tions provide one plausible explanation for this difference. 

In sum, we found that evoked responses to upright neutral faces and 
evoked responses to houses were equally accurately classified in both 
the ASD and TD groups, using both the spatial and temporal domains of 
the evoked responses. In contrast, evoked responses to inverted neutral 
faces and evoked responses to houses were classified with significantly 
reduced accuracy in the ASD group, using both the spatial and temporal 
domains of the event related responses. The time window when accu-
racy of classification was most different between the two groups was 
consistent with the temporal pattern of responses to faces, around 120 
ms and 170 ms post stimulus onset. So, while we did not initially hy-
pothesize that we will find a significant difference here, the difference 
that did emerge is highly consistent with studies of face processing. 
Interestingly, the spatial pattern that was most predictive of group dif-
ferences did not include specialized face processing areas, and instead 
spanned activated components of visual object processing that are not 
specialized for faces (Haxby et al., 2002). For both the spatial and 
temporal domains, individual classification accuracies were negatively 
correlated with ASD severity, specifically in the social-affective domain, 
as measured using the ADOSSA. These negative correlations support the 
literature suggesting that the brain in ASD is more idiosyncratic (Hah-
amy et al., 2015; Magnuson et al., 2020; Nunes et al., 2018), and thus 
this approach offers a new direction through which to address this 
question in future studies. The multivariate data-driven approach taken 
here revealed patterns of abnormalities in the evoked responses to 
inverted faces in ASD in the spatial domain that were hitherto undoc-
umented, underscoring the importance of using such approaches in ASD. 
The multivariate approach applied here is likely to be particularly useful 
for understanding the neural bases of ASD, given the idiosyncratic 
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nature of the ASD brain, resulting in greater spatial and temporal vari-
ability and reduced predictability of the pattern of abnormalities asso-
ciated with the disorder. 
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Matthieu Perrot, Édouard Duchesnay, 2011. Scikit-learn: machine learning in 
python. J. Machine Learning Res. 12(Oct):2825–2830. 

Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: Transforming 
numbers into movies. Spatial Vision 10. 

Piepers, Daniel W., Robbins, Rachel A., 2012. A review and clarification of the terms 
‘Holistic’, ‘Configural’, and ‘Relational’ in the face perception literature. Front. 
Psychol. 3 (DEC), 559. 

Pierce, Karen, Conant, David, Hazin, Roxana, Stoner, Richard, Desmond, Jamie, 2011. 
Preference for geometric patterns early in life as a risk factor for autism. Arch. Gen. 
Psychiatry 68 (1), 101–109. 

Puce, Aina, Marie E. McNeely, Michael E. Berrebi, James C. Thompson, Jillian Hardee, 
Julie Brefczynski-Lewis, 2013. Multiple faces elicit augmented neural activity. Front. 
Hum. Neurosci. 7, 282. 
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